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Abstract

This thesis details development of a software package which provides a unique service

to unmanned aerial vehicle operators. The software has two modes of operation,

Planning Mode and Execution Mode. In planning mode the operator can easily

simulate a desired flight course to determine mission feasibility. A key feature of

this mode is the optional integration of forecast numerical weather data, weather

charts, and interactive trajectory planning. In Execution mode the operator can

deploy a flight, change the route “on the fly”, hold the aircraft over a point of

interest, and return the aircraft to home base.

Any data required for these functions is automatically acquired from appropriate

sources (NAV Canada, Environment Canada) via the internet. Operation of the

software, including interactive trajectory planning, weather observing, and mission

progress, is achieved through a user-friendly graphical user interface. Simulation

results, flight trajectories, and weather data can be saved for further analysis. By

comparing missions both with and without weather information, it was determined

that meteorological information can have a very significant impact on the mission

planning duration and fuel consumption. In an example mission, including numerical

weather model data increased the UAV’s fuel consumption by 18% and mission time

by 25%. Finally, basic software documentation is provided as an appendix.
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Chapter 1

Introduction

The ability of an operator of an unmanned aerial vehicle (UAV) to plan and assess

the feasibility of a proposed flight plan and then to execute it benefits the Cana-

dian public in both economic and security terms. UAV surveillance can be highly

beneficial for security issues. Security does not specifically refer to military threats,

but refers to protecting the Canadian Public against situations that jeopardize their

safety, resources, and the environment. Three situations where UAV surveillance

would be extremely beneficial are finding and tracking icebergs, detecting illegal

fishing and monitoring oil spills. Being able to monitor and react to these situations

increases our security.

For UAV research and development to be sustainable, UAV operation must be eco-

nomically feasible. This entails incurring minimal unnecessary losses of unmanned

aircraft, as may happen in adverse weather conditions or on overly ambitious mis-

sions leading to fuel becoming exhausted. A system to minimize losses needs to

include an aircraft model, aircraft simulator, aircraft automated control system,
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weather forecasting system, and a user interface. Together, these components allow

an operator to simulate an anticipated mission and determine the likelihood of suc-

cess or failure. The significance of the predictive nature of such a feasibility study

is compounded, since there are exogenous factors that strongly determine the prob-

ability of the success or failure. Meteorological conditions are the key factor when

considering if a proposed flight plan will succeed or fail. Accounting for weather

effects can drastically change the planning and outcome of a trip. This research will

address the design and implementation of an operator interface for UAV mission

planning and execution. It will be used as part of the RAVEN project [3], an AIF-

funded program led by Dr. Siu O’Young of the Memorial University, under which

UNB has mission control responsibility.

1.1 Problem Description

The mission of this project is to develop and implement a software package that is

capable of simulating and controlling a UAV. The software will have two primary

modes of operation. The first mode is called feasibility/planning, in which a

mission can be planned and simulated. The simulation uses forecast gridded weather

data from Environment Canada’s Global Environmental Multiscale (GEM) model.

Time variant forecast weather data can be extracted from the GEM model data

using a complex method of interpolation. By reading this environmental data into

a simulation, the user is able to determine if a particular mission is feasible or not

given the anticipated weather conditions. The second mode of operation is called

execution. In this mode the software is connected to and remotely controls an

actual UAV. Flight trajectory changes are permitted on the fly. This software is

also designed to both acquire and display all pertinent weather information.
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The end product of this project is the Environmental Feasibility Operations Package

(EFOP), which is a prototype software package that allows a trained operator to

plan, determine feasibility, and execute a UAV mission. Figure 1.1 depicts a typical

scenario of EFOP in action. The operator is located at a remote terminal, which has

the ability to communicate with the UAV. Before the UAV is deployed, the operator

defines and simulates a proposed mission trajectory to determine feasibility, based

on forecast weather. Once the optimal or acceptable route has been determined, the

operator proceeds to execute the mission. The mission route is shown by the red

line in figure 1.1. The UAV proceeds to track this route while constantly scanning

for an event. Two different points of detection have been shown along the aircraft’s

route. These points are shown in figure 1.1 by the yellow stars. Once an event has

been detected, the operator has the option to investigate these events by changing

the flight trajectory, or to proceed as originally planned.

Figure 1.1: Overview of EFOP Operation
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1.2 Background

This project incorporates both technology and data from many different sources.

Connecting data and tools into a software package requires knowing the main play-

ers. The following sections briefly describe the groups, software, and technologies

that were used to create EFOP.

RAVEN [3]

Manned aerial surveillance is currently performed off the coast of Newfoundland by

Provincial Aerospace Limited (PAL). Using a Beechcraft KingAir 200 aircraft, PAL’s

missions are approximately 1000 nautical miles, last 6 to 8 hours, and are typically

flown at an altitude of 1000 feet. The main goal of the Remote Aerial Vehicles

for ENviromental monitoring project (RAVEN) is to supplement PAL’s manned

missions through the use of UAVs. In order to successfully develop this product,

the harsh maritime operating environment needs to be accurately approximated for

the purpose of testing proposed flight plans using high fidelity unmanned aerial

vehicle models and accurately forecast weather. By supplementing PAL’s current

maritime surveillance regime with an operational UAV, increased cost efficiency and

improved surveillance could possibly be a achieved.

MATLAB R© [4]

MATLAB R© is a numerical computing environment and programming language that

is created and maintained by The MathWorks. Matrix manipulation, plotting

of functions and data, implementation of algorithms, creation of user interfaces,

and interfacing with programs in other languages are all easily accomplished in
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MATLAB R©. It uses the MATLAB R© programming language called M-code. MATLAB R©

provides the user with a full development environment. Commands can be run via

the command window, variables can be displayed in the workspace and scripts can

be created/edited in the editor. MATLAB R© also includes facilities to debug m-code.

MATLAB R© specializes in numerical computing, but is fortunately not limited to

that alone. Toolboxes, a grouping of highly specialized functions, have been de-

veloped for various needs. Some examples are the signal processing toolbox, the

Mapping Toolbox
TM

, and the Image Processing Toolbox
TM

. These toolboxes give

MATLAB R© the ability of accomplish highly specific tasks quite efficiently. The

Mapping Toolbox
TM

and Image Processing Toolbox
TM

are particularly useful in this

project. The Mapping Toolbox
TM

provides the ability to easily display different

mapping data and images, translate between mapping projections, and perform

geo-spacial translations. The Image Processing Toolbox
TM

allows MATLAB R© to

properly read, process, and render image files.

MATLAB R© also has the ability to create reasonably complex graphical user inter-

faces. Development of these interfaces is completed in MATLAB R©’s GUI Design

Environment or GUIDE. GUIDE allows GUI’s to be created and edited interactively

from figures. Callback commands are located in an accompanying M-file. GUIDE

developments can include a menu system for easy program navigation. Through

GUIDE it is also possible to interact with the MATLAB R© workspace in a normal

manner. Variables can be written to MAT-files and loaded back into memory at a

later time. GUIDE also utilizes MATLAB’s method of handling graphics. Handles

are used to make alterations to objects in the figure.
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Simulink R© [5]

Simulink R© was developed by MathWorks and is used for modeling, simulating, and

analyzing multi-domain dynamic systems. Simulink R© uses interconnected graphical

objects or blocks. Simulink R© comes with a basic blockset that is capable of most

basic tasks. Specialized blocksets are developed for particular tasks. An example

of the latter would be a blockset designed specifically to model an aircraft. The

integration between MATLAB R© and Simulink R© is very tight, and it is possible

to program Simulink R© blocks using MATLAB R© code. These blocks are called S-

functions.

Aerosim Blockset [1]

The Aerosim blockset is a complete set of aeronautical simulation tools that provide

the user with the ability to rapidly develop a nonlinear 6-degree-of-freedom aircraft

dynamic model. Aerosim includes both basic aircraft dynamics blocks and com-

plete aircraft models. It is possible to customize these models through the use of

parameter files. Interfacing with Flightgear is accomplished using one of Aerosim’s

flightgear blocks. Flightgear is a sophisticated open-source flight simulation pack-

ages that is released under the GNU General Public License.

Environment Canada [6]

Environment Canada is a department of the Government of Canada responsible for

coordinating environmental policies and programs as well as preserving and enhanc-

ing the natural environment and conserving wildlife. Environment Canada is also

responsible for meteorology through the Meteorological Service of Canada, which
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produces weather forecasts, public meteorological information, and severe weather

warnings. Environment Canada is also responsible for environmental research, and

they produce numerical weather models.

1.3 Literature Review

Due to the innovative nature of this software project, a traditional literature review

on a specific topic is not possible. Certain components and technical aspects of this

project have been researched.

The Raven Project is detailed in reference [3]. In order to develop this project,

both Matlab and Simulink were used. Reference [4] and [5] both point to basic

information on The Mathworks’ website. There are several interesting sources with

respect to mapping and map generation. Raster data is obtained from reference

[15] (Blue marble next generation), and many vector datasets were easily obtained

from Natural Resources Canada [13]. All vector information was stored in a shape

file [14]. Additionally a series of weather charts from NAV Canada are routinely

downloaded [12].

The World Meteorological Organization [8] promotes standardization of meteoro-

logical data and helps facilitate worldwide cooperation. Environment Canada’s nu-

merical weather data is stored in a GRIB Edition 1 format which is described in

reference [10]. The most common format to distribute gridded forecast data is called

GRIB or GRIdded Binary. Environment Canada [6] provides its gridded numerical

weather prediction models, as well as documentation [2] [7] [16], in GRIB format

for free. Fortunately software exists for reading numeric GRIB data directly into
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Matlab. A function called read-grib [9] has been well developed and was used in this

work. An efficient binary searching routine was found in reference [17]. The basic

bilinear interpolation used to interpolate this weather is described in reference [11].

The aircraft model that was chosen for this projects is called the Aerosim Blockset

produced by Unmanned Dynamics. Reference [1] is the manual for the Aerosim

Blockset. Overall the software was not as responsive as desired; hence, a method to

speed up the software was researched [18].

1.4 Goals/Objectives

This work is a unique type of masters research project. It involves the aggregation

and integration of various data sets, software packages, and technologies to produce

an interactive utility which ties together and processes all relevant information nec-

essary to plan and operate a UAV mission through the development of a custom

software package, EFOP. One of the goals of the project is to link to the various

technologies and information sources with software that is both easy to use and

robust. In particular, the following attributes are critical:

• This software must be user friendly.

• It should be interactive and also allow the user to monitor and control real

time situations.

• It must include a seamless method for acquiring and using relevant environ-

mental data.

• It should be easily maintainable and expandable.

This project is an integral part of the Raven project, as it contributes valuable infor-

mation for UAV planning and execution which is generated by EFOP. This project
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focuses on the graphical interface, the effect of weather, and flight trajectories. Fur-

thermore, it uses this information to determine the feasibility of proposed missions

and greatly simplifies executing these trajectories.

This thesis builds directly upon work being completed by other Raven members,

since it is designed to work with the Raven aircraft control model. With future

development, Raven may be able to use this software for all their mission planning

and execution needs. This thesis will attempt, through the use of developed soft-

ware, to determine whether incorporating meteorological information into a mission

planning procedure will result in either more refined flight trajectories or a more

practical mission.
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Chapter 2

Requirements and Methodology

2.1 Requirements

These are the requirements that the software development process was governed by:

• This developed software should be applicable anywhere in Canada.

