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Abstract

Communication channels where bandwidth efficiency is a prime concern suffer
from interference (crosstalk), the principal perfbrmance-limiting impairment in many
communications systems. Interference arises where communications systems lie in
close proximity and it has two forms: co-channel interference and adjacent-channel
interference. In twisted-pair subscriber loops, interference is in the form of co-channel
interference. In radio channels, as in satellite, microwave, indoor wireless and digital
cellular systems, it is in the form of co-channel and adjacent-channel interference. In
these systems where the communication is digital, the baud rate clocks are similar, the
systems use similar modulation techniques such as PAM, QAM or PSK, and there are
only a few dominant or phase-aligned interferers, then the power of the interference can
vary with period equal to the baud period, hence the term cyclostationary interference.

In this report, the linear equalizer receiver is analysed under the criterion of
minimizing the mean square error in the presence multiple cyclostationary interferers and
additive white noise. Furthermore this situation is compared to the case where the mean
power spectrum of the interference is the same, but stationary. In order to provide more
understanding of the analysis, a pedagogical example is presented. Some preliminary
analysis for the zero-forcing and decision-feedback equalizer is also presented. Finally in
the context of a subscriber loop system application the performance of the linear equalizer

in the presence of cyclostationary interference and stationary noise is compared.
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Chapter 1

Introduction

1.1 Background

Communication channels where bandwidth efficiency is a prime concern suffer from
interference, the principal performance-limiting impairment in many communications
systems. Interference arises where communications systems lie in close proximity and
it has two forms: co-channel interference and adjacent-channel interference. Adjacent-
channel interference occurs when frequency-division multiplexed channels spill over
into adjacent bands in the spectrum. Co-channel interference occurs when different
systems use the same band but are only separated by some distance sufficient to ensure

reasonable isolation.

With twisted-pair subscriber loops, interference is in the form of co-channel inter-
ference resulting from coupling among the various twisted pairs in a multipair cable.
Increasing levels of interference occur with increasing baud rates since the crosstalk
coupling loss increases with frequency [1, 2, 3]. Specifically, the dominant form of
interference has an average power at the input to the receiver proportional to |f |%.

Interference in twisted-pair subscriber loops will be explored further in chapter 4.

With radio channels, as in satellite, microwave, indoor wireless and digital cellular
systems, interference results from co-channel and adjacent-channel interference. In radio
systems, increased levels of interference occur with closer physical spacing (higher
co-channel interference) and narrower frequency allocation (higher adjacent-channel

interference).

One difference between twisted-pair subscriber loops and radio channels which de-
serves a comment at this point is the mobility of the transmitters and receivers and the
economics of choosing alternative channels. Twisted-pair subscriber loops have alter-

natives such as coaxial cable and optical fibres, but radio channels have no reasonable




alternative, assuming transmitter and/or receiver mobility is required!. However, the
alternatives to subscriber loops, specifically optical fibre, are not economical for bit
rates less than about lM—;’“g, and that is for new installations [4]. One reason for the
economics of choosing subscriber loops was the huge investment over the last 80 to 100
years by the telephone companies. At the time the loops were intended primarily for
voice-band communication. However they have been shown to be suitable for basic rate
ISDN (full duplex 144ﬂ;‘—’), noting the recent standard [5]. There are also standards
for local area networks using twisted-pairs at 10@ over short distances [6]. Finally,
research in under way to put ISDN primary rate data on subscriber loops and it is in this

application where interference is a major performance-limiting impairment [7, 8, 9, 10].

In the design of systems where interference is present, a question which needs to be
considered is how much interference can be tolerated. This question is considered for
subscriber loop systems and will be considered for digital cellular systems where the
following four assumptions are valid: the communication is digital among the disturbed
and disturbing systems, the symbol-rate clocks are synchronized? in frequency, the set of
channels lying in close proximity are modulated similarly (e.g. baseband PAM, QAM,
PSK, etc.) and there are a few dominant® or phase-aligned* interferers.

Under these four assumptions, the resulting interference becomes cyclostationary.
That is, in such an environment the statistics (such as power) of the interference at the

input to a receiver vary periodically in time, with a period equal to the baud period.

Just to make the terminology more confusing, the term subscriber loops is sometimes chosen
to include end-point terminations using radio links, a proposal in future ISDN networks.
However, for the remainder of this document the term subscriber loop will simply mean
twisted-pair subscriber loop.

In subscriber loops the clock frequencies are synchronized since they are derived from a
master clock [11]. However in radio systems the frequencies may be very similar, not
strictly synchronized.

3 In subscriber loops, it is well known that there are usually only a few dominant interferers
[12, 13]. The dominance of a few interferers in the radio channel is also being investigated
[14].

Phase aligning interferers has been discussed in [1, 15].




This differs significantly from the case where the interference is only stationary noise
and these differences will affect the design of the receiver.

An example of how the cyclostationarity of the interference affects the design of
receivers will be demonstrated by the following brief example.

Figure 1.1 shows two possible transmitted signals and interference which is either
stationary noise or cyclostationary interference. The noise and interference may be
interpreted as part of the ensembles of their respective random processes. The problem
for the receiver is to estimate which signal, either +1 or —1 was transmitted in the
presence of the additive interference given that the receiver has knowledge about the
statistics of the interference. Suppose further that the power spectrum of the stationary

noise and cyclostationary interference are the same.

In the first case where the signal is corrupted stationary noise, the receiver would
equally emphasize the signal components in region 1 and region 2 of Figure 1.1.
However, in the second case where the signal is corrupted cyclostationary interference,
the receiver would put more emphasis on the signal component in region 2 because the
power of the interference is lower in region 2. Hence, the receiver will change depending
on whether the interference is stationary or cyclostationary even if the interference has
the same power spectrum.

The goal of this work is to show that the cyclostationary nature of interference can
be exploited in equalization. Another goal is the comparison of the performances of
equivalent systems with stationary and cyclostationary interference — This comparison
will allow further evaluation of various clock synchronization strategies in interference-

limited systems.

1.2 Completed Analysis

Chapters 2, 3 and 4 describe the completed analysis.

Chapter 2 describes the model of the cyclostationary interference used in later
chapters. This chapter also introduces some of the effects on interference when it is
bandlimited.
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Figure 1.1 Stationary versus Cyclostationary Interference




Chapter 3 contains more rigorous developments on the effect of cyclostationary
interference on receivers. Linear and decision-feedback equalizers are analysed where
the performance criterion is the mean square error (MSE) and the interference at the input
to the receivers is additive cyclostationary interference plus white noise. Also, the zero-
forcing equalizer is considered since it provides additional insight. Note that to assess
the performance limits of equalization in cyclostationary interference, continuous-time
equalizers with no constraint on complexity are considered. Furthermore, these receivers
are also compared to the case where in the interference in the channel has the same power
spectrum, but is stationary. To help clarify some of the differences between equalization
in cyclostationary interference and stationary noise a pedagogical example is presented.

