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Abstract

Measured data in chemical processes are subject to be corrupted by noise. Reli-

able data is very important to achieve a high-quality controlled process. There are

three important aspects of data processing to improve the performance of the con-

trol system: Steady-State Detection (SSD), Data Reconciliation (DR) and Gross

Error Detection (GED). This thesis research developed a steady state detection al-

gorithm, extended and applied the Adaptive Nonlinear Dynamic Data Reconciliation

(ANDDR) and Novel Gross Error Detection (NGED) approaches developed by Lay-

labadi and Taylor [1], and applied these contributions to the two-phase separator

followed by a three-phase gravity treator model used in oil production facilities, de-

rived by Sayda and Taylor [2]. It also developed a new hybrid approach to perform

DR efficiently in complex processes.

Applying these algorithms to such a complex plant is a challenge, which allows the

techniques to be tested in a realistic process, and at the same time, brings to the

implementation several difficulties that were not faced in previous case studies.

iii



Acknowledgements

I would like to express my most sincere gratitude to Dr. James H. Taylor. His wise

advice, guidance, encouragement, and patience were fundamental and essential for

the development of this work. Without his endless assistance and support, this thesis

would have never been completed. This project is supported by Atlantic Canada

Opportunities Agency (ACOA) under the Atlantic Innovation Fund (AIF) program.

I gratefully acknowledge that support and the collaboration of the Cape Breton Uni-

versity (CBU), and the College of the North Atlantic (CNA).

I would also like to thank the faculty and staff of the Department of Electrical and

Computer Engineering at University of New Brunswick for their patience, help and

continuous encouragement. Specially I want to thank to Mrs. Denise Burke for her

kindness and help during my studies.

Special thanks to Dr. Maira Omana for her continuous advice, support, encourage-

ment, but most importantly for her friendship.

I extend my gratitude and appreciation to everybody who helped me during the

journey of completing my Master degree: To my family, for the support and love; to

my loved partner Pim, for being my strength in the difficult times, for his company,

for his faith on me and for his love; to all the wonderful friends that made my study

a happy, rewarding, and unforgettable experience.

iv



Table of Contents

Acknowledgments iv

Table of Contents v

List of Tables viii

List of Figures ix

List of Symbols and Abbreviations xi

1 Introduction 1

1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Data Reconciliation . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Gross Error Detection . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Steady-State Detection . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 ICAM System 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The ICAM System Prototype . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 The Artificial Intelligence Layer . . . . . . . . . . . . . . . . . 13

v



2.2.2 The Middleware Layer . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 The Reactive Agents Layer . . . . . . . . . . . . . . . . . . . . 14

2.3 The ICAM Event Sequence . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Steady State and NDDR Agent’s Interaction within the Multi-agent

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Steady State Detection 19

3.1 SSD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 SSD Algorithm Results . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Nonlinear Dynamic Data Reconciliation (NDDR) 28

4.1 NDDR Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Solution Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1.1 Moving Horizon Window . . . . . . . . . . . . . . . 30

4.1.1.2 Discretization . . . . . . . . . . . . . . . . . . . . . . 30

4.2 NDDR Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Data Reconciliation Results Using fminsearch . . . . . . . . . 32

4.2.2 Data Reconciliation Results Using fminunc . . . . . . . . . . . 35

4.2.3 Modifying Window Size H . . . . . . . . . . . . . . . . . . . . 38

4.2.4 Using Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.5 Modifying Initial Guesses . . . . . . . . . . . . . . . . . . . . 42

4.2.6 Change in Optimization Algorithm’s Parameters . . . . . . . . 44

4.2.7 NDDR Results in Scenarios with Set Point Changes . . . . . . 47

4.3 NDDR vs Low Pass Filtering . . . . . . . . . . . . . . . . . . . . . . 51

5 A Hybrid Approach to Solving Dynamic Data Reconciliation 55

5.1 Hybrid Approach Results . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Solving the Steady-state/Transient Transition Problem . . . . . . . . 59

vi



6 Gross Error Detection and Removal (GEDR) and Adaptive NDDR 61

6.1 Gross Error Detection and Removal . . . . . . . . . . . . . . . . . . . 62

6.2 Adaptive Nonlinear Dynamic Data Reconciliation ANDDR . . . . . . 62

6.3 ANDDR + GEDR Results . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Thesis Observations 67

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Bibliography 71

A ANDDR+GED and SSD Interaction with Multi-agent Supervisory

System 76

B Simulation Model 79

B.1 Process Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.2 Gravity Separator Mathematical Model . . . . . . . . . . . . . . . . . 80

B.2.1 The Aqueous Phase . . . . . . . . . . . . . . . . . . . . . . . . 81

B.2.2 The Oil Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.2.3 The Gas Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.3 Pilot Plant Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

C SSD Algorithm Results 85

D Comparison between NDDR and low pass filtering 88

Vita

vii



List of Tables

3.1 Time constants - Pilot plant Output Variables . . . . . . . . . . . . . 22

3.2 Nominal operating point values - Pilot plant Variables . . . . . . . . 25

4.1 NDDR first approach results . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Comparison NDDR performance using fminsearch and fminunc . . 38

4.3 Percentage of noise reduction for different values of H . . . . . . . . 39

4.4 Percentage of RMSE reduction for different values of H . . . . . . . 40

4.5 NDDR results using scaling . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 % Noise reduction using different initial guesses . . . . . . . . . . . . 43