• The UAV operator should have easy access to relevant forecast environmental

data and charts that are required to make educated mission decisions.

• Such data used to form an educated decision should be utilized to provide a

rigorous verification by high fidelity simulation.

• All interaction with the software should be through an effective and intuitive

graphical user interface.

• Mission routes should be easy to define and modify in all three dimensions.

• Gridded numerical weather models should be the source of weather informa-

tion.

• Graphical overlays and weather charts should be presented and formatted such

that they are easily understood by a person familiar with aviation practices.

10



2.2 Methodology

The following describes how each section of this software package functions, how

these sections combine to produce EFOP, and how an operator would use this soft-

ware package.

2.2.1 Numerical Model Weather Data

In this project a robust source of numerical weather data was needed to assess

the flight conditions for an entire mission. The optimal meteorological numeric

model would cover a large area, be presented over a spatial grid, include various

meteorological variables, and span a suitable time frame. After considerable research

a suitable model from Environment Canada was found; it is called the low-resolution

Canadian Meteorological Centre (CMC) GRIdded Binary (GRIB) database [7].

Environment Canada offers several models at different resolutions. The low reso-

lution regional model has a 60 km central core resolution while the high resolution

regional model has a 15 km central core resolution. There is also a global model

with a 220 km or two degree by two degree grid. The size of the gridded numerical

weather model was a concern while developing this project. If the gridded numeri-

cal weather data files are too large it will cause the data retrieval, data processing,

and data interpolation to require an unreasonable amount of time. Likewise, if the

data’s resolution is too low it will not provide adequate information. A require-

ment was that the software be at least capable of operating within Canada, so

considering the very poor resolution of the global model, it was dismissed as un-

necessary. When processing the high and low resolution regional data-sets into mat
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files (MATLAB R© specific data storage files) it was determined that the low resolu-

tion data-set needed approximately 50 megabytes of storage and the high resolution

data contained nearly 20 times more data. A subset of the high resolution model

was not used, since all data needs to be extracted from binary files before it can be

used. Converting from the binary format can be time consuming. For these reasons

the low resolution regional model was chosen. It was also felt that a 60 km grid

had enough information to offer a meaningful interpolation over the coverage of an

anticipated mission.

This low resolution model’s grid, shown in figure 2.1, is based on a polar stere-

ographic mapping projection. This polar stereographic mapping projection grid

consists of ni = 135 grid lines horizontally and nj = 95 grid lines vertically. The

resolution at sixty degrees north is 60 km, and the coordinates of the first grid point

(bottom left point) are 27.203 degrees north and 135.213 degrees west, somewhere in

the Pacific Ocean. The north pole is at grid index (50.6, 111.3) and the orientation

of this polar stereographic grid is rotated -111 degrees with respect to the j axis.

Unfortunately the lines of the grid do not correspond with the lines of latitude and

longitude on the earth. Working with and translating between two different coordi-

nate systems can be very tricky and requires exact calculation. Translating between

latitude and longitude coordinates to grid indices becomes a very mathematically

intense problem. Fortunately algorithms to translate between different projections

have been built into the Mathworks Mapping Toolbox.

It was not possible to acquire the gridded numerical weather data from Environment

Canada directly via MATLAB R© since there are no direct MATLAB R© routines for

downloading files. MATLAB R© does have the ability to concatenate strings and exe-

cute operating system command. Command line software, called CURL, is capable
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Figure 2.1: Low Resolution Polar Stereographic Grid [2]

of downloading large lists of data files and can thus be run from the MATLAB R© com-

mand prompt. The complete dataset for the low resolution model consists of 1008

files that are approximately 16 KB each, altogether totaling 14.5 megabytes of bi-

nary data. Download times can be lengthy even with a high speed connection. The

use of wireless internet is strongly discouraged, as it tends to drop the occasional

data file.

The directory structure of the data files can be seen in figure 2.2. There are four

meteorological variables that are downloaded (HGT, TMP, UGRD and VGRD, i.e.

height, temperature, and x, y wind speed components). A directory is created for

each variable and each of these directories is filled with nine time directories. Accord-

ingly each time directory is named P000, P006, P012, ... P048 since they represent
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T1 = 0 (time of forecast) and T9 = 48 hours later. Each time directory contains

twenty-eight grib data files and an example name of one file is CMC_HGT_50.grib. In

this file name “HGT” represents the meteorological variable and the number “50”

represents the isobaric pressure level of the gridded data in that file.

Figure 2.2: Directory Structure of Downloaded Weather Files

2.2.1.1 Gridded Numerical Weather Data Processing

Importing the data into MATLAB R© is not a trivial task. Each binary data file

is encrypted using a compressed wavelet format; it is a special data encryption

scheme called GRIB. The GRIB format was introduced by the World Meteorological

Organization (WMO) to be a uniform data format for all countries to use. GRIB

files can come in three different flavours, GRIB edition 0, GRIB edition 1, and GRIB

edition 2. The GRIB 0 format has been retired and all of Environment Canada’s

Models are output in the GRIB 1 format. This is an open formatting scheme with

full documentation available on WMO’s webpage [8].

By skimming the GRIB 1 manual, it became immediately evident that program-
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ming a GRIB reader into MATLAB R© would be a very large task. Fortunately a

MATLAB R© GRIB reader is under development called read_grib [9]. At the time

of writing this document the latest version is 1.4.1. Through trial and error it was

determined that this reader did not function properly with Environment Canada’s

GRIB files. By comparing the GRIB manual [10] to the source code provided with

it, read_grib was adjusted by the author to properly read Environment Canada’s

GRIB files.

Storing data in the GRIB format is extremely efficient when the goal is to archive and

share model data, but it is not efficient if the data is needed to be dynamically called

into computer memory by MATLAB R©. For this reason a routine was developed by

the author that would systematically extract all pertinent information from the

GRIB files and write it into a MATLAB R© data structure called a MAT file. The

data is stored in a format that is detailed in figure 2.3.

Figure 2.3: Gridded Numerical Weather Model Data Structure

Updated gridded numerical weather data is available for processing every day. Fig-

ure 2.3 helps illustrate the complexity of the weather data structure that is con-

structed from the GRIB files. As shown in figure 2.3, the weather data structure is
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broken up into nine grids or MATLAB R© cell arrays. Each grid represent a differ-

ent instant in time. There are 9 snapshots, in 6 hour increments, giving a 48 hour

forecast. For example, the grid T0 contains weather data from 00 hours GMT, T1

contains weather data from 06 hours GMT, and T9 contains weather data from 48

hours GMT. Each grid has a dimension of 135 by 95 and every grid point repre-

sents a geographic location where various geographic and environment datasets are

stored (figure 2.1). The geographic data stored at each grid point is the latitude

and longitude of the point. The environment datasets that are stored at each grid

point contain data pertaining to height, temperature, X component of wind and Y

component of wind. While the geographic data elements are a number, the envi-

ronmental data elements are a set of numbers. Each environmental data element

consists of 27 numbers which represent the value at a different isobaric level. The

27 isobaric levels are 1015, 1000, 985, 970, 950, 925, 900, 875, 850, 750, 700, 650,

600, 550, 500, 450, 400, 350, 300, 275, 250, 225 200, 175, 150, 100 and 50 hPa.

2.2.1.2 Data Interpolation

Once the data has been processed and stored in the MAT-file weather data struc-

ture, a complex interpolation scheme is used to efficiently calculate specific data for

the proposed flight trajectory. This interpolation routine must consider geographic

location (latitude and longitude), altitude and time when calculating the specific

weather information. The data interpolation is broken down into six steps. The

interconnection of these steps and their description is detailed in figure 2.4.

Step 1 - Determine the index of geographic point in weather grid

When a grid is specified it is described using a mapping projection. By translating

between different mapping projections, this project can incorporate data from many
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Figure 2.4: Data Interpolation Overview

different sources. The Environment Canada grib numerical model data is stored on

a polar stereographic grid. Stereographic projections are beneficial in polar regions.

In a polar stereographic projection directions are true from the center point, scale

increases away from the center point and distortion increases in area and shape.

Originally a complex search method was used to determine the index of the lati-

tude and longitude in the polar stereographic grid. Since the polar stereographic
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projection is mathematically defined, it is possible to translate between these two

frames of reference. Using this coordinate system translation scheme and some sim-

ple calculations, the exact indexed position in the polar stereographic grid can be

determined. The ability to translate between the polar stereographic grid coordi-

nate system and the unprojected coordinate system allows the user to obtain the

exact grid index coordinate for any desired latitude and longitude. From this point

onward it is only necessary to perform calculations with respect to the polar stereo-

graphic grid frame of reference. Figure 2.5 illustrates the differences between these

two frames of reference.

Figure 2.5: Latitude/Longitude Lines and Polar Stereographic Grid Lines (This
image is an illustration and not to scale)

Step 2 - Get Time Index

All interpolated data is interpolated at a particular time. For example, assume

that weather data was required at 9:00. Environment Canada’s numerical model

is a discrete model and therefore provides a model snapshot at six-hour intervals.

For interpolation purposes, the proportional temporal location between two of these

snapshots is required. The model snapshots have 6 hours intervals starting at 00h;

therefore, the time index at 9:00 would be 2.5. In order to include time in the
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interpolation process, the next two weather interpolation steps need to be completed

at each of the boundary snapshots, i.e., both t2 = 06h and t3 = 12h in this example.

Step 3 - Searching Isobaric Pressure Levels

All the data in the weather data structure is vertically sorted by pressure levels

and not altitudes. Unfortunately all data interpolations must be based on altitude

and not pressure level. The relationship between pressure levels and altitude is not

constant and depends on the characteristic of the modelled air mass; therefore, at

each (lat, lon) grid point there is a different altitude/pressure relationship. Since

the data is pre-sorted, a binary search algorithm was used to determine the pressure

level of a desired altitude. An illustration of the pressure levels and a constant

altitude is depicted in figure 2.6. When viewing this illustration it is important to

remember that the z-axis is pressure, not altitude.

Figure 2.6: Pressure Levels Above the Polar Stereographic Grid (this image is an
illustration and not to scale)

Step 4 - Interpolate Location
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To successfully interpolate an exact location within the numerical model’s grid, two

steps must be taken. First the weather boundary must be calculated and second

these boundary values must be interpolated for a given location, altitude and time.

Although the search method for determining the pressure/altitude relationship is

very efficient, it is computationally intensive. Therefore this is the logical place to

trim computational time. A simplifying assumption was made when determining

the location of the height index : The index used to interpolate height was calculated

at each of the four corners. from the closest grid point. Several factors contributed

to this assumption being reasonable: First, the interpolation process weights the

closest index point highest, and second, the variation in the height index appears

to be minimal. Finding the closest grid point was accomplished by rounding off the

precise grid location of the converted latitude/longitude. For example, assume that

the grid index of the point of interest is (95.45, 45.78); therefore, the closest grid

coordinates would be (95, 46). In Figure 2.7 the different corners can be seen. The

blue area corresponds to the upper left grid point, the red area to the lower left grid

point, the green area to the lower right grid point, and the yellow area to the upper

right grid point. The location in this figure falls in the upper left grid’s area. Simple

linear interpolation with respect to height was used to calculate the four weather

variable values surrounding the location of the desired point. The assumption that

we can use only the closest corner was verified by calculating some example height

index values using GRIB data. The difference in height indexes between the corners

tended to vary less then 5 percent.