Chapter 4 describes an application with a linear equalizer working in the presence of
cyclostationary subscriber loop interference. It is compared to the case where the same
type of equalizer is operating in stationary noise with the same power spectrum as in the
cyclostationary case. This comparison will illustrate that the cyclostationary property is
exploited by the equalizer to yield better performance than for the stationary noise case.




Chapter 2

Cyclostationary Interference

2.1 System and Interference Model

The interference and system model are shown in Figure 2.1. In this model ¢ (¢)
is the convolution of both the pulse and the channel impulse responses. The signal

component at the input to the receiver is given by

s(t) = Y dn, $o(t—nT) 2.1)

n=-—00
where dy, are the transmitted data and T is the baud period. The i** interferer, ¢ (1),
is the convolution of both the pulse and the i** interferer’s impulse response. Thus the

total interference at the input to the receiver due to all interferers and noise is given by

v(t) = n(t) + > Y dn ¢i(t—nT) 2.2)

i=1 n=—00
where n (t) is noise and dy, are the data of the s** interferer. The baseband noise has
a two-sided power spectrum Ny and is white:
E[n(t)) =0
(2.3)
E[n(t;) n*(t2)] = No §(t1 —t2)
§(t) is the unit impulse (* denotes complex conjugate). The data among the signal
and all interferers are statistically independent with mean zero and variance one. The
variance of the data, o3, can be assumed to be one without loss of generality because it
is equivalent to putting the scaling factor into the pulse shape instead of the data.
Elds] =0
E [dnd},] = 03 6ick bn-m

ol =1 2.4)

1 k=0
50 {
0 ,k#0
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The input to the receiver is the sum of the signal and interference components g (¢) =
s(t) + v (t). This model is similar to the one described in [1].

Some of the inherent assumptions of this model will be described. The communica-
tion is digital where the channel and the interferers use the same synchronized baud-rate
clocks. The channel and the interferers use the same modulation scheme (PAM, QAM,
PSK, etc.). Since this model includes the complex baseband representation [16], the
interference can include both co-channel and adjacent-channel interference. In the fre-
quency domain the co-channel interference is centered at 0 H z and the adjacent-channel
interference would be centered at some non-zero frequency so that it would only be a
vestigial component in the baseband frequencies.

One more inherent assumption of this system and interference model lies in the way
in which the receiver is only able to observe one channel output. Generalizing, one
could obtain a multiple input and output channel with a multi-channel receiver. Such
a multiple input receiver could be thought of as a diversity combiner. However it may
not always be practical to have a receiver with multiple inputs from multiple channel
outputs. This is why the receivers will only be allowed to observe one channel output.
This will be discussed further in chapter 3.

Due to the interferers, {#;(¢), ¢ > 1}, the input to the receiver is in general
cyclostationary. For the remainder of this chapter the white noise component will not
be considered since it is stationary. Consider one interferer. Call the interference at

the input to the receiver:

va(t) = ) du, ¢1(t —nT) 2.5)

n=—00

To observe the cyclostationarity of v; (¢), the variance can be shown to be

E |l (nT +7)P| = ij % / o (f+3) %) & | 57 @6)

which is an expression in the form of a Fourier series, where ®, (f) is the Fourier

transform of ¢, (¢) [17]. Equation (2.6) can be extended to give the variance of the sum




of all interferers at the input to the receiver:

EllueT+nf] = 3 (;_},— / S e (r+2) () df) S @)

m=—00 =1

E [|,u(nT+ r)|2] is periodic in 7 with period T.

2.2 Bandwidth Effects

Equation (2.7) is a convenient form to consider the effect of bandwidth on cyclo-
stationarity. The variance will be cyclostationary if there are non-zero terms in the
summation over m, excluding m equal to zero. Stated another way, the variance would
end up being stationary if the only non-zero term in the summation is the one for m
equal to zero; this always occurs when the interferer, ®; ( f), is strictly bandlimited to
>r [18]. Having {®; (f), ¢ > 1} of bandwidth greater than _2111_' is a necessary condition
for cyclostationarity, but it is not sufficient since it may be still be possible to have
zero-valued coefficients in the Fourier series of (2.7) for m not zero. For example, a
rectangular received interference pulse over one baud period has an infinite bandwidth,

but would cause stationary interference.’
The degree of cyclostationarity is the difference, usually measured in dB, between
the peak and valley of the variance over one baud period. If the interferers are

bandlimited to %, then from equation (2.7) the variance of the interference can be

written as:
2
E [|u3 (nT+r)|2] = K1+ Kycos (—:’;—T- + K3> 2.8)
and the degree of cyclostationarity would be:
K + K,
D =101 - .
0 logio (Kl-K2> (2.9)

5 Example due to Prof. M. El-Tanany
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The dependency of the degree of cyclostationarity on the baud rate will affect the
practicality of exploiting the cyclostationary behaviour of the interference in equalization.
The degree of cyclostationarity will be discussed further in chapter 4 in the context of

the subscriber loop application.




e

Chapter 3

Receiver Theory

3.1 Problem Formulation

The receiver shown in Figure 2.1 will be analysed for the specific cases of a
continuous-time linear equalizer, continuous-time zero-forcing equalizer, and decision-
feedback equalizer with a continuous-time forward filter. Continuous-time equalizers,
that is equalizers with no constraint on complexity, are used in order to derive perfor-

mance bounds of synchronous or fractionally-spaced equalizer implementations.

The performance criterion that will be used to analyse the linear and decision-
feedback equalizers is the mean square error (MSE). The MSE was chosen because of
three reasons. First, it makes the analysis of the receivers tractable. Second, it provides
an exponentially-tight upper bound on the probability of error [19]. Third, an efficient
means of implementing equalizers is using adaptive filters and the performance criterion
which they minimize is the MSE [20, 21, 22].

The system and interference model of chapter 2 will be used in the analysis of this
chapter. At any point in the following developments, the interferers can be set to zero
and the developments will immediately revert to the familiar situation of a channel with

just additive white noise.

3.2 Linear Equalizer Analysis

3.2.1 Cyclostationary Interference

The linear equalizer receiver is shown in Figure 3.1.

Given the known channel, {¢o (t)}, and co-channels, {#;(¢), i > 1}, of chapter
2, the mean and variance of the data being zero and one, all the data and white noise

statistically independent, and the two-sided power spectrum of the baseband white noise

11
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13
being Ny, then the problem is to find r (¢) to minimize the MSE of the filter output
sampled at the baud rate:

e = FE [Iu(nT) -;(1/,:, 2} 3.1

Correct decisions will be assumed (J,,\o = dp,). Thus the derivation is for a lower bound
on the MSE and is a generalization of the additive white noise development [23].

Before proceeding further with the analysis, it will be put in perspective with some
similar work described in the literature. Having set up the problem and notation, the
discussion about this issue is easier.