4.7 % RMSE reduction using different initial guesses . . . . . . . . . . . 43

4.8 NDDR results changing optimization parameters . . . . . . . . . . . . 44

4.9 NDDR results for a positive set point change . . . . . . . . . . . . . . 49

4.10 NDDR results for a negative set point change . . . . . . . . . . . . . 49

4.11 Filter constants - Filter One . . . . . . . . . . . . . . . . . . . . . . . 52

4.12 Noise reduction comparison between filter one and NDDR . . . . . . 53

4.13 Filter constants - Filter two . . . . . . . . . . . . . . . . . . . . . . . 53

4.14 Noise reduction comparison between filter two and NDDR . . . . . . 53

5.1 Hybrid approach results . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Hybrid approach results after solving transition problem . . . . . . . 60

6.1 Comparison between NDDR and ANDDR+GEDR . . . . . . . . . . 66

viii



List of Figures

2.1 ICAM system prototype . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 ICAM system prototype event sequence . . . . . . . . . . . . . . . . . 16

3.1 Steady-state Detection examples . . . . . . . . . . . . . . . . . . . . . 23

3.2 Steady-state Detection flow chart . . . . . . . . . . . . . . . . . . . . 24

3.3 Steady-state Detection on Vsep . . . . . . . . . . . . . . . . . . . . . . 25

3.4 SSD Separator Outputs - Two Setpoint Changes . . . . . . . . . . . . 27

4.1 First implementation NDDR on Pilot plant model . . . . . . . . . . . 34

4.2 NDDR results Using fminunc . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Percentage of reduction in noise and RMSE Vs H for Fouttreat−vap . 40

4.4 Results for Foutsep−liq with difference optimization parameters . . . . 45

4.5 Results for Ptreat−vap with difference optimization parameters . . . . . 46

4.6 NDDR results for a positive set point change . . . . . . . . . . . . . 48

4.7 NDDR results for a negative set point change . . . . . . . . . . . . . 50

4.8 Separator signals filtered with low-pass filter . . . . . . . . . . . . . . 54

5.1 Hybrid NDDR results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Hybrid NDDR results solving transition problem for Ptreat−vap . . . . 60

6.1 ANDDR and GEDR flowchart [1] . . . . . . . . . . . . . . . . . . . . 63

6.2 ANDDR + GEDR results with positive set point change . . . . . . . 65

ix



A.1 Interaction ANDDR + GED and SSD with the Multi-agent Supervi-

sory System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.1 Three phase separator scheme . . . . . . . . . . . . . . . . . . . . . . 80

B.2 Separated component streams . . . . . . . . . . . . . . . . . . . . . . 81

B.3 Pilot Plant model, comprised of a separator and a treator . . . . . . . 84

C.1 SSD Separator Outputs - Setpoint change = Noise standard deviation 86

C.2 SSD Separator Outputs - Positive and Negative Setpoint change . . . 87

D.1 Comparison NDDR Vs Filter for Fouttreat−wat . . . . . . . . . . . . . 88

D.2 Comparison NDDR Vs Filter for Fouttreat−oil . . . . . . . . . . . . . 89

x



List of Symbols and Abbreviations

Symbols

A/D Analog to digital

d Difference between measurement and mean

D/A Digital to analog

∆t Sampling time

Fgout Gas molar outflow from the separator

Fg1 Gas component flowing out of oil phase

Fg2 Gas component dissolved in oil phase

Fh1 Separated volumetric flow component of hydrocarbon fluid

Fh2 Unseparated volumetric flow component of hydrocarbon fluid

Fin Fluid injected into separator

Foout Oil discharge flow

Fwout Water discharge flow

H DR window size function

Ho Null hypothesis for statistical hypothesis testing

m̂k Mean estimated at sample k

Mwg Gas molecular weight

Mwh Hydrocarbon molecular weight

Mwin Mixture molecular weight

Mwo Oil molecular weight

xi



Mww Water molecular weight

Ngas Number of gas moles in the gas phase

Noil Number of liquid moles in the oil phase

P Total pressure of the vapor phase

Φ Objective function

Ψ Process dynamic constraints

R Universal gas constant: 8.314475(J/Kmol)

SGg Gas specific gravity

SGh Hydrocarbon specific gravity

SGin Incoming mixture specific gravity

SGo Oil specific gravity

SGw Water specific gravity

σ Standard deviation

σ̂k Estimated standard deviation at sample k

T SSD threshold

T Absolute separator temperature

τ Time constant

Vgas Volume of gas

Voil Volume of oil

Vsep Volume of the separator

Vwat Volume of water

x Mole fraction of gas into liquid phase
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Chapter 1

Introduction

Data from real industrial and chemical processes are degraded by different types of

noise. This is related to problems in the sensors such as incorrect calibration, low

resolution, high-frequency pick-up, low-frequency pick-up, malfunctions, etc. Data

corruption can also be due to errors in transmission and conversion, including A/D

conversion and D/A conversion. These effects may also result in large discrepancies

(gross errors). As a consequence, the laws of conservation of energy and mass may

not be fulfilled, process dynamic behavior may not be matched, and trends may be

obscured, producing mistakes in process diagnosis, identification and control. Reliable

data is very important in order to achieve a high-quality controlled process. There

are three important aspects of data processing to improve the performance of the

control system: Steady-State Detection (SSD), Data Reconciliation (DR) and Gross

Error Detection (GED).

DR is a technique used to adjust the measurements according to conservation laws and

dynamic constraints. Several techniques have been developed, extending the scope to

deal with concerns such as nonlinear behavior and dynamic data reconciliation. Lieb-

man et al. [3] developed a Nonlinear Dynamic Data Reconciliation (NDDR) method

and showed the advantage of using nonlinear programming (NLP) over conventional
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steady-state methods [3]. Based on this technique, Laylabadi and Taylor [1] [4] pro-

posed an Adaptive Nonlinear Dynamic Data Reconciliation (ANDDR) algorithm and

a novel GED approach, which includes the application to processes where the noise

source has an unknown statistical model. The main difference between DR and other

filtering techniques is that DR uses explicitly the process model constraints to find

estimates of process variables by adjusting the measurements so that the estimates

meet the constraints. Therefore the reconciled estimates are more precise than the

measurements and, more importantly, are consistent with the relationships between

process variables defined by the static and dynamic constraints.