Once the isobaric index of the closest corner has been determined, the values at each

corner for each weather variable, Vij,can be interpolated. Using these four corner

values it is possible to interpolate the value, Vxy, in the grid. This is accomplished
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Figure 2.7: Regions in the Polar Stereographic Grid (This image is an illustration
and not exactly topologically correct)

using the methodology described in figure 2.8 and in equation 2.1. The methodology

described in equation 2.1 is essential a bilinear interpolation that is commonly used

in digital image processing [11].

Figure 2.8: Interpolation Within a Grid Region

VXY =
V11 4X

XTYT

(
XT

4X
+
V21

V11
− 1

)
(1−4Y ) +

V12 4X

XTYT

(
XT

4X
+
V22

V12
− 1

)
(4Y ) (2.1)
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Using equation 2.1, the value at the point may be quickly interpolated based on the

four boundary corner values.

Step 5 - Interpolate Time

The fifth step of this interpolation process is with respect to time. The spatial

interpolation for each weather variable, described in steps 3 and 4, was performed

twice. The time indices calculated in step two can be used to linearly interpolate

these values. This results in one value per environmental variable.

Step 6 - Rotate Vectors

Most of the data interpolation takes place in the polar stereographic grids frame

of reference. Scalar data is transferred between the polar stereographic grid frame

of reference and the unprojected frame of reference. Transferring vectors between

these two frame of reference is not trivial because the grids, as seen in figure 2.5, do

not align. The wind data extracted from the weather data structure is broken into

the WX and WY components on the polar stereographic grid, as shown. The UAV

model (section 2.2.4) accepts wind data that is in an unprojected frame of reference

or resolved into latitude and longitude components, WLat and WLon.

Figure 2.9 illustrates the basic problem. The blue arrows, Wx, Wy, represent the

vector components of the wind, W , with respect to the polar stereographic grid.

The green arrow is the resultant of the two polar stereographic vector components.

The desired frame of reference translation should not change the magnitude or di-

rection of the resultant wind vector; it should break the resultant vector down into

components, WLat and WLon; these components are displayed in purple in figure 2.9.
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Figure 2.9: Pressure Levels above the Polar Stereographic Grid (This image is an
illustration and not to scale)

In order to make this translation the angle φ between the two frames of reference

is needed. Note that the (Lat, Lon) axes are not straight lines on the polar stere-

ographic grid, as shown in figure 2.1, so the local angle φ is obtained using small

perturbation linearization. Small perturbation linearization is accomplished by de-

termining the polar stereographic grid location of a point where the longitude has

been had a small change from the desired latitude & longitude. By comparing the

desired point and the perturbed point in both frames of reference, the local angle,

φ, can be calculated. The vector transform is:

WLat = Wx cos(φ) +Wy sin(φ)

WLon = −Wx sin(φ) +Wy cos(φ)
(2.2)

Example

To illustrate the mechanics of the weather data interpolation, an example will be

generated. It is important to remember in this interpolation, accuracy is being
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traded off with run time. The goal was to find the most accurate method that is

still sufficiently fast. In this example the latitudinal component of wind is to be

found at the Pippy Park Golf Course in St. John’s, Newfoundland, Canada.

Location: Pippy Park Golf Course

Latitude: 47.585094 Degrees

Longitude: -52.757721 Degrees

Altitude: 500 Meters

Time: 7:30 GMT

In this example real weather values are used throughout the calculations. To verify

that the weather algorithm works properly, the results of these manual calculations

are compared to the result obtained from the software in chapter 3. Although the

goal is to independently show that both the computer and hand calculations reach

the same result, it is necessary to use some higher MATLAB R© functions within

these hand calculation. For this example the weather GRIB data set was acquired

and processed into a MAT data file.

Step 1 - Obtain the grid indices

Using the MATLAB R© mfwdtran function and some simple calculations the latitude

and longitude values were converted to an index in the polar stereographic grid. In

this example Pippy Park Golf Course corresponds to the grid location:

x = 115.9720 y = 70.8340

Step 2 - Obtain the time indices

The time index is calculated for 7:30 am:
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indextime =
(

7.5
6

)
+ 1

= 2.25

An index time value of 2.25 means the time is a quarter of the way between T2=6h

and T3=12h (6h time steps).

Step3 - Obtain the height index

The closest corner needs to be selected. This is found by rounding both the x and

y indices:

round(115.97) = 116

round(70.83) = 71

The closest corner is at grid index (116,71).

In step 5 of the algorithm it is necessary to combine results at different times. The

two sets of calculation are shown side by side.

Time at 6h (T2) Time at 12h (T3)

The value of 500 meters was found The value of 500 meters was found

between pressure indices 4 and 5; between pressure indices 4 and 5;

H4 = 370.93 m H4 = 385.08 m

H5 = 548.70 m H5 = 562.74 m

Linear interpolation is used to determine to location between index 4 and 5.

hindex(T2) = 4 + (500−370.93)
(548.70−370.93) = 4.73 hindex(T3) = 4 + (500−385.08)

(562.74−385.08) = 4.65

Step 4 - Calculate weather at each time
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In order to calculate the weather, the weather variables isobaric vector at each of

the four surrounding corners the must be found. Each of these vectors must be

interpolated based on the height index. This step is done for each of the desired

weather variables.

Each value at 500m must be interpolated. Below are examples of the WX at corner

V11. All other value have been filled in the table.

WX(T2) = 3.66 + (5.53− 3.66)(4.73− 4) WX(T3) = 3.65 + (4.41− 3.65)(4.65− 4)

= 5.02 m/s = 4.14 m/s

Corner V11 Corner V21 Corner V12 Corner V22

T2 WX@I5 5.53 4.52 1.92 4.52
T2 WX@I4 3.66 2.96 0.68 4.26

T2 WX@500m 5.02 4.10 1.59 4.45

T2 WY @5 8.49 8.04 7.34 5.54
T2 WY @4 7.88 7.18 6.98 6.18

T2 WY @500m 8.33 7.81 7.24 5.71

T3 WX@I5 4.41 5.31 6.11 5.91
T3 WX@I4 3.65 4.35 4.65 5.25

T3 WX@500m 4.14 4.97 5.60 5.68

T3 WY @5 6.88 8.08 7.08 7.48
T3 WY @4 6.95 7.45 7.81 7.94

T3 WY @500m 6.90 7.86 7.34 7.64

Using equation 2.1, WX(x,y) and WY (x,y) are solved for both the X and Y compo-

nent of the wind. Each of these are done at both T2 and T3.
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WX(x, y) = WX(x, y) =

(5.02)(0.97)
(

1
0.97

+
4.10
5.02

− 1
)

(1− 0.83)+ (4.14)(0.97)
(

1
0.97

+
4.97
4.14

− 1
)

(1− 0.83)+

(1.59)(0.97)
(

1
0.97

+
4.45
1.59

− 1
)

(0.83) (5.60)(0.97)
(

1
0.97

+
5.68
5.60

− 1
)

(0.83)

= 4.32 = 5.55

WY (x, y) = WY (x, y) =

(8.33)(0.97)
(

1
0.97

+
7.81
8.33

− 1
)

(1− 0.83)+ (6.90)(0.97)
(

1
0.97

+
7.86
6.90

− 1
)

(1− 0.83)+

(7.24)(0.97)
(

1
0.97

+
5.71
7.24

− 1
)

(0.83) (7.34)(0.97)
(

1
0.97

+
7.64
7.34

− 1
)

(0.83)

= 6.11 = 7.66

Step 5 - Linear interpolation over time

There are two values of each wind component, one at time T2 = 6h and another

at T3 = 12h. A linear time interpolation combines these two values using the time

index calculated in step 2.

WX(x, y) = 4.32 + (5.55− 4.32)(2.25− 2)

= 4.63

WY (x, y) = 6.11 + (7.66− 6.11)(2.25− 2)

= 6.50

Step 6 - Rotate vectors

The wind values calculated in step 5 are with respect to the polar stereographic grid.

These two vectors need to be converted into a latitude/longitude frame of reference,

using eqn. (2.2), as shown in Figure 2.6. The value of φ was calculated to be 58.27◦

WLat = Wx cos(φ) +Wy sin(φ) = −0.529m/s

WLon = −Wx sin(φ) +Wy cos(φ) = 7.959m/s
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2.2.1.3 Graphical Overlay Product

When specifying the route of the aircraft it is important to have quick access to wind

and temperature information at any altitude. Convenient methods of displaying

important information have been developed by the meteorological community. Wind

barbs are a preferred method of overlaying wind speeds and directions on a map.

Wind speed information is given in knots, where 1 knot = 1.852 km/h. The wind

direction is represented by the rotational direction of the wind barb. In Figure 2.10 a

single wind direction toward the north east can be seen, along with the temperature

indication, 35◦C.

Figure 2.10: Single Wind Barb with Temperature

Different symbols on the barb represent different wind speeds. A short bar indicates

a value of 5 knots, a long bar indicates 10 knots, and a triangle represents 50 knots.

A summation of all bars and triangles indicates the wind speed at that location.

Examples can be seen in figure 2.11; the barb in figure 2.10 corresponds to 15 knots.

Sometimes it is beneficial to display additional information. In this project it was

determined that temperature should also be given. As seen in figure 2.10, temper-

ature values are located directly beside each wind barb. Temperatures are given in

Celsius.

2.2.2 Graphical Weather Charts

A requirement of this project is that the UAV operator has the ability to access all

pertinent aviation weather data. Even though overlaying wind and temperature in-
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Figure 2.11: Wind Barb Values

formation is very important for the operator to understand the weather patterns, it

does not give all the important information the operator might need to make confi-

dent decisions. There are many other products, such as satellite and radar imagery

and turbulence and icing forecasts, that would greatly help the operator analyse

possible risk to the aircraft. Fortunately, many useful products have been grouped

onto NAV Canada’s website [12]. To ease the operator’s job of sorting through on-

line information, all current pertinent weather analysis charts are accessible through

EFOP’s graphical user interface. A list of these charts, with corresponding descrip-

tions, can be found in table C.1 of Appendix C.

2.2.3 Map Processing

Raster and vector data are the two primary methods of storing images on a com-

puter. Raster data is a digital image in pixel form. The data for a raster image is
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stored in a grid where each grid value represents a pixel of the image. A picture

from a digital camera is an example of a raster image. Raster data is stored in

many different file types; some example file formats are JPEG (Joint Photographic

Experts Group), TIFF (Tagged Image File Format), and PNG (Portable Network

Graphics) files. Geo-spatial vector data differs from raster data in that vector data

does not contain data for every pixel. Instead data is only recorded for each object,

a point or line, in the dataset. CAD drawings and roads on a GPS navigation sys-

tem are good examples of vector data. When looking at the same area, vector data

files tend to be much smaller than raster data files. When vector data are displayed,

they are actually shown as a raster image.

Figures 2.12(a), 2.12(b), and 2.12(c) contrast the difference between vector and

raster data using examples from Google Maps
TM

. In figure 2.12(a) vector data

describes the routes of roads and in figure 2.12(b) the raster satellite imagery can be

seen for the same location. Figure 2.12(c) ties the vector data from figure 2.12(a) and

raster data from figure 2.12(b) together and overlays them on one plot. Displaying

both types of imagery data is desired in this project.