In chapter 2, it was mentioned how a channel with interference may be viewed
in a larger sense as a multiple-input multiple-output channel. In [24, 25], the authors
analyse one multiple-input multiple-output channel with one multiple-input multiple-
output co-channel and additive white noise. Their analysis proceeds using matrices
and if the dimensions of those matrices are set to one, they derive the case of the
optimal MSE linear equalizer with just one interferer and additive white noise. Since
the authors consider multiple-input and multiple-output channels, their work has the
following interpretation. Consider Figure 3.2. Two different systems are presented that
have different tradeoffs between performance and complexity. For simplicity, they are
only shown as a two-input two-output channel without interferers, but the discussion can
easily be generalized to multiple-inputs and multiple-outputs with multiple interferers.
The first systerri is more complex but can achieve a better MSE performance because it
does an optimal diversity combining, similar to the work in [26]. It relies on access to all
channel outputs. The higher complexity system based on a linear equalizer receiver has
been previously analysed with a multiple-input multiple-output channel having additive
white noise, but without explicit interferers [27, 28].

There is one more subtlety of the multiple-input multiple-output channel without
explicit interferers to be noted. This case can include interferers by judiciously setting
to zero some of the components of the cross-coupled channel before any receiver

optimization. For example, in Figure 3.2a set pio (%), po1(t), co1 () and ¢y () to
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zero. Fihdjng the optimal receiver matrix would result in the only non-zero elements
being oo (t) and ro; (¢). The filter rg; (¢) could be discarded and this would leave rqq (¢)
being the minimum MSE linear equalizer in cyclostationary interference and additive
white noise. Thus the presence of interferers can be modelled as a specific case of the

6 cross-coupled channel matrix.

situation without interferers; it simply requires a sparse
Hence the most general analysis is in [27].

The lower-complexity system in Figure 3.2 is the one which will be analysed in
this work. Note that the receivers in the lower complexity system, {ro (%), r1(t)},
will, in general, be different from those corresponding to the system with the higher
performance {rg (¢), r11(¢)}.

The higher complexity systems are not treated here since in many practical situations,
both or all of the channel outputs are not available at the same location’ and even if
they are available, the cost of the higher complexity system may not be warranted in
view of the performance gained. There are situations where multiple channel outputs
are available. In [24, 25] they refer to the situation where a twisted pair cable may
have all its outputs terminated at a single physical location. In [28, 19], they describe
cross-polarized radio channels with two channels whose outputs are fed into linear and
decision-feedback equalizers of the higher complexity type (see Figure 3.2).

Note that in none of the previously mentioned works do the authors make a compar-
ison between the receiver performances for stationary and cyclostationary interference
of a given power spectrum.

The optimal MSE linear equalizer receiver to be developed here has already been
determined by a different approach [29, 30]. The analysis of the familiar linear equalizer
[31] is included here as a stepping stone to the more complex analysis of the decision-
feedback equalizer shown later in this chapter. It is also included to provide a framework
for comparing the linear equalizer performance in cyclostationary interference versus

stationary noise.

A sparse matrix means many of the elements of the matrix are zero.

7 An exception occurs in radio systems with diversity.
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Figure 3.2 Mulitiple-Input Multiple-Output Channel
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Proceeding with the analysis of the one-output system, from equation (3.1), the
MSE may be rewritten as:

e = Eu(nT)u*(nT)] = E [dn,u* (nT)) _E [d,u(nT)] + E [dnods,]  (3:2)

But u (nT') may be expressed as signal and interference components which have been

filtered by the receiver:
o0

u(nT) = mimdmo_go éo(r) r((n—m)T —7) dr

00 (3.3)
+ [v(r) r(nT —1) dr

—00
Substituting u (nT') from (3.3) into (3.2) and evaluating the expectations over the data

and white noise, the four terms of the MSE become:

e = [ [ k(1) (@) r(r) drdt +_°f° ot (=t) r* () dt

-0 00

o (3.4
+ [ do(=t) r(t) dt + 1

k1) = S5 3 gi(mT—1) gt (mT—1t) + Nob(t—1) (3.5

=0 m=—00

The problem is to find r (¢) which minimizes the MSE given in equation (3.4), and
by the calculus of variations (see appendix A) the optimal function for r (t), call it r, (¢),
satisfies the following integral equation:

T ) ro(r) dr = 631 (.6

Now the MSE, ¢, can rewritten in terms of the optimal receiver filter:

Emin = 1 — T ¢0("’t) T‘O(t) dt
‘: 3.7
= 1= ] &%) R(N) &

where R, (f) and @, (f) are the Fourier transforms of r, (t) and ¢y (¢), respectively.
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Expanding the integral in equation (3.6) and grouping all integrals over dr into
constants which are not functions of ¢ and rearranging gives the form of the optimal
filter (provided Ny # 0):

o0 oo}
ro(t) = D ) cn; 8] (nT —t) (3.8)
1=0 n=—00
For the moment the specific values of ¢, are not important, however the form of equation
(3.8) is. It indicates that the optimal linear equalizer can be interpreted as a bank of
filters matched to the individual {¢; (¢)} as shown Figure 3.3. Note that for the case of
just additive white noise in the channel (all interferers zero), Figure 3.3 reverts to the

familiar form of a matched filter followed by a synchronous equalizer.

Equation (3.6) may be solved by taking Fourier transforms with respect to ¢ to give:

MR+ 3380 Y w4 1) R(145) = %) 69

=0 l=—00
where {®, (f)} are the Fourier transforms of {¢; (¢)}, respectively. Equation (3.9) gives
the optimal receiver in terms of the channel, the interferers and the white noise.

For {®;(f), ¢ > 0} strictly bandlimited to 5, R(f) can be determined by rear-
ranging equation (3.9):

0 1> 3p
R, (f) = 25(4) 1fl < 2 (3.10)

Not+% Y 18:(f)I

+=0
This will be compared to a result for stationary noise in the next section.

For {®;(f), i >0} strictly bandlimited to 4, R(f) can be determined from a
system of three equations and three unknowns obtained by replacing f in equation (3.9)
by f + 7, f and f — 4. When this system is solved it gives the form of the optimal
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receiver:
(0 A2 %
Ww(f-1) &(f-1) 0
Vi(f-+4) 162) Vi(f)
Be (£) = 5 0 HUHH) wUHHl L, G
Vo(f-4) Vi(f-4) 0
iif-7) W& Vi(f)
‘ 0 Vi) Vol(f+%)
where .
() = No + %Z;l‘bi(f)lz (3.12)
and -
i(f) = %Z‘i:‘ (f) @i (f+%) (3.13)
1=0

Results of the same character, with larger-dimensional matrices, can be obtained for
the cases where the bandwidth of {®;(f), i > 0} exceeds 7.