Despite the substantial literature on such data processing methods showing their

multiple advantages, there are not many application of these techniques on realistic

large-scale industrial processes. There are significant obstacles to overcome, such

as the unavailability of nonlinear mathematical models and the difficulty of running

computationally intensive model-based algorithms in real time. This thesis is focused

on the extension, implementation and assessment of the ANDDR and GED techniques

applied to a three-phase gravity separator model used in oil production facilities. In

addition to this, a multivariable steady-state detector algorithm has been developed.

These two methods will be used as part of the Multi-agent System for Integrated

Control and Asset Management of Petroleum Production Facilities [5].

1.1 Literature Review

1.1.1 Data Reconciliation

Kuehn and Davidson [6] were the first to address the problem of data reconcilia-

tion in 1961. They described the DR problem for steady-state chemical engineering

processes. The method proposed involved the solution of an optimization problem
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that minimizes a weighted least-squares objective function of the error between mea-

sured and estimated values of the process variables under static material and energy

balance constraints. Mah et al. (1976) [7], treated the general linear data recon-

ciliation problem. The paper demonstrated that data reconciliation improves data

accuracy (compared with standard filtering methods), especially when sufficient re-

dundancy exists in the measurements.

In the study of dynamic linear processes, Kalman filtering [8] has been effectively

used to smooth measurement data since its inception (see Gelb (1974)[9]). Stanley

and Mah (1977) [10] were the first to tackle data reconciliation in dynamic processes

using an extended Kalman filter. They used a simple random walk model to charac-

terize the process dynamics. In 1990, Almasy [11] introduced a new method called

dynamic balancing, which is based on the use of linear conservation equations to rec-

oncile the measured states. In this approach only balance equations were utilized.

Later Robertson et al. [12] presented a formulation of the dynamic data reconciliation

problem as a special case of a more general moving-horizon state estimation method.

State estimation problems have been often handled by filtering and moving-horizon

optimization approaches [13].

The inclusion of nonlinear systems in the DR problem was first handled by Knepper

and Gorman (1980) [14]. They used an iterative technique for parameter estimation

in nonlinear regression. Jang et al. (1986) [15] made a comparison between Kalman

filtering and nonlinear state and parameter estimation. The conclusion of this study

was that using nonlinear programming (NLP) was superior in regard to response to

changes in parameters and robustness in the presence of modeling errors and strong

nonlinearities. In addition, Kalman filter approaches do not support the inclusion

of variable limits or other inequality constraints. The cost of better performance for

NLP approaches was longer computational time.
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In 1992 Liebman et al. [3] developed a new approach for NDDR, which uses enhanced

simultaneous optimization and solution techniques associated with a finite calcula-

tion horizon. Subsequently, Liebman and Edgar [16] demonstrated the advantage of

using NLP techniques over conventional steady-state DR methods. They included

variable limits and nonlinear algebraic constraints, improving the performance of the

reconciliation. Based on the NDDR model developed by Liebman et al. [3]; Laylabadi

and Taylor [1] proposed an Adaptive NDDR method that includes the application to

processes with unknown statistical models.

While the dynamic data reconciliation problem has been widely studied, there are

not many applications in real industrial scenarios, due to the difficulty of solving

large nonlinear programs in real time. Romagnoli et al. (1996) [17] presented the

application of steady-state data reconciliation to an industrial pyrolysis reactor. In

this work, they used linear and nonlinear methods, concluding that the large com-

putational time needed by the nonlinear method could not be justified. McBrayer et

al. (1998) [18] reported the successful application of the NDDR algorithm developed

by Liebman, to reconcile actual plant data from an Exxon Chemicals process. Gross

error detection was not included in their approach. Placido and Loureiro (1998) [19]

applied steady-state data reconciliation to measurements obtained from various units

of a Brazilian ammonia plant. Soderstrom et al. (2000) [13] demonstrated the large

scale application of NDDR for improving process monitoring.

There are several differences between the method and implementation presented in

this thesis and the previous applications of DR to real models: In this work a new

hybrid algorithm was implemented to make the DR process more efficient for applica-

tion with complex models. The algorithm implemented in this thesis covers nonlinear,

dynamic and steady state DR, and GED. Romagnoli et al. [17] did not use nonlinear

methods (even though it was proven that NLP was more robust and efficient than
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conventional steady-state methods). In the applications presented by Romagnoli et

al. [17] and Placido and Loureiro [19] just steady-state DR is performed, while the

algorithm presented in this work is capable of achieving dynamic DR as well. The

studies developed by McBrayer et al. [18] and Soderstrom et al. [13] implemented

nonlinear dynamic data reconciliation but they do not include gross error detection

in the methodology. The model used in the application presented by McBrayer et al.

[18] was developed using several simplifications such as constant pressure and only

one mass balance equation. Furthermore, the fact that the algorithm used in this the-

sis combines dynamic data reconciliation and gross error detection, it is important to

stress the inclusion of the Adaptive NDDR + GED into an intelligent control system

agent. So this method is applicable to steady state systems, dynamic systems, and

systems with gross errors while it is able to exchange information and interact with

other agents and a supervisory system.

1.1.2 Gross Error Detection

Gross errors are random or deterministic errors which have no relation with the true

values. Initial approaches in DR studies usually assumed that the noise that affects

the variables is randomly distributed with zero mean. However, gross errors can

occur, as mentioned previously, and it is very important to detect them and remove

them before or simultaneously with DR, in order to avoid corrupted adjustments.