2.2.3.1 Vector Data Imagery

The vector data used in this project is obtained free from the GeoGratis website

[13] which is maintained by Natural Resources Canada, a branch of the Canadian

Government. Most significantly North American boundary data, basically an outline

of North America, was acquired. Additional to the boundary shape data files, files

describing transportation routes, rail routes, populated areas, and hydrology was

downloaded. Shape data files were developed by Environmental Systems Research

Institute (ESRI) and are used as an open specification or publicly available format
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(a) Vector Data Imagery (b) Raster Data Imagery

(c) Vector and Raster Overlay

Figure 2.12: An Example of Vector and Raster Data from Google Maps
TM
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to store vector data [14]. Shape files contain geo-spatial vector data that is formated

for geographic information systems software. Fortunately MATLAB R© is capable of

reading this information.

2.2.3.2 Raster Data Imagery

The raster imagery used in this project was obtained from a set of satellite images

that was produced by NASA [15]. The imagery was obtained by the MODIS satellite

in 2004. An image was obtained for each month of the year. The June image was

used in this software, since it offered the best contrast between the ocean, land, and

ice. The original data set included both topographical as well as bathymetry (sea

depth) data. Elevation data was stripped from the dataset since the development

environment does not have a way of efficiently rendering this data. The image is

saved in the GEODETIC map projection, revision WGS84. A low resolution sample

of this satellite imagery can be seen in figure 2.13.

Figure 2.13: Low Resolution Satelite Imagery of Earth
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Although the image shown in figure 2.13 is a low resolution rendering, the original

image is very high resolution. The image is 86400 pixels wide and approximately

900 megabytes once being converted to a geotiff format, resulting in a resolution of

approximately 500m per pixel at the equator. Managing and easily accessing desired

data in a punctual manner is critical to ease of use for the software. Therefore,

the high resolution satellite imagery was subdivided into a set of files. Each file

represents a 3 degree by 3 degree portion of the satellite imagery, necessitating

a total of 1800 images comprised of a grid 60 images horizontally and 30 images

vertically. Figure 2.14 shows how these pieces are fit together to reconstruct an

image.
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Figure 2.14: Reconstruction of Satelite Amaru Image of Earth

Quickly processing this imagery data requires executing the following four steps:

• Load desired image data into memory

• Stitch together images

• Crop this image

• Re-size the image
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By performing these steps, a raster image can be generated for a precise area of

the earth. These processed images can be used as a background in this software

package.

2.2.4 Simulink R© Models

In this project there are two distinct Simulink R© simulations that have been de-

veloped, which are utilized during the planning and feasibility analysis and flight

execution phases, respectively. The backbone of both of these simulations is the

Aerosim Model produced by Unmanned Dynamics, LLC [1].

2.2.4.1 Aerosim Model

There are three complete models included in the Aerosim blockset. These models are

basically the same except that one frame of reference is with respect to the aircraft’s

body, another frame of reference is geodetic with no effects from the variations in

the earth’s magnetic field, and the third model is also geodetic but includes the

variation of the earth’s magnetic field. The Aerosim body frame of reference model

is used in this project.

This block is a complete six degree of freedom (DOF) or 12th order dynamic model.

In this model there are three input classes and fifteen output classes. The three

input classes are listed in table 2.1.

Table 2.1: Aircraft Model Inputs[1]

Input Variable Variable Index Variable Description

Controls [1:7,1] C[1,1] = Flaps Radian deflection of the flaps

Continued on next page
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Input Variable Variable Index Variable Description

C[2,1] = Elevator Radian deflection of the elevator

C[3,1] = Aileron Radian deflection of the aileron

C[4,1] = Rudder Radian deflection of the rudder

C[5,1] = Throttle Fractional value of the throttle (0 to 1)

C[6,1] = Mixture Ratio value, air/fuel mixture

C[7,1] = Ignition 1 ⇒ power-on or 0 ⇒ power-off.

Winds [1:3,1] W[1,1] = WN Northerly background wind velocity, m/s

W[2,1] = WE Easternly background wind velocity, m/s

W[3,1] = WD Downward background wind velocity, m/s

Reset [1,1] R[1,1] = Reset
Integrator reset flag (equals 0 or 1, all inte-
grators reset on rising-edge)

The 15 output classes of the model are listed in table 2.2.

Table 2.2: Aircraft Model Outputs[1]

Output Element Size Element Description

States [15x1]
The vector of aircraft states [u v w p q r e0 ex ey ez Lat

Lon Alt mfuel Ωeng ]T

Sensors [18x1]
The vector of sensor data [Lat Lon Alt VN VE VD ax ay

az p q r pstat pdyn OAT Hx Hy Hz]T

VelW [3x1]
The 3x1 vector of aircraft velocity in wind axes [Va β α]T

in [m/s rad rad]

Mach [1x1] The current aircraft Mach number Angular

Acc [3x1] The vector of body angular accelerations [
.
p

.
q

.
r]T

Euler [3x1]
Vector of the attitude of the aircraft given in Euler angles
[φ θ ψ]T , in radians

AeroCoeff [6x1]
Vector of aerodynamic coefficients [CD CY CL Cl Cm

Cn]T , in rad−1

PropCoeff [3x1] Vector of propeller coefficients [J CT CP ]T

EngCoeff [5x1]
Vector of engine coefficients [MAP

.
mair

.
mfuel BSFC

P ]T given in [kPa kg
s

kg
s

g
(W∗hr) W ]

Mass [1x1] The current aircraft mass, in kg

ECEF [3x1]
Vector of aircraft position in the Earth-centred, Earth-
fixed frame [X Y Z]T

MSL [1x1] The aircraft altitude above mean-sea-level, in m

AGL [1x1] The aircraft altitude above ground, in m

Continued on next page
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Output Element Size Element Description

REarth [1x1]
The Earth equivalent radius, at current aircraft location,
in m

AConGnd [1x1]
The aircraft-on-the-ground flag (0 if aircraft above
ground, 1 if aircraft is on the ground)

2.2.4.2 Planning Simulink R© Model

The first mode of operation for this software is the planning mode. In this mode

the operator is able to plan and test the feasibility of different aircraft routes. Per-

forming this flight feasibility analysis is accomplished by simulating all aspects of

the proposed flight. Table 2.3 shows the different aspects and their models.

Table 2.3: Components of the Route Planning Model

Aspect Method of Modelling
Aircraft Dynamics Aerosim 6 DOF Model [1]
Aircraft Control Simulink R© Model, developed by RAVEN
Weather
Conditions

Environment Canada Regional Model [16]

Aircraft Route User-defined by navigation waypoints

Route Definition and Tracking

The aircraft control system was based on specifying a target latitude, longitude,

altitude which are fed into the system; the UAV is programmed to proceed to that

location. Figure 2.15 purposely exaggerates the tracking method the UAV uses when

generating and travelling through its fine waypoints; this exaggeration more clearly

shows this approach to trajectory planning. In this figure each black dot represents

a user-defined rough waypoint, and the black line is the spline that fits through all

these rough waypoints. A set of fine waypoints is generated at nearly equidistant

intervals and each fine waypoint has a boundary region which is represented by the
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grey circle; typically there will be substantially more fine waypoints than rough ones.

The red line shows the UAV flight heading though the fine waypoints. In this method

the UAV flies towards the nth fine waypoint; once the UAV reaches the boundary

line (the distance between the UAV and target location is less than the radius of the

circle) the UAV will target the (n+ 1)st fine waypoint. The radius of the boundary

circle and the distance between the waypoints are used as tuning parameters for

the tightness of the route tracking. This method was chosen primarily to diminish

fuel waste during high winds. Fuel wasted is reduced because the UAV can navigate

through the waypoints with an acceptable margin of error, without having to double

back on itself to find a missed waypoint.

Figure 2.15: Aircraft Navigation from Fine Waypoint to Waypoint

The precision of route tracking is traded off by the fuel efficiency of the UAV trip.

Long distance general operation is the goal of this project. In general, operational

fuel efficiency is more important than exact location precision; therefore, the route

tracking method illustrated in figure 2.15 was used.
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Logging Data

By interfacing all of these components together a high fidelity simulation can be

performed and the resulting data can be captured and stored. The model updates

the UAV’s position every 0.008 seconds. Capturing all model data would result in

an excessively large data set, filled with mostly superfluous data. It was determined

that relevant model data would be stored every 8 seconds of model runtime. The

model variables that are stored are listed and described in table 2.4.

Table 2.4: Variables that are Logged During Simulation

Variable Description
Time The time of captured data
Aircraft Location Actual Latitude, Longitude, and altitude
Aircraft
Destination

Target latitude, longitude, and altitude

Weather
Conditions

Wind and temperatures

Aircraft Fuel Remaining Fuel

Model Status

The ability for the operator to see the status of the simulation is fundamental for

the operator to understand the feasibility of the proposed flight. Hence, several

important model variables are updated in the GUI while the simulation runs. These

variables are listed and described below in table 2.5.

2.2.4.3 Execution Simulink R© Model

The second mode of operation in this software package is called the execution mode.

In this mode the operator is able to execute the previously planned mission. Since

access to a real UAV is not possible during the development of this software package,
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Table 2.5: Variables of the Route Planning Model

Variable Description

Latitude Latitude of UAV.

Longitude Longitude of UAV.

Altitude Altitude of UAV.

Remaining

Distance

Remaining mission distance until simulation is

complete.

Remaining Fuel Mass of fuel remaining in the UAV.

the UAV aircraft model was used in its place. This model has been developed

in a manner such that the actual UAV radio-frequency/satellite up link can be

easily replaced by the model. There are some fundamental differences between the

execution model and the feasibility/planning model. The weather forecast data is

not used, since this will eventually be included by the real world situation; secondly,

a number of rudimentary real-time course adjustment options are implemented.

These may be refined and extended as real test experience is gained; that is beyond

the scope of this project. The different route control options are described in table

2.6.

Table 2.6: Real-time UAV Route Control Options

Control
Command

Method of Implementation

Go Home
The aircraft immediately goes back to the first
waypoint

Hold The UAV circles and waits

Change Course
A new course is entered and the UAV follows this
route

In execution mode relevant mission data are also automatically stored as the mission

unfolds. This data are the same as described in figure 2.4 except weather data is
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not stored. Similar to the planning mode, all model status data is delivered to the

GUI from the execution model, see figure 2.5.

2.2.4.4 GUI Software Flow

The flow of software execution is key when developing a new product. In this

instance flow refers to the sequential paths followed by the software. The flow

should be logical and reasonably intuitive. Since this project involves inventing

original software, it has been possible to make logical development of this software

a primary goal. Figure 2.16 details how the software execution proceeds. The

software flow chart describes a typical software run. It is assumed that weather

data is downloaded as needed and the flight trajectory is defined by the operator.

In this flow diagram the operator plans the mission, determines mission feasibility

and then executes the mission. It should be noted that this diagram details typical

use of the software and is not intended to contain more advanced scenarios.
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Figure 2.16: Software Flow Chart
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Chapter 3

Implementation

This chapter will describe how the theory, data, and systems described in chapter

two are integrated into the final functional product. Due to the size of this project

it is not possible to document every line of code. As a result, time will be allotted to

explaining how functions are used, how algorithms are implemented, and how data

are acquired and processed. Towards the end of this chapter, the flow of EFOP

operations will be described.