An important note about this receiver is that it is time-invariant. Even though at
one point in the development the optimal receiver can be determined from a time-
variant deconvolution (see equation 3.6). Since the MSE is minimized only at baud rate
samples, and since the output of the channel is stationary when sampled at the baud rate,
even though the continuous signals and interference in the channel are cyclostationary,
the receiver is still time-invariant. If instead an MSE minimization was performed in
continuous-time throughout the baud period, the receiver would in general be time-

variant [18].

3.2.2 Stationary Interference

These results for the cyclostationary interference will now be compared to linear
equalizer performance in stationary noise. Many of the equations to be shown are well
known for stationary noise. The purpose of presenting them is to relate them to the

similar results for the cyclostationary case.
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In Figure 3.1 the mean power spectrum of the interference (averaged over one baud
period) is:
Sw(f) = No + lil‘bi (HI* (3.14)
T i=1
S,u (f) was derived from the power spectrum of a QAM signal [16, 32]. If the
interference shown in Figure 3.1 is replaced with stationary noise having the same power
spectrum as equation (3.14), the minimum MSE linear equalizer can be determined by

whitening [33] the noise in the channel and yields the following:

Ry(f) = U (3.15)
o0 \ o Motk DIB(HF o
N+ 218 +7 X e Qo (f +
0 T"gl T'=-°°No+%2|@e(f+%)l" o7+ 1)

i=1
R, (f) is put in this form in order to compare it to the cyclostationary interference
result in equation (3.11).
When the interferers {®;(f), ¢ > 1} in equation (3.15) are zero, R, (f) reverts to

the following familiar form for a channel with just white noise [23, 34]:
Q*
Ry, (f) = = 3.() - (3.16)
Notr ¥ |%5(f+ 1)l

=00

When the interferers {®; (f), ¢ > 1} in equation (3.15) are strictly bandlimited to
a7, Ry (f) takes on the following form:

0 f1 > e

R, (f) = q,éo(f) 1fl < ng 3.17)
No+# > 19:(HI°

=0

Note that equation (3.17), is identical to the cyclostationary result in equation (3.10)
and this was to be expected since the interference becomes stationary when strictly

bandlimited to i (see equation (2.7)).
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When the interferers {®; (f), ¢ > 1} in equation (3.15) are strictly bandlimited to
’}, R, (f) takes on a completely different form than the cyclostationary case given in
equation (3.11). This means that the performance in stationary and cyclostationary inter-
ference is not the same and the performance improvements obtained in cyclostationary

interference will be demonstrated in the subscriber loop system application in chapter 4.

3.2.3 Pedagogical Example

To gain further insight into the previous analysis and how equalization in cyclo-
stationary interference differs from that of stationary noise, the following pedagogical
example was constructed. The results shown here are for a system whose pulses and
channels are not realistic. But more importantly the results show an exaggeration of the

MSE tradeoffs that would occur in a realistic system.

Figure 3.4 contains a block diagram of the system. The transmitted data are d,,,. The
data of the single interferer are d,,,. The pulse, channel and co-channel will be described
below; the only reason for these particular choices is because they are sufficient for

demonstration.

raisedc (f) is the transmitted pulse described in the frequency domain where T
is the baud period:

. 0 Ifl1= 7
ratsedc (f) = { 14 cos (T ) fl< %

2

(3.18)

cflat (f) is the channel frequency response:

cflat (f) = 3.852 x 1072 rect (Tz—f)

0 ,le (3.19)
rect {f) = {1 ,:f:<-§-




() |
white noise

Figure 3.4 Pedagogical System
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next (f, ) is the coupling from the co—chalmnel into the channel:
neat (f,m) = (B 1713)" ed ¥ son () delay (7, 1)

K, = 10~13
sgn (f) = 0 ,f=0
+1 ,f>0

delay (1, f) = e~ 727f7
T is included as an extra argument in nezt in order to vary the relative position, in
time, of the interference with respect to the transmitted signal. Hence r is an element
of the interval [0, T]. The baud rate is # = 80000 Hz. The white noise has a power
spectrum: No = 5 x 1077. Finally note that the overall channel is:

¢0(t) = raisede (f) cflat (f) 3.21)
and the overall co-channel is:

#1(t) = raisede (f) next (f,7) (3.22)

The following definitions of SIN R (signal to interference-plus-noise ratio), SIR
(signal to interference ratio) and SN R (signal to noise ratio) will be used:

Pg
INR = 101 _— .

S R 0 04g10 (PI T PN) (3 23)
SIR = 10 logm (&) (324)

Py

and

SNR = 10 logyp (—Pi) (3.25)

Py

Referring to Figure 2.1, the average signal power is:

T
Ps = % 0/ E [|s(t)|2] dt (3.26)
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the bandlimited noise power is:

Py = Ny (2 %—) (3.27)
and the average interference power is:
T
- 7 [E k@] (.28)

0
According to the definitions, the SIN R in this example was computed to be 20 dB.

The impulse response of ¢ (¢) and the variance of the signal, § dnod0 (t — nT),
are plotted in Figures 3.5a and 3.5b, respectively. The impulse res;;;n—s(:eo of ¢; () and the
combined variance of ioj dn, ¢1(t — nT) plus the noise bandlimited to |f| < 4 are
plotted in Figures 3.6a 121?1&?.6& respectively. In the figures, the following variables and
functions are equal: NO_= Ny, f0__= #,T0__=T, Tau _ = 7, phi0 (t) = ¢ (t)
and phil (t) = ¢1(2).

Since ¢ (t) and ¢, (t) are bandlimited to #, the optimal receiver for cyclostationary
interference can be obtained from equations (3.11), (3.12) and (3.13) and it is plotted in
Figure 3.7a. Similarly, the optimal receiver for stationary noise, having the same mean
power spectrum as the cyclostationary interference, can be calculated from equation

(3.15) and is shown in Figure 3.7b.

The striking difference between the receivers for the cyclostationary and stationary
cases was the motivation for gaining more of an understanding of what the cyclostation-
ary equalizer was doing. The reason for choosing the interference phase shift of

T = Tau _
= %T (3.29)
= 7.813x10~% seconds
was to show the most striking difference.

Using equation (3.7), the MSE was calculated for various values of + and plotted

in Figure 3.8. The MSE also exhibits interesting behaviour at + = gT. The MSE for

the stationary noise case was calculated using the same equation for the MSE but with
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the stationary noise receiver. The stationary noise MSE is shown in Figure 3.8 as a
horizontal line.