Almasy and Uhrin [20] studied the reasons for unexpected measurement data and they

classified as gross error, the corrupted data obtained by malfunctioning instruments,

measurement biases and process deficiencies.

In 1965, Ripps [21] pointed out the problem of identifying gross errors and its im-

portance in DR. He used the procedure of measurement elimination as a test for

gross error. In this method each measurement is deleted in turn. By eliminating

a measurement, the corresponding variable becomes unmeasured and the objective
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function value will decrease. Ripps proposed that the gross error can be identified

in that measurement whose deletion leads to the greatest reduction in the objective

function value. This becomes one of the standard strategies in multiple nonsequen-

tial gross error identification. Several studies like Ripps [21], Reily and Carpani [22],

Almasy and Sztano [23] and Madron et al. [24] proposed a global test for GED. The

global test is based on statistical hypothesis testing, where the null hypothesis, H0

(no gross error is present), is tested against the data set. Global tests can deter-

mine whether or not a data set contains gross errors but will not indicate precisely

where. A detailed description of the global test can be found in [25]. A decade later

Narasimhan and Mah [26] proposed the generalized likelihood ratio (GLR) test for

detecting gross errors in steady-state processes. This test is based in the maximum

likelihood ratio principle used in statistics. The formulation of this test requires a

model of the process in the presence of a gross error. In 1995 Tong and Crowe [27]

defined the principal component (PC) test. The PC test is a linear combination of

the eigenvectors of the variance-covariance matrices of constraint residuals and of

measurements adjustments; PC tests cannot identify the location of gross error.

Along with data reconciliation, methods to identify gross errors in dynamic systems

are also emerging. For example, Soderstrom et al. [28] proposed a method to deal

simultaneously with the problem of GED and model identification, together with

data reconciliation; and Laylabadi and Taylor [1] [4] proposed a Novel Gross Error

Detection technique (NGED), applicable to dynamic nonlinear processes with an

unknown statistical model.

1.1.3 Steady-State Detection

Steady-State Detection (SSD), is an important step in control processes and is critical

for process performance assessment and the application of other functionalities such

as optimization. Several techniques such as Fault Detection Identification and Ac-
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commodation (FDIA) and Dynamic Model Identification (DMI) require the system

to be in steady state in order to produce correct results. The majority of methods

for SSD are based on calculating either the mean, variance or regression slope over

a data window, and comparing them with results over the previous window applying

statistical tests [29].

Narsimhan et al. proposed a statistical test [30] and a theory of evidence for the

detection of changes in steady states [31]. These methods inspect successive time

periods in which the variables are supposed to be in steady state, but this is an

assumption difficult of satisfy in practice. In 1994 three solutions to the problem of

identifying steady-state condition automatically were posted in a journal. The first

technique, developed by Loar [32], suggested a moving mean and thresholds of ±3σ.

This method is used to trigger control, but it cannot assure steady state. The second

method, introduced by Alekman [33], compares the mean from a recent history to a

“standard” based on an earlier history and then applies a t-statistic test to determine

if the average changed. A problem for this approach is that a steady-state condition

is not generally equivalent to the mean. The last method published by Jubien and

Bihary [34] was based on calculating the measurement standard deviation over a

moving window of recent data history. The measured standard deviation must be

between an established threshold to declare steady-state condition. The success of

this method relies on the ability to determine the process variables time period used

for calculation. In 1995 Cao and Rhinehart [35] presented a modification to the F -test

type of statistic in order to treat the data sequentially without the need of a time

window. This was done by incorporating an exponentially weighted moving-average

filter to calculate the average and variance by two different methods. Due to the

filtering nature of the identifier, an amount of delay is present in the response of the

steady-state identifier.
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1.2 Objectives

The objectives of this thesis research are as follows:

1. Extend and implement the ANDDR approach on a two-phase separator followed

by a three-phase gravity separator model used in oil production facilities [2].

2. Extend and apply the NGED method [1] [4] on the separator model [2].

3. Refine and test the performance of the ANDDR and novel GED package using

a nonlinear model of a more realistic and complex chemical process.

4. Develop a new hybrid approach able to perform efficiently DR in complex mod-

els, and most importantly, to eliminate the previous requirement for a dynamic

nonlinear process model.

5. Develop an algorithm capable of establishing when a multivariable system has

reached the steady-state, and apply it to the separator model [2].

6. Implement the ANDDR + NGED and the steady-state algorithm as two com-

patible agents to work in conjunction with a smart supervisory system [5].

1.3 Contributions

The requirements demanded from control and automation techniques are continu-

ously increasing due to the need for faster and more reliable results. That being

said, the best control system performance can only be achieved by using accurate

measurements. As a result, DR, gross error and steady-state detection have become

crucial tools for data quality improvement in integrated control and asset management

systems.
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These three methods have been widely studied, but there are few applications to real

industrial models, especially not to realistic nonlinear and dynamic processes. Im-

plementing the ANDDR and novel GED techniques [1] on a real industrial process

requires facing new challenges that are not present in research using ideal models,

and thus necessitates finding solutions and tools to overcome the difficulties inher-

ent to real industrial processes. The new hybrid approach solution is an important

contribution to perform DR efficiently in systems with complex models. Modifying

the algorithms in order to make them compatible with a multi-agent supervisory sys-

tem [5] is another contribution that will facilitate future applications to industrial

processes.

1.4 Thesis Outline

The Multi-agent System for integrated control and asset management of petroleum

production facilities [36] is explained in chapter 2, to establish the context for the

algorithm development in this thesis. Next, in chapter 3 the theory, methodology

and results obtained for the steady-state detection agent are presented. The DR

problem is described in chapter 4, as well as the solution adopted here and the results

obtained. A new approach to tackle the data reconciliation problem is presented

in chapter 5. Chapter 6 describes GED algorithm and illustrates its performance.