3.1 Numerical Model Weather Data

The software must be able to acquire the weather forecast data from remote servers.

MATLAB R© does not include an infrastructure for downloading data files. Fortu-

nately MATLAB R© does allow for system commands to be run from the MATLAB R©

command prompt. There are various open source projects that facilitate remote

data acquisition. One such project is called curl. Curl is capable of acquiring files
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via various file transfer protocols. It is also capable of downloading a series of files,

providing the filenames have a definitive structure. Curl commands can be executed

by having the curl executable file in MATLAB R©’s working directory. An example of

how curl is called can be seen in figure 3.1. Lines 8 to 10 show how MATLAB R© calls

the curl.exe routine.

1 cd curl;
2 for i = 1:size(names,2)
3 mkdir([temp_dir ’\’ names{i}]);
4 for ii = 1:size(times,2)
5 ulr_filename = [’CMC_reg_’ names{i} ’_ISBL_’...
6 var_pres ’_ps60km_’ dates ’_’ times{ii} ’.grib’];
7 computer_filename = [’CMC_’ names{i} ’_#1.grib’];
8 [status,result] = system([’curl.exe ’ ulr ulr_filename...
9 ’ -o ’ temp_dir ’\’ names{i} ’\’ times{ii} ’\’...

10 computer_filename]);
11 end
12 end
13 cd ..;

Figure 3.1: Code used to Download the GRIB Data

As a precaution, all data that are downloaded are backed up in an archive directory;

data are time/date stamped and stored in the /archive/ directory.

Reading the numerical weather data into MATLAB R© proved to be a complex task.

GRIB data is highly structured and requires exact processing. Fortunately there

was a project called read_grib [9] that provided a method to input GRIB data into

MATLAB R© memory. This function was not initially compatible with Environment

Canada’s GRIB 1 data, as this function was not designed to be compatible with all

GRIB 1 data. After some investigation into the GRIB 1 structure [10] this problem

was corrected. In figure 3.2 an example of a read_grib statement can be seen. The

-1, following the string concatenation of the filename, means that all data objects

in the GRIB fie should be read into memory.
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1 rawdata.time{iii}.temp{i} = read_grib([directory...
2 ’\grib_data\TMP\P’ index_time{iii} ’\CMC_TMP_’...
3 index_temp{i} ’.grib’],-1);

Figure 3.2: Code used to Read GRIB Data into Memory

3.1.1 Numerical Model Weather Data Processing

Once the weather data has been loaded into memory, it is rearranged into a more

organized data structure. This structure is documented in section 2.2.1.1. The code

that accomplishes this task is a combination of for loops and variable declarations.

A sample of this code can be seen in figure 3.3.

1 for iii = 1:length(index_time)
2 time{iii}.grid{ninjtolatlong(ii,2),ninjtolatlong(ii,1)}.lat =...
3 ninjtolatlong(ii,3);

Figure 3.3: Code used to Process the Weather Data in a Data Structure

3.1.2 Weather Data Interpolation

Implementation

Interpolation of the weather data is one of the most complex parts of this project.

Several nested functions have been developed to accomplish this task. For the

purpose of documenting the implementation of this methodology, the code will be

approached as if it were one large function.

The weather interpolation method is a function that has both input and output.

The inputs and outputs of this function are described in table 3.1.
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Table 3.1: Input/Output Table

I/O Name Description

Input latitude Latitude of the interpolation point

Input longitude Longitude of the interpolation point

Input altitude Altitude of the interpolation point

Input time Time of interpolation

Input m-struct MATLAB R© mapping structure of the grid

Input grid Weather data structure

Input map-info
Data structure defining Environment Canada’s polar
stereographic grid

Output temperature Temperature at the grid point

Output x-wind Wind in the x or longitudinal direction

Output y-wind Wind in the y or latitudinal direction

The first step in this function is to translate the latitude and longitude into the

grid’s coordinate system. This is accomplished by using MATLAB R©’s Mapping

Toolbox
TM

. The following mfwdtran command allows the user to translate between

different coordinate systems: [x,y] = mfwdtran(m_struct,lat,lon,[],’line’);

After some simple calculations the output of the file is the exact x and y coordinates

on the grid. The value of x and y are not integers on the grid, they are precise points

(e.g., 23.433, 54.123).

Once these values have been calculated, the next step is to get the precise time

index. Since there is only one grid per six hours it is necessary to translate the hour

to the hour index in the data structure. This can be accomplished by the command:

index_time = hour./6+1

This value is a double and will most likely contain a remainder after the decimal

point. If this value is rounded both up and down, the two time indices that bracket
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this point is determined. The next sections are calculated using the grid data from

both the earlier and later time indices. The step to perform the interpolation be-

tween these two times is the last step in calculating the interpolated weather.

The vertical index corresponding to the particular altitude needs to be determined

for both time indices. The coordinates of the grid points to perform the height search

are determined by using the round function: x=round(x.real); y=round(y.real);

Once the closest grid coordinates are determined, the altitude values can be ex-

tracted from the grid data structure. A binary search algorithm[17] is applied to

the data to determine the upper and lower indices that the desired altitude lays

between. In figure 3.4 the binary search algorithm can be seen.

1 function [l,h] = search_sorted(height,h_vector)
2 low = 1;
3 high = size(h_vector,1);
4 mid = round((low + high)/2);
5 while(mid ~= high)
6 midValue = h_vector(mid,1);
7 if height < midValue
8 high = mid;
9 else

10 low = mid;
11 end
12 mid = round((low + high)/2);
13 end

Figure 3.4: Binary Search Algorithm used to Determine the Height Index

Once the upper and lower height indices are found, a linear interpolation is per-

formed to determine exact location the desired altitude lies between these two iso-

baric levels. At this point the exact indices for the desired latitude, longitude,

altitude, and time have been determined. Using this information, the weather data

at each time can be calculated. The first step in calculating these values is to extract
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the weather on each corner of the surface containing the point of interest, i.e., the

weather parameters are interpolated at each corner based on the height index that

was previously calculated. This code can be seen in figure 3.5

1 wb.tmp.ul = tmp.ul(h.low) + (h.real-h.low).*...
2 (tmp.ul(h.high)-tmp.ul(h.low));
3 wb.xwind.ul=xwind.ul(h.low)+(h.real-h.low).*...
4 (xwind.ul(h.high)-xwind.ul(h.low));
5 wb.ywind.ul=ywind.ul(h.low)+(h.real-h.low).*...
6 (ywind.ul(h.high)-ywind.ul(h.low));

Figure 3.5: Code used to Interpolate each Corner of Weather Block Based on Height
Index

A weather value has now been determined at each corner and for bracketing times.

The next step is to combine the corner information at each time into the interpo-

lated weather parameters at the desired point for each of the time values. This

interpolation is performed using the weather values at the corners and the x and y

indices. The code to perform this interpolation is found in figure 3.6.

1 output.tmp = (1-(x.real-x.left)).*(wb.tmp.ul+(y.real-y.lower).* ...
2 (wb.tmp.ll-wb.tmp.ul)) + (x.real-x.left).*...
3 (wb.tmp.ur+(y.real-y.lower).*(wb.tmp.lr-wb.tmp.ur));
4 output.xwind = (1-(x.real-x.left)).*(wb.xwind.ul+(y.real-y.lower).*...
5 (wb.xwind.ll-wb.xwind.ul)) + (x.real-x.left).*...
6 (wb.xwind.ur+(y.real-y.lower).*(wb.xwind.lr-wb.xwind.ur));
7 output.ywind = (1-(x.real-x.left)).*(wb.ywind.ul+(y.real-y.lower).*...
8 (wb.ywind.ll-wb.ywind.ul)) + (x.real-x.left).*...
9 (wb.ywind.ur+(y.real-y.lower).*(wb.ywind.lr-wb.ywind.ur));

Figure 3.6: Code used to Combine Each Corner into the Weighted Point Value

Next the weather parameters are interpolated with respect to time. Using the

weather parameters calculated for each time and the time index, a final linear in-

terpolation can be performed. The code for this time interpolation can be seen in

figure 3.7.
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1 output.tmp = w1.tmp + (hour_index.real - hour_index.index1)...
2 .*(w2.tmp - w1.tmp);
3

4 output.xwind = w1.xwind + (hour_index.real - hour_index.index1)...
5 .*(w2.xwind - w1.xwind);
6

7 output.ywind = w1.ywind + (hour_index.real - hour_index.index1)...
8 .*(w2.ywind - w1.ywind);

Figure 3.7: Code used to Combine each Time Value into the Weighted Value

The last step in this weather interpolation algorithm is to rotate any vectors between

the polar stereographic grid and the Lat/Lon grid. This is accomplished using small

perturbation linearization. Some of to code to achieve the rotation can be seen in

figure 3.8.

1 lat1 = lat; lon1 = lon; % Values of lat1 and lon1
2 lat2 = lat; lon2 = lon + 0.05; % Values of lat2 and lon2
3 x_grid1 = x_grid; y_grid1 = y_grid; % Grid Values of interest
4 [x_grid2,y_grid2] = get_indexes(lat2,lon2,m_struct,map_info);%Calc L2\l2
5 ang = atan2(y_grid2-y_grid1,x_grid2-x_grid1);
6 wx = w.xwind; wy = w.ywind;
7 lon_wind = wx*cos(ang)+wy*sin(ang);
8 lat_wind = -wx*sin(ang)+wy*cos(ang);

Figure 3.8: Code used to Rotate between Two Frames of Reference using Small
Perturbation Linearization

Data Files

Due to the complexity of this interpolation process, the code spans multiple func-

tions. Table 3.2 lists all the functions and a brief description of what they do.
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Table 3.2: Weather Interpolation Files

Name Description

interpolate-
weather.m

Main function that calls all the other functions

initialize.m Sets initial parameters

get-height-
index.m

Returns the index of the height; search-sorted is called

get-indexes.m
Returns index of desired x and y. Coordinate system con-
version is performed, mfwdtran and map-index functions are
called

get-time-
indexes.m

Returns index of time

get-weather.m
Returns the interpolated weather.
Functions get-weather-boundary and
interpolate-weather-boundary are called

get-weather-
boundary.m

Returns the weather

interpolate-
time.m

Interpolates environmental variables with respect to time

interpolate-
weather-
boundary.m

Function that performs the 2D planar interpolation based
on the four corners

linear-interpo.m A linear interpolation function

map-index.m Extracts relative information from the map

search-sorted.m Binary search algorithm

rotatevector.m
Translates between the PS Grid vector components and the
Lat/Lon vector components

3.1.3 Graphical Overlay Product

The proceeding weather interpolation function is utilized through the user interface.

It allows the user to display both wind barbs and temperatures over the map for

any time and altitude. In figure 3.9 the input dialogue box can be seen.
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Figure 3.9: Graphical Weather Overlay Initialization Screenshot

Once the desired altitude and time have been input, the software gauges whether

the longitude or latitude on the displayed map has a greater range. Whichever is

greater has a linear space of 12 elements spanned over it. The distance between

each element is calculated and this value is divided into the range of the shorter

dimension. After rounding off to an integer, the resulting value gives the correct

number of elements to produce an evenly-spaced grid. Such a grid can be generated

automatically for any map. Once the grid points have been calculated the weather

interpolation algorithm is used to extract the appropriate weather parameters from

the weather data structure.