The differences in the cyclostationary and stationary cases arise because in the
cyclostationary case the MSE which must be minimized has an additional component
due to the interference. Consider the MSE from equation (3.1) where u (nT') from
equation (3.3) can be expanded further to give:

u(nT) = dp, ho(0) + Y dmo ho((n—m)T)

m=—o00 , m#0

+ dm, h1((n=m)T
m:z_:oo H{n=m) ) (3.30)

o0

+ /r(t) n(nT —t) dt

—-—Q0

g1 + q + @ + q4

li>

where
hi(t) = ¢i(t) »r(t), 120 3.31)

and x denotes convolution. Equation (3.30) can be substituted in equation (3.1) to give
the following more meaningful interpretation of the MSE:

€ = agata bias + U?SI + U?Ytalk + afzwise (332)
where 2
dtziata bias — |h0 (0) - ll
ols1 = E|lgf 533
2 -
% = E|lgsl
2
Ufwise = E 'q4|

Recall that for a zero-forcing equalizer in stationary noise the terms o2, ,. and o,
are zero and the MSE is equal to just o2, . but the MSE is higher than if all three terms

are minimized. This situation occurs when Nyquist’s First Criterion for zero intersymbol
interference is satisfied; that is the sampled equalized channel, ko (nT'), satisfies:

1
ho (nT) = { (3.34)
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However in the case of cyclostationary interference there is an extra term, a?,(t alk- This

term would be zero if it were possible to satisfy the following condition:
hi(nT) = 0, Vn, i#0 (3.35)

Nyquist might have called this his criterion for zero co-channel interference.

Note that as 7 approaches %T, in Figure 3.5 the peak of the interference variance
(see Figure 3.6b) is shifted to the right by %T (or to the left by %T) and causes the
position of the peak of the interference power to approach the position of the peak of the
signal power (see Figure 3.5b). Thus 7 = %T is the relative phase of the interference
which results in the worst performance (see Figure 3.8). The receiver must suppress the
interference component of the MSE more so at 7 = %T than at any other phase. To do
this, the previously mentioned condition for zero co-channel interference becomes more
important. Since the receiver does not achieve this condition, but instead minimizes the
total MSE, the receiver approaches the condition of zero co-channel interference more
so at this phase than at any other.

Figures 3.9a and 3.9b contain the frequency responses of the sampled equalized
channel and co-channel, respectively (i.e. the discrete-time periodic-frequency (DTPF)
Fourier transforms of kg (nT) and h; (nT')). The frequency response of the sampled
equalized channel is what was expected from Nyquist’s First Criterion; the magnitude is
almost completely flat at a value of 1 for frequencies in the range |f| < 71‘," However,
most of the energy of the sampled equalized co-channel is in two sharp peaks near
f = :1:-2-1T. In the time domain, the sampled equalized co-channel would be generally a

sinusoidal of period roughly EIT having zero crossings at or near the sampling instants.

Figure 3.10 shows the impulse response of the equalized channel k¢ (¢). The impulse
response is of such long duration that its envelope is plotted in Figure 3.10a and it values
in the neighbourhood of ¢ = 0 are plotted in Figure 3.10b. Note that at ¢ = 0 the value
is at or near one and that at all the other sampling instants, the value is at or near zero.
Figure 3.11 show the corresponding impulse response of equalized co-channel h; (¢).

Note that at all sampling instants the value is at or near zero.
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3.3 Zero-Forcing Equalizer Analysis

This section will briefly describe the zero-forcing equalizer and under what condi-
tions it exists. It will give insight into both the linear and decision-feedback equalizers.
The zero-forcing equalizer could be derived by letting Ny approach zero in the linear

equalizer analysis but the analysis to follow gives more insight.

Consider Figure 3.1 but where the additive white noise component, n (t), is zero.

Also let the equalized channels and co-channels be:

hi(t) = ¢i(t) x r(t)

(3.36)
H;(f) = ®;(f) R(f)
The condition for zero intersymbol interference is:
1 — !
7 Z Hy (f+i) =1 (3.37)
l=—00
The condition for zero co-channel interference is:
1 & l
TZH,-(f+-T—) =0 ,i>1 (3.38)

l=—00

These two conditions may be combined into the following:

1 «— " ! i
T S OH(f+ T) =6 Vi
I=—0c0 _ (3.39)
{ 1 ,:=0
c; =
0 ,2#0
Let there be only M interferers and therefore there are N = M + 1 independent data
streams. Therefore the combined condition for the zero-forcing equalizer can be written

as:

1 ! ! '
Tlgmq"(f+7)R(f+7> =c¢ ,08:<N-1 (3.40)

Equation 3.40 represents N equations. If the overall channel and co-channels,
{®;(f), ¢ > 0} are strictly bandlimited to 7’%, then at a given frequency, f, there will
be up to K unknowns. For the case of K being an odd number, the unknowns are:

K-1 K-1
(n(r+522), con(s- 521 s
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For the case of K being an even number, the unknowns are:
K-2 K
{R <f+—§f—),...,R(f—ﬁ)} (3.42)

Thus, equation 3.40 will generally have a solution®, that is there will be zero
intersymbol interference and zero co-channel interference, when the number of equations
is less than or equal to the number of unknowns. That is, the number of independent

data streams is less than or equal to the number of the bandwidth:

N < K (3.43)

From equation 3.40, the matrix involving {&®;(f), ¢ > 0} for K being an odd

number is:
W(f+ER) o 8- 5
= : : (3.44)
-1 (f+57) o v (F- 57

When the channels and co-channels have a frequency response which approaches zero
at the high end of the frequency band, then the matrix’s right column approaches
zero. Hence, the matrix approaches singularity. This would mean that a zero-forcing
equalizer would cause significant noise enhancement. Thus the analysis is more useful as
insight into the flexibility of linear and decision-feedback equalizers to suppress multiple

interferers in the cases where the bandwidth is large enough.

Considering the noise enhancement problem, note that the linear equalizer shown in
the pedagogical example to follow later does not cause the sampled equalized co-channel
(see equation 3.38) to be zero since the M SE is minimized instead. The equalized co-
channel in the pedagogical example shows narrowband tones near iglf instead of being
zero. These tones mean that the impulse response passes through or near zero instead

of zero at the sampling instants.
8

Provided that the matrix involving {®; (f), ¢ > 0} is not singular for reasons such as some
set of interferers or channel being identical. This is equivalent to the condition that the
interferers and channel be linearly independent [25].
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3.4 Decision-Feedback Equalizer Analysis

3.4.1 Cyclostationary Interference

The performance of a decision-feedback equalizer (DFE) receiver in cyclostationary
interference is analysed in this section. This development is a generalization of the
equivalent development for a DFE receiver at the output of a channel with just additive
white noise [35, 36]. What is to be derived is a performance bound. That is the
performance with no constraint on the tap spacing and number of taps in the forward
filter. The DFE receiver is shown in Figure 3.12.

Given the known channel and co-channels, {¢; (¢), ¢ > 0} of chapter 2, the mean
and variance of the data being zero and one, all the data and white noise statistically
independent, and the power spectrum of the white noise being Ny, then the problem is to
find r (¢) and the coefficients of the feedback filter {b;, k£ > 1} to minimize the MSE:

€ = E“w(nT)—-gn\0

) ,
] (3.45)

Correct decisions will be assumed (c?,,\o = d,,). Thus the derivation is for a lower bound
on the MSE.