Finally, in chapter 7 conclusions and future work are discussed. Appendix A describes

how these contributions will be used in a multi-agent supervisory system. Appendix

B presents a detailed description of the oil production facility model, which is the

process used in this application. Appendix C shows the performance of the SSD

algorithm, and Appendix D presents a comparison between DR and a low pass filter.
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Chapter 2

ICAM System

2.1 Introduction

A major research project, PAWS (Petroleum Applications of Wireless Systems), is

being pursued by several universities in Atlantic Canada for oil and gas applications.

The UNB PAWS project objective is to develop a control and information manage-

ment system. The overall project is divided in two areas: One, led by Cape Breton

University (CBU), is focused on the wireless sensor network which reduces the utiliza-

tion of data cables in offshore oil rigs, and the UNB portion is oriented to intelligent

management and control of data and processes. For more information about PAWS

project see [5].

To obtain accurate, reliable and efficient control in a modern process plant requires

extensive supervisory monitoring and control. Several actions have to be executed,

including steady-state detection, data reconciliation, fault detection, isolation and

accommodation (FDIA), process model identification, and supervisory control. In

order to maximize the efficiency of the process control, a multi-agent system (MAS),

capable of integrating, supervising and managing all these tasks, had been designed

and prototype built. This system, developed by the University of New Brunswick
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(UNB) as part of the PAWS project, is the intelligent control and asset management

system (ICAM system)[5] [37]. Implementing such a management system reduces

maintenance and production costs, improves utilization of manufacturing equipment,

enhances safety and improves product quality.

2.2 The ICAM System Prototype

The diagram shown in Figure 2.1 illustrates the simplified ICAM prototype [37] [5].

Operator Interface

ICAM system 
supervisor Knowledge 

base

Model
Identification

Fault detection, 
Isolation & 

accommodation

Steady State 
Detection & Data 

Reconciliation

Oil production 
Facility model

Real time 
database

CNA pilot
plant

Control flow
Data flow

Figure 2.1: ICAM system prototype

Data are obtained in real time either from an external plant or from a simulation

model. These data go to the statistical pre-processor and reconciliation block. This

component is constituted by two different agents. The first one is the Steady-state

Agent, which determines if the plant is either at steady or transient state, and the

second is the Data Reconciliation Agent, which reduces the noise and removes outliers.

Processed data are stored in a real-time database.

If there is no model available or if a significant change in the process operating point

occurs, the Model Identification Agent is executed. This Agent uses generalized
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binary noise (GBN) signals as test signals to perturb the process inputs and to collect

control relevant information about the process dynamics and its environment. Once

the new model is obtained, the process model parameters are updated and loaded

in the data reconciliation and FDIA Agents [38]. Subsequently, data are received by

the FDIA Agent, which establishes if the system is being affected by a sensor or an

actuator fault, classifies the type and size of fault, and accommodates the fault if

this has an effect on a sensor. The FDIA Agent informs the supervisor if a fault has

occurred in order to proceed with the appropriate actions [39].

The supervisor is alerted about every event that occurs; in this way it monitors,

observes, and controls the system. An operator interface receives the data, and the

information from the supervisor relative to the different agents. This allows the

operator to take decisions according to the system status and requirements. The

external plant for this particular project represents an oil production facility, which

separates oil well fluids into crude oil, gas, and water. The plant itself is at the

College of North Atlantic (CNA); however, for all research so far a realistic model of

this plant [2] has been used. This process is explained in appendix B.

The ICAM system prototype was designed as the combination of three different layers:

• The Artificial Intelligence (AI) layer: This is the platform for the supervisory

agent. It organizes and manages the reactive agents to obtain an optimum

response.

• The middleware layer: This layer facilitates the communication between reactive

agents and the supervisory agent.

• The reactive agents layer: It is composed by the data processing functions such

as the FDIA Agent, Model Identification Agent, Data Reconciliation Agent,

Steady-state Agent, Pilot Plant simulation, and, in the near future, Wireless

Sensor Network Coordinator Agent [40].
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2.2.1 The Artificial Intelligence Layer

The G2 real-time expert system shell is the platform for the implementation of the

supervisory agent. The G2 codifies in its knowledge base the ICAM system internal

and external behavior. The supervisory agent has an ontology that corresponds to the

different reactive agents. The attributes and methods of each agent are represented by

the agent technical characteristics and the agent’s behavior respectively. The ICAM

system can be defined as the logical connection among the different agents. There

are two connections for each reactive agent, the first one is the MPI data exchange

to share information with other agents, and the second is the G2 connection with the

supervisory agent.

The ICAM internal and external behavior is coordinated by the Supervisory Agent.

A rule-base design was established to achieve robust system performance. The event

sequence which illustrates the rule-base design is described in section 2.3 [37].

2.2.2 The Middleware Layer

The communication between the reactive agents is performed using the remote mem-

ory access (RMA) communication approach, which is part of the message passing

interface (MPI) communication library. This protocol supports two functionalities.

The first is active target communication, where both transmitter and receiver are ex-

plicitly involved and data is moved from the memory of the former to the memory of

the latter. The second is passive target communication, where only the origin process

is explicitly involved in the transfer. The ICAM system was designed to use active

target communication RMA in order to achieve high reliability. Four RMA data com-

munication channels are used to transfer the different kind of information between

agents: raw data, processed data, fault accommodation parameters and plant state

space model.
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The communication between the supervisory agent and the reactive agents is per-

formed using the remote procedure call (RPC) paradigm, which allows achieving a

looser connection with the supervisory agent. RPC is a client/server infrastructure

that enhances the inter-operability, portability and flexibility of an application by

allowing it to be distributed over multiple heterogeneous platforms. In the ICAM

system prototype, the RPC communication approach was designed to make the G2

supervisory agent act as a client for the reactive agents which act as servers [37].