Once these values have been calculated it is possible to pass this information to a

wind barb drawing function. This function uses basic geometry to draw the wind

barb using line segments. The handle of every line is stored for easy removal. In

figure 3.10 a screen-shot of the temperature and wind barb overlay can be seen.

3.2 Graphical Weather Charts

Having all available relevant information easily assessable for the operator is a key

goal of this project. Retrieving pertinent weather charts is instrumental in the user-

friendly operation of this software. Although MATLAB R©’s GUIDE is robust, it

did not present a simple way to display this information. Approximately 35 maps
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Figure 3.10: Graphical Weather Overlay Over Newfoundland

were considered significant, but not all operators would want to view all the maps.

For this reason it is important for the user to be able to dynamically select the

weather charts they want to view. The first step in achieving this is to allow the

operator to select their desired charts by enabling check boxes. All the possible

charts are organized into logical groups, i.e., upper air analysis, graphical forecast,

etc. For example, graphical forecasting charts show foresting information that is not

available as vector data. Forecast turbulence, icing, freezing levels, cloud cover, and

weather can be quickly viewed. Some of these charts are generated by an experienced

forecaster. Although numerical models are convenient, sometimes the analysis by

an experienced forecaster can be invaluable. Some charts are forecasted for different

times, i.e., time1, time2, but exact chart update times cannot be determined from

the downloaded files; hence, specific time values are not given. A screen-shot of this

graphical form can be seen in figure 3.11.

Once the relevant charts have been selected, charts are retrieved on-line using curl. A

backup of the charts is timestamped and stored in an archive directory for validation

purposes. A screen shot of the downloading process can be seen in figure 3.12.
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Figure 3.11: Method of Selecting Relevant Weather Charts

Figure 3.12: Downloading Weather Charts

Once this download is complete, all selected charts are loaded into memory and

displayed in a tabbed figure window. The goal was to have each selected chart dis-

played in a different tab. The tabbed interface was difficult to achieve and required

over 1000 lines of code. Some difficulties in accomplishing this resulted from not all

charts being displayable using the same commands, since many charts had differ-

ent file formats and/or color spaces. In screen-shot 3.13 the tabbed weather chart
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display can be seen.

Figure 3.13: Method of Viewing Relevant Weather Charts

Another difficulty worth mentioning was encountered in displaying all the charts

with adequate resolution. After some experimentation it was determined that there

was no way to make the tab GUI continue to function if the window was re-sized.

This problem was solved by having the software detect the screen resolution. A

tabbed GUI figure is then drawn nearly the size of the screen and is centred. Since

operator stations should always have high quality large display panels, this should

not be a problem.
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3.3 Map Processing

A critical component of this project is the ability to display maps and mapping

information. Fortunately most maps can be displayed in MATLAB R© through the

use of the Mapping Toolbox
TM

.

3.3.1 Displaying a Map

Raster Data

Displaying a map is a two step process. First the raster data is drawn and then the

vector data is drawn over it. The code to plot the raster data can be seen in figure

3.14.

1 [image,BBox,R] = image-latlon(lat-upleft,lat-bottomright...
2 ,lon-upleft,lon-bottomright);
3 ax = geoshow(image,R);

Figure 3.14: Code used to Display the Raster Map Data

This custom function can be further broken down. The image_latlon function,

although custom, was designed to work seamlessly with the Mapping Toolbox
TM

.

The BBox (Bounding Box) and R (Reference Matrix) outputs are variables that the

Mapping Toolbox
TM

needs to function properly.

The first step in this process is to verify that inputs to the function are within the

correct region of the globe. The latitude and longitude are translated into the map

labelling scheme by the following command:

Xind = (((Xreal-Xreal0)*(Xind1-Xind0))/(Xreal1-Xreal0))+Xind0;
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The shrinking factor of the image is calculated based on the ratio of the desired width

by the total width. All map panels within the desired region are loaded into memory

using function geotiffread (see Fig. 2.14). These files are quite large and very slow

to process. Accordingly, each image is re-sized using the imresize command. Next

the images are converted from an indexed color space to an RGB color space using

the ind2rgb command. Even though this takes up more memory, this color space

conversion was required since some of Image Processing Toolbox
TM

functions are not

capable of handling indexed images. The smaller images were stitched together by

cascading the data accordingly. The last step in preparing this image was to crop

the image. This was accomplished using the imcrop function which can be seen

below in figure 3.15.

1 XMIN = round(shrinking_factor.*1441.*...
2 (lon_left-floor(lon_left)));
3 YMIN = round(shrinking_factor.*1441.*...
4 (lat_up-floor(lat_up)));
5 WIDTH = desired_width;
6

7 HEIGHT = round((desired_width).*...
8 ((lat_down-lat_up)./(lon_right-lon_left)));
9 rect = [XMIN YMIN WIDTH HEIGHT];

10 I2 = imcrop(image_all,rect);

Figure 3.15: Code used to Crop the Image

Although the image data has been properly prepared, the mapping data also needs

to be calculated. The first variable BBox stands for bounding box and is trivial to

construct using the following code:

BBOX = [lon_upleft,lat_bottomright;lon_bottomright,lat_upleft];

The R variable was not as trivial to calculate, but fortunately MATLAB R© contains

a function to streamline this process called makerefmat. The code to create the

reference matrix (R) can be seen in figure 3.16.
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1 num_pix_lat = size(image,1);
2 num_pix_lon = size(image,2);
3 range_lat = lat_upleft - lat_bottomright;
4 range_lon = lon_bottomright - lon_upleft;
5 lat_rez = range_lat/num_pix_lat;
6 lon_rez = range_lon/num_pix_lon;
7 lat11 = lat_bottomright + lat_rez/2 ;
8 % Cell-center latitude corresponding to geoid(1,1)
9 lon11 = lon_upleft + lon_rez/2;

10 % Cell-center longitude corresponding to geoid(1,1)
11 dLat = lat_rez;
12 % From row to row moving north by one degree
13 dLon = lon_rez;
14 % From column to column moving east by one degree
15 R = makerefmat(lon11, lat11, dLon, dLat);

Figure 3.16: Code used to Create Reference Matrix R

Vector Data

The vector data is plotted using the shaperead function and the geoshow or mapshow

commands. A bounding box is used so only shape data objects within the maps

region will be loaded into memory. In figure 3.17 the code to plot a simple vector

map is shown.

1 dire = pwd;
2 dire = [dire ’\data\vector\’];
3 provinces = shaperead([directory ’prov_ab_p_geo83_e.shp’],...
4 ’UseGeoCoords’, true,...
5 ’BoundingBox’, [lon_ul lat_br; lon_br lat_ul]);
6 for i = 1:size(provinces,1)
7 x = [provinces(i,1).Lon];
8 y = [provinces(i,1).Lat];
9 mapshow(x,y)

10 end

Figure 3.17: Code used to Read and Plot Shape Data

Once both the raster and vector data has been loaded and plotted, the combined
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image is displayed. A screen-shot of a representative map can be seen in figure 3.18.

Take note of both the data sources; boundaries are drawn with vector data while

satellite imagery is rendered from raster data.

Figure 3.18: Screen-shot of a Map

3.3.1.1 Quick Zoom Tool

Processing and preparing map information can take a fair amount of time, depending

on the computer’s speed and the size of the region. Since guessing at the boundary

latitudes and longitudes for the desired view can be trial and error, a quick zoom

tool was developed. The quick zoom tool uses only vector data at first, allowing

the operator to view the image before fully processing it. The quick zoom tool

incorporates all of the functions mentioned in the previous section, ‘Displaying a

Map’, as well as some for GUI development. A screen-shot of the quick zoom tool

can be seen in figure 3.19.

The four text fields surrounding the plot in the quick zoom tool contain the latitude,

longitude boundaries of the plot. If one of these values is changed the plot will
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Figure 3.19: Screen-shot of the Quick Zoom Tool

automatically update. If the Process Map button is clicked then a map with these

boundary’s will be processed and loaded into the software. If the Cancel button is

clicked, no changes will be made.

3.3.2 Simulink R© Models

Since the Simulink R© model was developed by another member of the RAVEN group,

the main goal was not to refine it but to interface it with this software package.

Interfacing a GUI with a Simulink R© model is made possible through the use of a

level 2 m-code s-function, a user definable Simulink R© block. Different functionality

is required in each of the software’s two modes of operation; hence, two distinct

s-functions and models were developed. The s-function is used to update aircraft

status text displayed in the GUI, update UAV location marks on the GUI’s maps,

log data, update the targeted fine waypoint, and update weather information. The

model seen in figure 3.20 illustrates how a level 2 s-function can be interfaced with

a UAV model. When comparing the models for feasibility and execution mode, the

Simulink models look very similar. The differences typically lay in coding of the

s-function.

59



Figure 3.20: Planning or Executing Simulink R© Model
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3.3.2.1 Planning Simulink R© Model

In the planning mode of operation there are four primary activities. These include

retrieving and processing weather data, performing route tracking, logging relevant

data, and updating model status.

Weather

The weather interpolation algorithm described previously can be called, since Simu-

link R© s-functions are capable of running functions written in m-code. This function

can be called by executing the following command:

[temp, x_wind, y_wind] = interpolate_weather(lat,lon,height,hours,...

m_struct,time,map_info);

Executing this code is very computer resource intensive and is not necessary on

every model integration step, since the weather model variables change at a very

slow rate in comparison to the aircraft motion. Accordingly, executing the weather

retrieval algorithms is only done at set intervals. Using this methodology, weather

data can be recalculated every few seconds of model time, as opposed to every eight

milliseconds as required for model dynamic update. This method of holding values

in the s-functions memory until the next scheduled update can be used for both

logging data and updating the GUI status.

Route Tracking

The route tracking software functions by determining the distance between the sim-

ulated UAV’s current location and the next fine waypoint. Waypoints are updated
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once a minimum distance is met (see figure 2.15), i.e., the UAV changes from aiming

at waypoint k to waypoint k + 1 when it reaches the kth boundary. The code in

figure 3.21 shows how this is accomplished. Similar to the weather retrieval algo-

rithms, checking for the minimum distance is not performed every model iteration.

The minimum distance is checked every 1 second.

1 % Ok zone
2 distance_limit = 0.2;
3

4 % Create Legs
5 x=[lat,data1(step,1)];
6 y=[lon,data1(step,2)];
7

8 % Get Distance
9 [courses,distances] = legs(x,y);

10 distance = nm2km(distances);
11

12 % Determine if Distance is More
13 if distance < distance_limit %Next set
14 step = step +1;
15 end

Figure 3.21: Code used to Track a Route

Logging Data

It is desirable to only log data every 8 seconds, for similar reasons. The code listed

in figure 3.22 shows how data is logged and stored in a public data structure. The

data structure is made public, since this attribute allows the GUI to also access this

data. Upon completion of the mission, this data is properly archived.