There have been results published in the literature for DFE receivers for multiple-
input multiple-output channels. In [19], the authors consider a 2-input 2-output channel
with a DFE receiver which also estimates the interference and subtracts it from the
signal. Similar to the linear equalizer, the DFE which is analysed in this chapter is
the lower complexity, but lower performance, structure in which receivers observe only
one channel output. The additional assumption is made in the development to follow
that the interference power at the receiver input is relatively small compared with the
signal power; thus it is not reasonable to make reliable decisions on the interference
data in order to subtract it from the received signal. These are the reasons why the DFE
structure shown in Figure 3.12 was chosen. Also, the continuous-time analysis to follow

has been previously done in discrete time with a finite number of tap coefficients [15].
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Proceeding with the analysis of the single-input receiver, from equation (3.45), the
MSE may be rewritten as:

e = E[w(nT)w* (nT)] — E [dn,w* (nT)] — E [d},w (nT)] + E [dn,dy,] (3.46)

But
w(nT) = u(nT) - f(nT) (3.47)

where u (nT) may be obtained from equation (3.3) and

F(nT) = ) b dn_i, (3.48)
k=1

In a stationary noise development of the DFE, to minimize the MSE requires the
coefficients of the feedback filter, b;, be set equal to the samples of the equalized channel.

It can be shown that this is true for cyclostationary interference as well:

)
by = / ¢ (kT — 1) r (1) dr (3.49)
This was to be expected since setting the coefficients this way makes the post-cursor
ISI zero (assuming correct decisions). The coefficients can be set after r (¢) has been
determined.
Substituting w (nT"), f(nT) and b; from (3.47), (3.48) and (3.49) into (3.46) and
evaluating the expectations over the statistically independent data and white noise, the
four terms of the MSE become:

e = [ [ hka(tr)rt(t)r(r) drdt + [ &5(=t) r*(8) dt
~o0 o0 - —oo (3.50)
+ [ do(—t) r(t) dt + 1
where o 0
ka(t,7) = m=z_:°° o (mT — 1) g5 (mT — 1)
+ 3 S ¢i(mT ~1) ¢ (mT —1) 3.51)

1=1 m=-—o0

+ N05(t — T)
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Notice that k2 (¢, 7) is similar to & (¢, 7) from the linear equalizer analysis (equation 3.5)
except that the terms involving ¢¢ (¢) are a one-sided summation.

The problem is to find r (¢) which minimizes the MSE given in equation (3.50),
and by the calculus of variations (see appendix A) the optimal function for r (), call it
o (t), satisfies the following integral equation:

T ka(tyr) ro(r) dr = d3(—1) 352

The previously mentioned equation (3.7) for the optimal MSE also applies here.
Expanding the integral in equation (3.52) and grouping all integrals over dr into
constants which are not functions of ¢ and rearranging gives the form of the optimal
DFE forward filter (provided Ny # 0):
0
ro(t) = > an, ¢5(nT —1)
n=m (3.53)

+ D) an ¢ (nT—1)

=1 n=—00

where
- i=0, n<0
an, = { Uged -0, n=0 (3.54)
“% i#0, Vn
and
o0
Un, = /45,' (nT —71) ro(7) dT (3.55)
—00

The form of equation (3.53) indicates that the optimal forward filter can be interpreted
as a bank of filters matched to the individual {#;(¢)} as shown Figure 3.13 with the
important difference from the linear equalizer case that the synchronous filter following
the matched filter ¢j (—t) is anti-causal. Note that for the case of just additive white

noise in the channel (all interferers zero), Figure 3.13 reverts to the familiar form of a
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matched filter followed by an anti-causal synchronous equalizer which minimizes the
MSE of the precursor ISI.

The integral equation (3.52) for r, (¢) remains to be solved.
Taking Fourier transforms of equation (3.52), gives the following:

NoRo (f) + & (f) % > (f+%> R (”%)]

L I=—00

+38 () F% 3 @ (f+%) R, (f+%)

1=1 L l=—

- (3.56)
= %5 (f)

Notice the similarities to equation (3.9). The presence of the third term on the left side
of equation (3.56) indicates the presence of cyclostationary interferers instead of just
white noise in the channel. The presence of the anti-causal operator, [ ]_, indicates
that this is the equation for the DFE instead of the linear equalizer. The anti-causal
operator is defined in Appendix B. Due to the presence of the anti-causal operator, the
solution of equation (3.56), will have to proceed differently from the linear case.
Replace f by f + ’fw in equation (3.56) where k is any integer, rearranging and

shifting an index of summation gives:

% (5+£) Wl + 3 Wem) Ro(5+3) = 25 (£+£) @7

where -
1 l {
Uor (f) = T Z ® (f+ ‘j;) R, (f+ T) (3.58)
l=~00
and

m

Wam (f) = Nobnm + i@;‘ (f+%) 3, (f+_)

=1 T (3.59)
1 ,1=0
5 = {
0 ,l#0
The subscript T in a frequency response such as Uy, (f) is used to indicate that it is
part of a DTPF (discrete-time periodic-frequency) Fourier transform pair with period in

the frequency domain being % The DTPF Fourier transform is described in Appendix

B. Equation (3.57) represents and infinite number of equations in k.




forward filter

41

o §
g(t) > ¢’5(-t) >g antlacrell(l)ls 2 ;u(nT)+ - f(nT)> :F {ano}
v nT ? i |

: S ) w(nT) [oco

: . two-sided : 1
Tnne ¢T(")~§T—’ °n —’%5 kglbk kg
. . n :

Figure 3.13 Form of the Minimum MSE Decision-Feedback Equalizer




42

However, if the overall channel and co-channels, {®;(f),: > 0}, are strictly
bandlimited to ;5-, then equation (3.57) reduces to a set of 2K — 1 equations for
{—=(K -1) £ k < (K —1)} which can be written in matrix form in the specified

frequency range as:

0(f) [Wor (NI- + W(f) Ro(f) = 25(f)

K (3.60)
Ifl < 5T
h
e 9 (f - £71)] Ry (f — K1)
a5 (f - #) R, (f - %)
o5(f) = @5 (f) , Ro(f)= R, (f) (3.61)
&5 (f+ 1) Ry (f+%)
|95 (f + £71) LR, (f + £74) |
and
W_k-1),-x-1y(f) - W_g-1),+x-1)(f)
W(f)= : : (3.62)
Wik-1),-&-1y(f) -+ Wik-1),+&-1)(f)

Solve equation (3.60) for R, ( f), by inverting matrix W ( f), then premultiply both
sides of the equation by ,11~¢I>'0 (f) (where ' denotes transpose) to get:

Uor (f) = Mr(f) (1 - [Uoy ()]-) (3.63)
where
Uor(f) = 7 ®0(f) Ro(f) (3.64)
and
Mr(f) = 5 () W) &) (3.65)

Myt (f) is real and non-negative for all frequencies; thus it has the form of a power
spectrum.
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Equation (3.63) may be solved for Uy, (f) by spectral factorization [37, 38, 39] of
1+ M~ (f) into causal and anti-causal components that satisfy:

1+ Mz (f) = ZF(f) 27 (f)
bn+ M, = Z} x 27 (3.66)
ZE () = Z5 ()
and by breaking Uy, (f) into the following components (See Appendix B):

Uor (f) = [Uor (N)]- + [Uor (f)]++ (3.67)

to get:

1 1
ZE () ZF ()
Apply the anti-causal operator, { |_, to both sides of this equation and using property 6

Zr (f) Wor (- = Zr (f) - [Uor (f)]++ (3.68)

in Appendix B to observe that the last term on the right-hand side is zero gives:

- = Z7(f) - |—L1—
7 () W (D)- = 250 = | 775 369
or:
Wor (. = 1 — — [ - ] (3.70)
T Zr (f) LZF(H)]_
Substitute [Up,. (f)]_ from equation (3.70) into equation (3.60) and solve for R, ( f)
to get:

Ro(f) = WT(f) ®(f)

1 1
%m[ﬁui_ G7D

from which R, (f) may be taken from the middle row of R, (f).
The MSE can be obtained from equation (3.7) but it can be shown that a better
formula exists, based on the analysis in [35]:
emin = e~ (n(1+Mr(f)))
+ar
=1 [1d

-1
2T

(3.72)




There are some properties about the optimal MSE DFE that can be discussed. First,
as with the linear equalizer, the DFE is time-invariant. Second, the forward filter of
the DFE acts to cause the folded equalized channel to be at or close to zero at the
sampling points before the time origin and at or near one at the time origin [40]. The
folded equalized channel to the right of the time origin is not relevant to the forward
filter because the feedback part of the DFE subtracts off the remaining intersymbol
interference. This is the same as the additive white noise case. However, in the presence
of interferers, the forward-filter also acts to make the folded equalized co-channel at or
near zero for all sampling points. Thus the minimum MSE for the DFE in general has

the following form:
€ = agata bias T U%SI_ + ai’talk + U?loise (3.73)

where the symbols have the same meaning as in equation 3.32 except that o2 7_ is the

anti-causal part of the intersymbol interference in the channel.




Chapter 4

Application of Theory

4.1 Subscriber Loop Model

The model of the subscriber loop system used to demonstrate the differences between
equalization in cyclostationary interference and stationary noise is shown in Figure 4.1.
Currently a single interferer is modelled but using the analysis of chapter 3, a system
with multiple interferers can be modelled. The overall channel, &, (f), is shown divided
into the transmitted pulse, butterl (f), and channel frequency response, loop9 (f). The
overall co-channel, ®; (f), is shown divided into the transmitted pulse, butterl (f),
and co-channel frequency response, nezt (f,7). The parameter 7e [0, T] represents the
relative phase (a delay) of the interference with respect to the transmitted signal (as in
the pedagogical example).

4.1.1 Minimum Phase Pulse

The pulse filter has a frequency response that was obtained by doing a bilinear
transform [41] of a Butterworth filter. The frequency and impulse responses are shown
in Figures 4.2a and 4.2b, respectively. A Butterworth filter was chosen because when
sampled at the Nyquist frequency it is minimum phase. Also it allowed the pulse to
be interpreted in continuous-time and bandlimited to a}v The pulses are transmitted at
a baud rate of = 80 kHz.

4.1.2 Channel Model

The channel used was Bellcore Loop #9 [42] as shown in Figure 4.3. The channel
shows three bridged taps and although not shown it includes hybrid transformers and
terminations at both ends. Its frequency response®, loop9 (f), and impulse response,

loop9 (t), are shown in Figures 4.4a and 4.4b, respectively.

®  The frequency response is shown truncated to | f| < % only because the pulse, butter1 (f),
is strictly bandlimited to 7.
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From the pulse, butterl (f), and the channel, loop9 ( f), the overall channel, &, (f)
can be determined and its frequency and impulse responses are shown in Figures 4.5a

and 4.5b, respectively.

The power spectrum of the white noise is: Ny = 3.75 x 10718 4.

4.1.3 Co-channel Model

The dominant form of co-channel interference in subscriber loops is near-end
crosstalk (NEXT) resulting from interferers on the same side of the network. Far-end
crosstalk (FEXT) does not dominate because the subscriber loops attenuate the far-end
signal and far-end crosstalk. The NEXT is modelled here by [2]:

neat (f)* = 5 fF @)

K =101 4.2)

where f is two-sided and measured in Hz and |next (f)|° is measured in %V; The
choice of K is to provide a reasonable upper bound (worst case) NEXT power [42].
The parameter for delay, =, will be added at the end of the development of the model.
This model only includes the magnitude response, so minimum phase was assumed in
order to make the energy of the interference impulse response causal and concentrated
about the time origin [41, 43].

The NEXT model will be of the form:

nezt (f) = |next (f)| & 479 (nest(f) 4.3)

neat ()] = 1/ 5 3 @)

is known. Arg (next (f)) is unknown but can be determined since signals which satisfy

where

the following Hilbert transform pair are minimum phase [41, 44]:
Arg (next (f)) = H{loge Inext (f)|}

4.5)
loge [nest (f)] = —H {Arg (nezt (f))}
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where

1 o0
#ir@) = ¢ [ “9)
It was found that:

Arg (neat (£)) = — 37 sgn (/)
-1 ,f<0
sgn (f) = 0 ,f=0
+1 ,f>0

4.7

Adding the delay component associated with 7, the NEXT model is the same as the
interference model shown previously in the pedagogical example in equation (3.20).

The frequency response of next(f,7) is shown in Figure 4.6. Since next (f,7)
is multiplied by the bandlimited pulse butterl (f) it is only shown for the bandwidth

of interest.

From the pulse, butterl (f), and the co-channel, next ( f, 7), the overall co-channel,
®; (f) can be determined and its frequency and impulse responses are shown in Figures

47a and 4.7b, respectively.

Using these signal and NEXT models, the cyclostationarity versus time (see the
form of equation 2.8) of the signal, and the interference with bandlimited noise at the
input to the linear equalizer were determined and they are shown in Figures 4.8a and
4.8b, respectively (Note that the baud rate is 80 kH z).

In a more elaborate model of the interference [1], the degree of cyclostationarity
drops as the baud rate is increased. This same effect was also demonstrated in [15]
where using a finite-length discrete-time DFE in cyclostationary interference showed
performance gains that were lower at a baud rate of 400 kHz compared to 80 kH z;
however the interference model used in that work was obtained from measurements.
Similar measurements as in [15] will be used in future work; these measurements have
recently been taken [13].
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4.2 Linear Equalizer Results

For the subscriber loop system shown in Figure 4.1, the SINR is 34.2 dB, the
SIR is 34.2 dB and the SNR is 54.6 dB.

The MSE (see equation 3.7) with respect to the relative phase of the single interferer
is plotted in Figure 4.9.