2.2.3 The Reactive Agents Layer

The ICAM system prototype is composed by four reactive agents:

1. Pilot Plant Agent: The Pilot Plant Agent (nonlinear simulation model) rep-

resents an oil production facility. The complete description of the pilot plant

model is given in appendix B. The pilot plant is capable of running under

four scenarios: the first one is the default scenario, which runs the model at its

nominal operating point; the second allows changes in the set points; the third

one applies perturbations to the plant for model identification, and the last one

represents the plant when it is affected by faults in sensors or actuators.

2. Statistical Pre-processing Agent: This agent is actually composed by two differ-

ent agents which are the focus of this thesis. The first agent is the Steady-state

Agent which has to determine if the plant is in a steady or transient state and

inform this state to the supervisor. The second one is the Data Reconciliation

Agent. This agent is in charge of reducing the noise and removing undesired

discrepancies such as outliers and missing data.

3. Model Identification Agent: This agent is executed only under two scenarios:

if there is no linearized model for the process, or if there is a significant set-

point change that makes the previously identified model invalid. First, the
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excitation signals (generalized binary noise or GBN signals) are generated and

subsequently they are applied as set-point variations to excite each control loop

and generate the controller output (plant inputs) and the plant outputs. Then,

the linearized state space model and the corresponding percentage of fitting

for each output are calculated using the prediction error/maximum likelihood

method (PEM) in matlabrfor the reconciled inputs-outputs measurements

[38].

4. Fault Detection, Isolation and Accommodation Agent: The FDIA Agent uses

the generalized parity space (GPS) to create a set of directional residuals. From

these residuals the faults can be detected and isolated. This agent is capable

of establishing the size and type of fault, and which sensor or actuator is being

affected. If the fault is present in a sensor, the algorithm is also able to accom-

modate the fault, by correcting the sensor data. For further description about

the FDIA Agent refer to [38] [39].

2.3 The ICAM Event Sequence

The supervisory agent organizes the system’s behavior using a rule-base design that

coordinates the response to external changes and to operator interventions. Figure 2.2

shows a typical event sequence diagram. A brief explanation of the order of events is

given to explain the context of the two agents developed in this thesis. For a complete

description refer to [37].

The supervisory agent starts up all the reactive agents. The Steady-state Agent

starts to work by doing a primary filtering of the measurements and checking and

informing the supervisor constantly if the system is in a transient or steady state. The

supervisor verifies the status of FDIA and NDDR agents to establish if they have a

valid model or if they need a new one. Every time there is a significant set point
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Figure 2.2: ICAM system prototype event sequence

change a new model is needed. The Model Identification Agent begins this process

once the plant is in steady state, and reports to the supervisor when the new model

is obtained. The supervisor sends the new model to the FDIA and NDDR agents

to be updated. Once the new model is updated the NDDR Agent removes gross

errors, reconciles the measurements and sends the cleaned data to the other agents.

Using the reconciled data the FDIA Agent starts the process of fault diagnosis, fault
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detection and accommodation.

2.4 Steady State and NDDR Agent’s Interaction

within the Multi-agent System

In order to establish the importance of the two agents developed in this thesis within

the multi-agent system, this section explains their relevance, the steps in the commu-

nication and the information interchanged.

There are three important stages in data processing: Steady-state detection, data

reconciliation and gross error detection. Steady-state detection is essential due to

the fact that several control and monitoring actions are developed for steady state

processes. In particular, the model identification and the fault detection agents re-

quire the system to be in steady state for them to start to work and to provide a good

performance. This is why the Steady-state Agent was developed and implemented as

part of the ICAM system. Since measurements of process variables, such as volumes

or pressures, are corrupted not only by normal noise but by gross errors as well, it

is important to adjust the measurements and eliminate outliers in order to provide

reliable data to perform proper control actions. Thus, DR and GED are applied

together to improve accuracy of measured data.

The flow chart shown in figure A.1, in appendix A, illustrates the communication

and data exchange process between the ANDDR + GED Agent, Steady-state Agent

and other agents in the system: The steady state and data reconciliation agents are

started up by the Supervisor Agent, and their G2 and MPI communication links are

initialized. The first step is to take enough measurements to fill a window of H samples

(H is the window size for data reconciliation). Afterwards, the standard deviation

(σ̂) and the mean (m̂) of those measurements are estimated. These parameters are
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used to detect the presence of gross errors. If a gross error is present in the data, it is

removed and replaced by the previous measurement (it is assumed that only isolated

gross errors occur). Once the data is clean of outliers, the data reconciliation agent

proceeds to reduce the noise by solving an optimization routine over the window.

When data are free of outliers and noise is reduced, they are ready to be transmitted

to other agents like the Supervisor Agent, FDIA Agent, Steady-state Agent, etc. A

complete description and illustration of the Steady-state, Data Reconciliation and

GED Agents is given in chapters 3, 4, and 6 respectively.

The following step for the system is to verify the state of the plant, that is, to establish

if the plant is at either transient or steady state. To determine this, the Steady-state

Agent uses a different data window than the one used for data reconciliation. When

the window is full, a linear regression is performed and the attention is focused on

the slope obtained from it. The slope is compared with a threshold and either if

the conditions for steady-state are fulfilled or not, this information is passed to the

supervisor. Once the steady-state is reached, other agents like Model Identification

of FDIA can start to perform their tasks.

The supervisor must establish if large enough changes had occurred in the plant so

that a new model is required. If a new model is necessary the supervisor starts the

Model Identification Agent, which applies Generalized Binary Noise (GBN) to excite

the plant and collect information about the process dynamics. Using this information

the linearized state space model and the corresponding percentage of fitting for each

output are calculated. The new model is sent and updated in the different agents.