Model Status

Model status is updated every 4 seconds of model run time. This includes all relevant

text fields in the user display, as well as updating the graphical mark of the UAV’s
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1 isgood = count8.*0.008./8;
2 if floor(isgood) - isgood == 0;
3 results.sample(isgood+1,1) = count8;
4 results.time(isgood+1,1) = (count8.*0.008)./8;
5 results.lat(isgood+1,1) = lat;
6 results.lon(isgood+1,1) = lon;
7 results.alt(isgood+1,1) = alt;
8 results.targetlat(isgood+1,1) = data1(step,2);
9 results.targetlon(isgood+1,1) = data1(step,1);

10 results.targetalt(isgood+1,1) = data1(step,3);
11 results.fuel(isgood+1,1) = fuel;
12 results.windx(isgood+1,1) = x_wind;
13 results.windy(isgood+1,1) = y_wind;
14 end

Figure 3.22: Code used to Log Data from the Simulink R© Model

position on the map. The code in figure 3.23 illustrates how this update is performed

using the set function to change properties of specific GUI objects .

3.3.3 Execution of the Simulink R© Model

All activities that are used in the planning model are also used in the execution

model except weather retrieval. The main difference between the planning mode

and the execution mode is the execution mode is capable of handling on-the-fly

course changes/corrections. These changes were implemented in MATLAB R© using

a switch/case logic statement. Due to the length of this code, pseudo-code describing

this function is shown in figure 3.24.

3.4 Graphical User Interface

The graphical user interface was developed and setup using MATLAB R©’s GUIDE.

GUIDE uses both an M-file containing callbacks and an M-fig containing the GUI’s
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1 updatesec = 30;
2 isgood4 = count8.*0.008./updatesec;
3 if floor(isgood4) - isgood4 == 0;
4 sumtotaldistance = my_handles.sumtotaldistance;
5 distancetraveled = sumtotaldistance(step);
6 distanceleft = sumtotaldistance(length(sumtotaldistance))...
7 - distancetraveled;
8

9 % Update Strings
10 set(my_gui.textlat,’String’,num2str(lat));
11 set(my_gui.textlon,’String’,num2str(lon));
12 set(my_gui.textalt,’String’,num2str(alt));
13 set(my_gui.textfuel,’String’,num2str(fuel));
14 set(my_gui.textkm,’String’,num2str(distanceleft));
15 % Update PLane and Draw Line in Axes 1
16 axes(my_handles.axes1);
17 hold on;
18 try
19 delete(my_handles.plane_handle);
20 end
21 my_handles.plane_handle = plotm(lat,lon,’rs’,...
22 ’LineWidth’,2,...
23 ’MarkerEdgeColor’,’k’,...
24 ’MarkerFaceColor’,’g’,...
25 ’MarkerSize’,10);
26 drawnow;
27 % Update Altitude Plot
28 axes(my_handles.axes2);
29 hold on;
30 try
31 delete(my_handles.alt_handle);
32 end
33 my_handles.alt_handle = plot(distancetraveled,alt,’rs’,’LineWidth’,2,...
34 ’MarkerEdgeColor’,’k’,...
35 ’MarkerFaceColor’,’r’,...
36 ’MarkerSize’,10);
37 drawnow;
38 end

Figure 3.23: Code used to Read and Plot Shape Data
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1 global my_gui;
2 global my_handles;
3 my_gui.home = [my_handles.data.y(1) my_handles.data.x(1)...
4 my_handles.data.z(1)];
5 my_gui.case_exe = 3;

Figure 3.24: Code used to Change Flight Mode of Aircraft

objects. The GUIDE development environment can be seen in figure 3.25. By using

the GUIDE development environment and strategically filling in callback routines,

flow, and content, functionality can be implemented using this software. Addition-

ally the basic framework for the EFOP GUI can be seen in figure 3.25. The top

axes are for the latitude and longitude map while the lower axes are for the altitude

plot. Surround the axes there are buttons that have various functions. A menu bar

was also constructed using GUIDE.
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Figure 3.25: Screen-shot of EFOP software GUI in MATLAB’s GUIDE Development
Environment (Some GUI elements overlap, since their visibility is toggled on and
off as desired)
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Chapter 4

Presentation of Using the System

for Planning

This chapter illustrates the planning and feasibility functions of the EFOP software

package. The operator can easily process weather data, define the UAV’s trajectory,

and run a simulated flight. These steps are further detailed in the following sections.

4.1 Initialize

The weather model may require updating once the software package has been

launched. The update is accomplished by clicking on the Initialize menu and

then the Get Weather Data item. Downloading and processing of the weather data

is required daily and can be quite time consuming. In order to prevent multiple

data downloads, an alter window will indicate if the weather data is current. The

software package can acquire current weather data, load previously acquired weather

67



data, or proceed without weather data. In the latter case, the simulation is executed

with all weather parameters set to 0.

4.2 Planning

The next step requires the operator to plan the route for the mission. By selecting

the Define Trajectory item in the Initialize drop-down menu, a map is dis-

played in the GUI. Before planning the trajectory, various factors must be taken

into account before selecting the final set of waypoints. Weather charts should be

reviewed by clicking on the Display Wx Chart(s) item located in the Initialize

drop down menu. Environment Canada’s numerical model weather data can be

overlaid on the map by selecting the Wx button.

Planning the UAV’s trajectory is accomplished by placing rough waypoints. Placing

a waypoint requires three steps. The desired altitude is set on the altitude slider, the

First Point or Next Point button is pressed, and the location of the waypoint is

selected via a cross hair on the Latitude & Longitude map. The steps are repeated

until all waypoints are chosen and finally the Done button is selected. Once the initial

trajectory has been selected, it is possible to modify the trajectory. The trajectory

is modified by using the add waypoint, remove waypoint and change altitude

buttons. Additional details regarding trajectory planning are provided in Appendix

A. To prevent repetitive daily trajectory planning, trajectories can be saved and

loaded from the file menu.

A short but fully featured trajectory has been planned to illustrate the operation of

this software package. Table 4.1 lists the latitudes, longitudes, and altitudes that

define this trajectory. Figures 4.1 and 4.2 display maps of this trajectory.
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Table 4.1: Rough Waypoints for an Example Mission

Latitude Longitude Altitude (m)

49.4880 -55.1216 75

49.3762 -55.1288 275

49.3700 -55.0331 325

49.4218 -54.9399 250

49.4860 -55.0068 325

49.5750 -54.8992 100

Figure 4.1: Plot of Planned Latitude/Longitude while in Planning Mode

4.3 Simulate UAV Flight

With a flight trajectory defined and optional weather data present, a feasibility

simulation can be initiated. By selecting the Run Simulation item under the
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Figure 4.2: Plot of Planned Altitude while in Planning Mode

Feasibility menu, the software enters feasibility mode. Clicking the Start but-

ton launches the simulation, which will run until completion if left untouched. The

simulation can be cancelled or paused by clicking the Stop and Pause buttons

respectively. Numerical data are displayed in the GUI and graphical location in-

dicators are shown in both the Latitude & Longitude and Altitude axes. Upon

completion of the simulation, results are displayed. These results can be saved and

loaded via the file menu. A screen-capture of the EFOP system, while determining

the feasibility of a mission, can be seen in figure 4.3. In this figure the red and

green UAV markers indicate the UAV altitude and latitude & longitude position

respectively, at one time in the simulation. In the altitude plot the horizontal axis

is distance traveled, measured in kilometers, and the vertical axis is the altitude

measured in meters.

4.4 UAV Simulation Results

The simulation results are extracted from the time series data generated by the simu-

lation. In table 4.2 various attributes of the mission simulation are displayed. In this

table it is possible to see some of the differences between a simulation with weather
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Figure 4.3: Screen-capture of EFOP while in Planning Mode

(with WX) and a simulation without weather (w/o WX). By utilizing weather data

in the model, the fuel consumption was increased by 18% and elapsed mission time

was increased by 25%. After the table, in figure 4.4 and 4.5, the latitude/longitude

plot and the altitude plots are respectively shown.

Table 4.2: Attributes of the Simulations

Without

Weather
With Weather

Fuel Consumed 0.2038 kg 0.2414 kg

Elapsed Time 6251 s 7852 s

Distance Travelled 63.68 km 65.60 km
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Figure 4.4: Plot of Logged Lat/Lon while in Planning Mode

Figure 4.5: Plot of Logged Altitude while in Planning Mode

In figures 4.4 and 4.5 the boundary radius, see figure 2.15, of the waypoint tracking

algorithm is 0.2 km. The small scale flight anomalies produced in figures 4.4 and 4.5

are a product of the control system design. The control system should be refined to

produce a smoother flight.

72



Chapter 5

Presentation of Using the System

for Execution

When executing a UAV mission, the operator is able to control the UAV in real time.

Having direct control over the UAV allows the operator to revise the flight trajectory

mid-flight, to order the UAV to hold near a significant event, or to immediately

return the UAV to base. In testing this software package, the UAV being controlled

is, unfortunately, only a model.

Executing a mission can be started by selecting the Execute Mission item in the

Execute menu. The Start button can be used to start the simulation. Real time

changes are accomplished by clicking either the Change Route, Hold, or Go Home

buttons. This section of the project was completed as a proof of concept and will

require significant future development for use with an actual UAV. This development

will entail a coupling of the UAV’s hardware with the EFOP software package via

a wireless link.
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Figure 5.1 graphically displays the data logged from a sample mission. For the

purpose of illustrating how mission execution functions, a Go Home command was

called before the UAV finished its mission. The flight trajectory used is the same

flight trajectory described in table 4.1, figure 4.1 and figure 4.2.

Figure 5.1: Plot of a Logged Data while in Execution Mode

In figure 5.1 the boundary radius, see figure 2.15, of the waypoint tracking algorithm

is 0.3 km. When compared to figures 4.4 and 4.5 small scale anomalies were reduced

by slightly increasing the boundary radius.
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Chapter 6

Contributions, Future Work and

Conclusion

6.1 Contributions

The projects’ main contribution to current technology is not in the form of a revo-

lutionary new methodology, but instead a compilation of ideas, software, and infor-

mation to help solve a very specific and important problem. A copious amount of

information has been gathered, sorted, and assimilated from various technologies.

All of these components are integrated into the EFOP software package designed

for operators to extract relevant information efficiently. Operators are able to easily

run complex simulations providing mission feasibility projections and later execute

these missions. The functionality of the overall software package, as well as some of

its key functions, are this project’s main contributions.
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6.2 Future Work

Although this project software is fully functional, it is important to note that it is

in a relatively early stage of developmental. As the software is used by operators,

beneficial modifications and additional functions will be identified and incorporated.

Both usability and ease-of-use will improve as the software is further developed.

Several suggestions of possible improvements are listed below. Although few, some

of these improvements relate to known software bugs.

• Improve control system - Small scale flight anomalies are a product of the

control system. Refinements to produce a more robust control system would

result in a smoother flight.

• Decrease runtime duration - Although EFOP was developed with speed

in mind, unfortunately MATLAB R© can be quite slow. This software runs fast

enough to be marginally functional but improvements should be made. These

include directly compiling the UAV simulation model to C code or re-coding

the S-function/weather interpolation code in C. Depending on the application,

compiling MATLAB R© code can sometimes yield increased performance [18].

• Fast Jpeg image stitching and processing through the use of C code

- Unfortunately there is a bug when dealing with raster maps in MATLAB R©,

so Matlab would intermittently run out of memory while processing the raster

image. After some analysis, it is suspected this bug is in MATLAB R© routines.

This should be corrected to ensure robust operability.

• Take off and landing modes of operation - This additional feature is

required if the software is going to be used in real-time execution with UAVs.

This code would allow for easy take off and landing. Ideally landing/take off

routines would be assisted by an Instrument landing system (ILS).