At at relative interference phase of 7 = 0, the optimal cyclostationary and stationary
linear equalizer frequency responses were plotted in Figures 4.10a and 4.10b using
equations 3.11 and 3.15, respectively; their corresponding impulse responses are shown

in Figures 4.11a and 4.11b, respectively.

The sampled equalized channel frequency response for the cyclostationary and
stationary cases are plotted in Figures 4.12a and 4.12b, respectively; their corresponding
impulse responses are shown in Figures 4.13a and 4.13b, respectively.

The sampled equalized co-channel frequency response for the cyclostationary case
is plotted in Figure 4.14a; the corresponding impulse response is shown in Figure 4.14b.
Note that this information for the stationary linear equalizer is not meaningful since it

is not concerned with co-channel interference suppression.

These results deserve further comment. In Figure 4.9 there is roughly between 4 dB
and 9 dB difference in MSE performance between the cyclostationary and stationary
cases. This large difference is due to there being only one interferer as well as signal
and interference bandwidths up to a} Under these conditions, in general it is likely
that in the absence of noise that the interference can be completely suppressed (see
the zero-forcing equalizer analysis). So that in this situation, the linear equalizer has
sufficient flexibility regarding the components of the MSE that need to be suppressed
that the performance is limited by the amount of white noise. If however, more than
one interferer was modelled as in more realistic situations, then the performance would

probably not be limited by the white noise, but instead by the interference.

Notice in Figure 4.13 that for both the cyclostationary and stationary cases, as
predicted, the sampled equalized channel (sampled at T-spaced intervals) passes through
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MSE versus Relative Phase of Interference: butterl - loop9 - next
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or near zero at the sampling points and through or near one at the time origin.

In Figure 4.14 the sampled equalized co-channel passes through or near zero at all
the sampling points because the linear equalizer is trying to suppress the interferers.

However, this is not a requirement for the stationary case.

In the case of cyclostationary interference, the performance of the equalizer will
change with the introduction of a relative shift of the interference with respect to the
data carried in the channel. For the bounds presented here, there will be no change
in linear equalizer performance with respect to the receiver sampling phase!® in the
case where the sampling phase is set before the MSE minimization. This is because a

continuous-time linear equalizer can synthesize a perfect delay.

A more complete model of the interference would include multiple interferers with
some relative difference in phases with respect to each other. A more realistic model of
a subscriber loop cable bundle would have a smaller difference in the performance in cy-
clostationary and stationary interference. Measurements of cyclostationary interference
have been carried out [13]. However, the results shown here do indicate that the cyclo-
stationary nature of the interference can be exploited in equalization. The results also

indicate the advantage of deliberately synchronizing the transmitters at the central office.

10 Recall for the continuous-time linear equalizer, the sampler follows the continuous-time
filter.




Chapter 5

Summary

Analysis of the performance of continuous-time minimum mean-square error linear,
zero-forcing and decision-feedback equalizers in the presence of cyclostationary inter-
ference have been carried out and are nearly completed. It was shown that when the
interference is not bandlimited to ~2-IT that the receivers for the two cases differ signifi-
cantly. It was also shown that if the overall channel and co-channels have a bandwidth
greater than or equal to 5’% that there is sufficient flexibility to completely suppress
K — 1 interferers. For comparison, the performance of the linear equalizer in stationary
noise having the same mean power spectrum as the cyclostationary interference was
determined. The comparisons were taken further in an application to a digital subscriber
loop system. It showed the cyclostationarity of the interference can be exploited in

equalization.




Appendix A

The Calculus of Variations
Solution of the MSE Functional

Given the following functionall! (from equations (3.4) or (3.50)):
o0 00 x0
e = f f k(t,7) r(r) r*(t) dr dt + [ &5(—t) r*(t) dt
—00

-0 — 00

o0 (A.1)
+ [ do(—7) r(r)dr +1

where k (t,7) and ¢y (¢) are known, then the problem is to find the function r (¢) which
minimizes .
Let r, (t) be the function which minimizes . Also let:
r) = ro(t) + eni(2)
r(t) = ro(1) + e2na(r)

(A.2)

where ¢, and e, are real scalars and n, (¢) and n (7) are arbitrary'2 complex functions.

Thus ¢ can now be expressed as:

e(er, €) = / /k(t,r) [ro () + €2 n2(7)] [ro(t) + € ny ()" dr dt

—00 —00
o0

+ / g3 (=t) [ro () + €1 ma ()" dt (A3)

o0

+ /¢0(-7') [ro(7) + e2n2(7)] dr + 1

Since ¢ (€3, ez) has a global minimum at (e;, €3) = (0, 0), the following is true:

Mk;:o = 0 (A.4)
661

11 A functional accepts as input a function and produces as output a scalar value.

12 These functions are chosen to be sufficiently well behaved to allow analysis; they have up
to and including second order derivatives with respect to ¢ (or 7).
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A number of derivative properties of the global minimum would be true, but this one
is sufficient to complete the solution. Evaluating gives:

[e <IN o} o0

k(t,7) ro () n}(t) dr dt - $5(—t)ni(t)dt =0
/] ]

T o e (A.5)
/ [/ k(t,7) ro(r) dr — ¢3(—t)} nj(t)dt =0
But since nj (t) is arbitrary it means that [45]:
/k(t,r) ro(r)dr — ¢5(—t) = 0 (A.6)

This is the equation from which r, (¢) may be determined (even though it is an integral
equation). In fact the problem can be interpreted as a time-variant deconvolution where
the output of a system is known, the time-variant impulse response is known and the

input is unknown.,




Appendix B The Anti-Causal Operator

B.1 Definition

If the DTPF (discrete-time periodic-frequency) Fourier transforms are denoted by:
X1 (f) = Fprer [2n]

o0

— E Tn e—j21ran

n=-—0o0

In = fE’fPF (X7 ()]
7

=T [ Xr(p) ™ g

—L
2T

Then the anti-causal operator, [ ]_, operating on Xt (f) is defined as:
0 .
(X1 (f)]_ & Z z, eI Tf
n=-—-00

= Forer [u(—n) Fprpr (X1 ()]

u(n) =

{1 ,n>0
0 ,n<0

The following associated definitions will be useful:

-1
Z Tn e—]anTf

n=—oo

(X (Pl 23 2 20T
n=1

>

(X (f)l__

Xr (D, &Y an ei250TS

n=0
Let the same notation apply to the sequences y, and z, to show the properties in the

section to follow.
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B.2 Properties

- kXAl = k [Xr(f)-
- X (f) Yr (- = [ (f) Xr(f)]-

1
2
3. Xr(f) r (N +2r(M- = Xr(f) Yo (NHI- + X7 (f) Zr ()~
4.
5
6

Xr(f) = Xr(Hl- + Xr(Hlss

. Xr(f) = [Xr(Hl_ + Xr(Hl,
XAy M (Plys ] = 0
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