Once the system is at steady-state and a suitable model is available, the FDIA Agent

can be executed to establish if the system has been affected by a fault, to estimate

the size and type of fault and to accommodate it. Every agent reports its status to

the supervisor.

18



Chapter 3

Steady State Detection

Steady-state detection has become a very important step in process performance as-

sessment, optimization, and control. There are several techniques for data processing

and analyzing, used in chemical and industrial plants such as process optimization,

fault detection and accommodation, model identification, etc. Most of these tech-

niques require the system to be in steady-state in order to obtain optimal perfor-

mance. For the case of the multi-agent system proposed in [5], the model identifica-

tion and fault detection, isolation and accommodation agents require the system to

be at steady state before they can start working.

This thesis presents a method for steady state detection based on linear regression

over a moving data window. A description of the algorithm is given, followed by

results obtained when applying this method to the pilot plant model.

3.1 SSD Algorithm

The majority of steady-state determination approaches work based upon statistical

tests on the data. These strategies may involve calculating the average for a moving

data window and comparing the current window average with the previous one, using
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a threshold of ±3 standard deviation. Another method is based on obtaining two

variances for the same set of data, using two different techniques: the variance can be

calculated conventionally as the mean-square-deviation from the average, and it can

also be calculated from the mean of squared differences of successive data. The ratio

of these two variances is estimated and it has to be close to unity while the system is

at steady-state or much larger than unity for unsteady-state or transient regimes.

Several approaches were studied in order to find an algorithm that offers good per-

formance using the data from the pilot plant model. The first approach was based

on the amount of change of the signal at every point, reflected in the measurement’s

derivative. Assuming y represents the signal’s value, the derivative at current sample

k is calculated as shown in equation 3.1.

m(k) =
yk − yk−1

tk − tk−1

(3.1)

A test is performed on this parameter in order to detect steady-state. This method

works well for all variables in a free noise measurements scenario. Unfortunately this

is not realistic, given that in industry and more specifically in the PAWS application

the variables are affected by different noise sources.

The second attempt was based on the statistics of the variables. This method cal-

culates the difference between the current measurement and the average of previous

data. Subsequently this difference is compared with the standard deviation. The

method was successfully tested in different signals with noise, unfortunately it was

not suitable for the pilot plant model data. As has been mentioned previously, the

pilot plant is a complex system, and the nonlinear model developed by Sayda and

Taylor [2] has some constraints due to the highly nonlinear behavior of the plant.

Some restrictions are, for example, the variation in the setpoint and the amount of

noise that the system can tolerate before it goes out of the safe operation zone. There
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are scenarios where the standard deviation of the noise may be greater than or close

to the setpoint change. This situation makes it difficult to find a statistical pattern

which helps to determine steady-state.

The method finally adopted in this thesis performs a least square linear regression over

a moving data window. The purpose of this is to find the equation of the best-fitting

line (in a least squares sense), for a set of data, and to analyze the rate-of-change of

the line reflected in the slope. The equation of the line obtained is:

yi = mxi + b (3.2)

where b is the y-intercept and m is the slope. Given that the method is going to be

applied in the pilot plant which is a complex multi-variable process, every output is

analyzed separately and when all the variables fulfill the condition for steady-state,

the system is declared to be in steady-state.

A moving data window approach is used for this algorithm. Although the concept is

similar to the moving window used in data reconciliation, the size of the window is

different. The criteria for choosing this parameter depends upon the time constant of

the variable, unlike in DR where the size of the window depends upon the sampling

time. The advantage of using a data window is that it reduces the need to store data

and the computational time.

The pilot plant model has five output variables. Every variable has a different time

constant, and the range of variation between variables is wide. This is why every

signal is evaluated independently using a different window size. The following table

shows the time constant and the window size for the output variables in the pilot

plant model.
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Variable
τ Window Size

(sec.) (Samples)

Separator Volume (Vsep−liq) 23.44 200
Separator Pressure (Psep−vap) 2.76 30
Treator Water Volume (Vtreat−wat) 10.2 60
Treator Oil Volume (Vtreat−oil) 3.6 40
Treator Pressure (Ptreat−vap) 0.3082 20

Table 3.1: Time constants - Pilot plant Output Variables

Once enough data is obtained to fill the window, the linear regression is performed

and its slope (m) is compared with a threshold. If the slope is smaller than the

threshold for several samples (D samples), steady-state can be confirmed. Figure 3.1

illustrate the concept of the method adopted to detect steady-state: The figure shows

the volume on the separator when a setpoint change of 10% its nominal operating

value is applied at time t = 0 sec. The noise standard deviation is 1% of the nominal

operating value. When the signal is in the transient-state, the slope of the line is large

(m1). At the maximum point the slope is small (m2), but this condition changes in

a few samples. The closer the signal is to steady-state, the smaller the slope is (m3)

and this condition continues.

The threshold (T ) is not a constant but a function which depends upon the set

point change, SP, and the standard deviation of the noise, both of which are assumed

to be known. The calculation of this parameter was accomplished by doing several

experiments, running the algorithm for different combinations of set point change and

σ, and performing a multiple regression to fit the different outcomes of the tests. The

equation for the threshold is:

T = a0 + a1σ + a2SP (3.3)

where a0, a1 and a2 are the coefficients for the threshold model.
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Figure 3.1: Steady-state Detection examples

Figure 3.2 shows a schematic flow-chart of the Steady-state Detection process.

3.2 SSD Algorithm Results

This section shows the results of the SSD algorithm when it is applied to measure-

ments obtained by simulation, using the pilot plant model explained in Appendix

B. Measurements were simulated and noise was added. The noise is assumed to be

Gaussian with zero mean. The time step used is 0.15 seconds.