• Camera control, radar control, and remote sensor integration into

the software package - This new feature would allow the operator to control

the aircrafts’ sensors, make course correction based on radar, and inspect and

record any event of interest using a camera.
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• HLA Interface - This is an architecture that allows different distributed

computer simulation systems to easily communicate with each other. There

are HLA MATLAB R© compatibility barriers.

6.3 Conclusion

In this project a unique synthesis of technologies, information and software was used

to construct a user friendly software package for mission planning and execution.

The EFOP software package aspires to function as a complete solution for deploying

unmanned aerial vehicles. Most relevant data is archivable for easy reproduction

of mission circumstances for interesting case studies. A majority of the mission

feasibility features are enabled by using integrated nationwide numerical weather

models. A complete weather monitoring solution is provided by making overlay

and graphical charts easily accessible to the operator. Rich customizable mapping

allows the operator to display additional relevant graphical information such as

hydrology, transportation routes, and populated areas. Mission feasibility planning

can be evaluated and, when finalized, seamlessly rolled into an operational flight.

Control during real-time flights is easily facilitated though the user interface, as

operators have the ability to modify flight routes on the fly. By comparing missions

both with and without weather information, it was determined that meteorological

information can have a very significant impact on the mission planning duration

and fuel consumption. Although this software is fully functional, it is still in a

developmental stage. As the RAVEN project grows and matures, this software

package will too, eventually offering the operator a complete UAV mission planning

and execution package.
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Appendix A

Software Manual

Introduction

This manual describes the installation, layout, and function of the Environmental

Feasibility Operations Package or EFOP. EFOP is a software package that helps

facilitate responsible decision making when deploying unmanned aerial vehicles.

EFOP software enables the aircraft operator to easily plan missions, assess the

mission feasibility and execute the mission.

System Requirments

• High Performance Workstation *

• Microsoft R© Windows R©

• MATLAB R© 2007a or Newer **

• Image Processing Toolbox
TM
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• Mapping Toolbox
TM

• Unmanned Flight Dynamics Aerosim Blockset

* Although this software will run on slower machines, the amount of time required to

run the model is directly related to the performance of the machine. Higher performance

machines (i.e. i7 or Core 2 Duo with 4GB of Ram) can effectively decrease runtime.

** The software was designed to work with MATLAB R© 2007a but unfortunately may

exhibit some memory management issues. This issues may be remedied through the use of

newer a version of MATLAB R© (MATLAB R© 2009a performs better).

Installation

Presently EFOP does not include an automated installation process. Installing

EFOP involves installing several components. This procedure is detailed below. It

is assumed that you have a computer with Microsoft R© Windows R© already installed.

1. Install MATLAB R© r2007a or greater (preferably r2009a) with both the Image

Processing Toolbox
TM

and the Mapping Toolbox
TM

. MATLAB R© installation

documentation can be followed. If MATLAB R© and the appropriate toolboxes

are already installed, skip to setup 2.

2. Download the Aerosim blockset from the Unmanned Dynamics website (http://

www.u-dynamics.com/aerosim/). Install the blockset using instructions from

the Aerosim User Guide. License information for the Aerosim blockset is

available on the Unmanned Dynamics website.

3. Copy the contents of the EFOP DVD to a suitable location (EFOP location)

on the workstation.

The software can be launched by first setting the current directory in MATLAB R© to

the location where EFOP was copied to. The command run(’launch’) typed in

the MATLAB R© command window will launch the software.
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Software Layout

The following screen-shot illustrate the basic layout of the software while in planning

mode:

Figure A.1: Screen-capture of EFOP while in Planning Mode

Obtain Weather Data

Download Latest Weather Data:

1. Click the Initialize drop-down menu.

2. Select Get Weather Data
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Load Saved Weather Data:

1. Click the File drop-down menu.

2. Select Open

3. Select Open Weather Data

4. Select the weather data file to load.

Environmental Tools

There are several environmental tools built into this software to help the operator

make crucial operational decisions. These tools are listed below, as well as a brief

description of how they can be significant and the data/network requirements for

them to function.

Tool 1 • Display Weather Charts

Description: This tool allow the operator to download and display meteo-

rologically significant weather charts from various online sources and display

them seamlessly in the tabbed pop-up window.

Location: In the Initialize Menu under Display Wx Charts

Requirements: Live internet connection to acquire weather data.

Significance: These charts display various information that cannot be layered

on top of the EFOP map.
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Tool 2 • Overlay Show Arrows

Description: This tool overlays a graphical representation of wind speed and

direction on top of any displayed map. The altitude and time of overlay is

entered.

Location: The Wx button is in the lower right corner of the Latitude & Longitude

map area.

Requirements: Live internet connection to acquire weather data.

Significance: These overlay allows the operator to explore weather informa-

tion at a specific location, time, and altitude.

Tool 3 • Integrate Weather Models into Simulation

Description: This tool allows the operator to determine the feasibility of a

mission by simulating the proposed mission using detailed weather models.

Location: Feasibility menu items.

Requirements: Live internet connection to acquire weather data.

Significance: Being able to perform feasibility analysis increases confidence in

missions and decreases the likelihood of loosing aircrafts due to severe weather.

Mission Planning

Defining a Series of Waypoints

Mission planning mode can be entered by clicking on the Define Trajectory item

in the Initialize menu.
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• Once in the mission planning mode the First Point button appears at the

bottom of the window. Before the button is pressed the starting altitude needs

to be selected via the altitude slider next to the altitude plot.

• The First Point button is pressed and the mouse cursor becomes a crosshair

when placed over the Latitude & Longitude map. When the desired location

on the map is clicked, the altitude, latitude, and longitude are stored as a

rough waypoint and displayed on the map.

• These steps must be repeated; set altitude, click Next Point button, and select

location on map, until a desired trajectory to rough waypoints is formed. All

trajectories must consist of at least 3 waypoints.

• The Done button is selected to stop the rough waypoint selection. The fine

waypoints (aircraft trajectory) will be drawn on the map.

Previous waypoints cannot be adjusted while the series of waypointed is being

recorded; therefore, previous errors can not be corrected while defining a series

of rough waypoints. To allow for modifications and refinements to a trajectory, but-

tons to change the altitude of a waypoint, add a waypoint, and a remove waypoint,

become visible when the Done button was clicked.

Modify Trajectory

A trajectory can be modified by selecting either the change altitude button, the add

waypoint button or the remove waypoint button. These are located to the right of

the Latitude & Longitude map.

Change Altitude:

1. Select the new desired altitude on the altitude slide-bar.

2. Click the change altitude button.
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3. The cursor will change to a cross-hair. Click closest to the waypoint that needs

an altitude change. The closest waypoint will be circled in green.

4. If this is the correct waypoint and you want to accept the altitude change,

click the left mouse button, and if you want to cancel the altitude change,

click the the right mouse button.

Add Waypoint

1. Select the altitude of the new point on the altitude slide-bar.

2. Click the Add Waypoint button.

3. The cursor will change to a cross-hair. The location to insert the waypoint

must be selected. Click in between the two waypoints you want to insert the

new waypoint. When clicking between the two waypoints, it is important that

your click is co-linear and in between the two points. The two waypoints will

be circled in green. (In the case you click near the end waypoint or starting

waypoint, only one waypoint will be selected)

4. If this is not the correct two waypoints click the the right mouse to cancel this

operation, and try gain.

5. The cursor will change to a cross-hair. Click the location of the new waypoint

on the Latitude & Longitude map. The new way point will be added to the

trajectory.

Remove Waypoint

1. Click the Remove Waypoint button.

2. The cursor will change to a cross-hair. Click closest to the waypoint that needs

to be removed. The closest waypoint will be circled in green.

3. If this is the correct waypoint to remove, click the left mouse button, and if

you want to cancel, click the the right mouse button.
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Load Flight Trajectory

Once a flight trajectory has been created it is possible to save this trajectory for later

use: click File menu → click Save As item → select Save Flight Trajectory.

Previously saved files can be loaded by clicking on Open in the File menu and

selecting Open Flight Trajectory.

Feasibility Measurement

Performing a feasibility analysis on a mission requires clicking the Feasibility

drop-down menu and selecting Run Simulation. A window with the mission start

time and weather data usage must be filled out. The Start button in the bottom

right of the window will start the simulation.

A simulation summary will be displayed when the simulation definition is complete.

The Start button in the bottom right of the window will start the simulation.

Mission Execution

Select the Execute drop-down menu and then select Execute Mission. The Start

button in the bottom right of the window will start the mission *. Mission changes

can be preform by using the various buttons in the lower right hand corner.

* This feature is presently not connected to a real aircraft. This feature runs the Aerosim

simulation model to demonstrate functionality.
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Appendix B

Grib Data Set Parameters

There are many parameters in the grib data sets. These parameters can be seen in

table B.1.

Table B.1: GRIB Data Set Parameters

Parameter
Number

Parameter descrip-
tion

Abbrevi-
ation

Levels Units

001 Pressure PRES SFC Pa

002
Pressure Reduced to
Mean Sea Level

PRMSL MSL Pa

007 Geopotential Height HGT
ISBL (28 isobaric levels)
ISBY (layer between two
isobaric levels) SFC

gpm

011 Temperature TMP
ISBL (28 isobaric levels)
TGL (2m above ground)

K

017 Dew Point Temperature DPT TGL (2m above ground) K

018 Dew Point Depression DEPR
ISBL (28 isobaric levels)
TGL (2m above ground)

K

032 Wind Speed (module) WIND
ISBL (4 isobaric levels)
TGL (2m above ground)

m
s

Continued on next page
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GRIB Pa-
rameter
Number

Parameter descrip-
tion

Abbrevi-
ation

Levels Units

033 U-Component of Wind UGRD
ISBL (28 isobaric levels)
TGL (2m above ground)

m
s

034 V-Component of Wind VGRD
ISBL (28 isobaric levels)
TGL (2m above ground)

m
s

039 Vertical Velocity VVEL ISBL (4 isobaric levels) Pa
s

041 Absolute Voriticity ABSV
ISBL (4 isobaric levels)
SFC

1
s

059 Precipitation Rate PRATE SFC kg
m2·s

061 Total Precipitation APCP kg/m2 kg
m2

071 Total Cloud Cover TCDC SFC percentage

204
Downward Short Wave
Radiation Flux

DSWRF SFC W
m2
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Appendix C

Various Weather Charts

Table C.1: Various Weather Charts

Chart Description Sample Charts

Significant
Weather
Chart

Shows
where the
significant
weather.

Continued on next page
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Chart Description Sample Charts

Turbulence
Forecast
for North
Atlantic

Shows
where and
at what
altitude
turbulence
may be ex-
perienced.

Upper Air
Analysis
Charts

Shows the
wind and
the tem-
perature of
the upper
atmosphere

Continued on next page
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Chart Description Sample Charts

Wind Di-
rection
and Speed
Charts

Significant
Weather
Chart

Graphical
Area Fore-
cast

Significant
Weather
Chart

Continued on next page
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Chart Description Sample Charts

Precipitation
Charts

Significant
Weather
Chart

Surface
Condition
Analysis

Significant
Weather
Chart

Continued on next page
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Chart Description Sample Charts

Radar Im-
agery

Significant
Weather
Chart

Satellite
Imagery

Significant
Weather
Chart
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