The setpoint change and the standard deviation of the noise are always expressed as

a percentage of the nominal operating value for every variable. Table 3.2 shows the

nominal values for the different inputs and outputs involved in the pilot plant model.

Figure 3.3 shows the response of the SSD algorithm for the volume in the separator

Vsep−liq. The added noise has a standard deviation of 1% of the nominal set-point. In

the simulation, the plant is working at its nominal operating point for the first 100sec.
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Figure 3.2: Steady-state Detection flow chart

At that time a set-point change of 5% of the nominal operating value is applied. The

upper plot displays the linear regression slope and the lower shows the noisy signal

and the original signal without noise. In both plots is possible to observe the SSD

flag, which informs the supervisor about the state of the plant. If the SSD flag is

zero, it means the signal is in unsteady-state, and if it is at the high level it means

the variable reached steady-state. The high value of the steady-state flag sent to the

supervisor is unity. However, in the following figures that value is modified in order

to make the flag comparable with the associated variable.
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Variable Nominal operating point Units

Vsep−liq 146.1 ft3

Psep−vap 625 PSI
Vtreat−wat 77.48525 ft3

Vtreat−oil 46.49115 ft3

Ptreat−vap 200 PSI
Foutsep−liq 20.31 moles/sec
Foutsep−vap 5.01002 moles/sec
Fouttreat−wat 5.08198 moles/sec
Fouttreat−oil 2.0013 moles/sec
Fouttreat−vap 0.687 moles/sec

Table 3.2: Nominal operating point values - Pilot plant Variables
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Figure 3.3: Steady-state Detection on Vsep

Figure 3.4 shows the results after applying the SSD algorithm to all the input and

output signals involved in the pilot plant model. When the algorithm is applied to
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the complete plant there are two different kind of flags, an individual flag for every

variable, and a general flag which informs the state for the complete system. For this

case the plant starts at the nominal operating point. A set point change of 5% the

nominal operating point value is applied to all variables at different times. At time

t = 80 sec. a set point change is applied to Vsep−liq, subsequently at time t = 400 sec.

is applied to Psep−vap, at t = 450 sec. is applied to Vtreat−wat, at t = 550 sec. is applied

to Vtreat−oil, and finally at t = 650 sec. the set point change is applied to Ptreat−vap.

The noise added to the signal has a standard deviation of 1%. These figures illustrate

the different signals with their characteristics. It is observed that there are fast

signals such as the pressure in the separator (Psep−vap) and the pressure in the treator

(Ptreat−vap), which take shorter times to reach steady-state. On the contrary, the

volume of the liquid in the separator (Vsep−liq) is significantly slower compared with

all other variables and thus is the one that takes longer to reach steady-state. It

is also shown that the algorithm is capable of establishing steady-state individually

and for the complete system. Appendix C shows the successful results of the SSD

algorithm for two other scenarios, confirming the accuracy of the SSD algorithm.
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Figure 3.4: SSD Separator Outputs - Two Setpoint Changes
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Chapter 4

Nonlinear Dynamic Data

Reconciliation (NDDR)

Modern chemical plants, petrochemical processes and refineries, work by measuring

and controlling several variables such as flow rates, temperatures, pressures, levels,

compositions, etc. Sensed values of these variables are subject to be corrupted by

random and systematic errors. Due to these errors, the relationship between the

inputs and outputs of a system may not match with the process conservation laws.

As it was explained in chapter 1, DR improves the accuracy of process data by

adjusting the measured values so that they satisfy the process constraints.

Based on the method used by Laylabadi and Taylor [1], this thesis implements, refines,

and assesses the ANDDR and GED techniques by applying them to the PAWS pilot

plant model. The general formulation for the NDDR problem introduced by Liebman

et al. [3] is discussed in this chapter, as well as the solution adopted to tackle the

problem while implementing NDDR for a more complex model. Results of the basic

NDDR algorithm in the pilot plant model are presented.
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4.1 NDDR Formulation

The general NDDR formulation can be expressed as follows [3]:

min
ŷ(t)

Φ[ỹ, ŷ(t); σ], (4.1)

subject to

Ψ(
dŷ(t)

dt
, ŷ) = 0, (4.2)

h[ŷ(t)] = 0, (4.3)

g[ŷ(t)] ≥ 0, (4.4)

where

ŷ(t) = estimated (reconciled) measurements,

ỹ = corrupted measurements,

Φ = objective function,

σ = measurement noise standard deviations,

Ψ = process dynamic constraints,

h = energy and/or material balance constraints,

g = process variable limits.

The lengths of ŷ(t), ỹ and σ are equal to the total number of variables (states and

inputs), i.e., y = [x p u]T . Most of the applications use weighted least-squares (WLS)

as the objective function in equation (4.1). The dynamic constraint in equation (4.2)

is usually that the process differential equation must be satisfied, i.e., ŷ is adjusted

until the difference between integrating the system differential equation over a data

window and the measurements ỹ over the window is minimized in the mean-square

sense.

4.1.1 Solution Strategy

There are two important strategies adopted to facilitate the solution of the general

NDDR problem: using a moving horizon data window and a process of discretization.
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4.1.1.1 Moving Horizon Window

Liebman et al. [3] proposed a moving time window approach in order to decrease

the size of the optimization problem. If tc is defined as the present time, the history

horizon is established from tc − (H − 1)∆t to tc, with ∆t as the time step size.

It is important to choose an appropriate horizon length H. If H is too small, the

information available may not be enough to perform a good reconciliation, but if it is

too large, the NLP problem can become excessively large. The steps for NDDR can

be summarized as:

1. Acquire process measurements at time t = tc

2. Minimize Φ over the window (tc − (H − 1)∆t ≤ t ≤ tc)

3. Save ŷ at time tc as the reconciled signal for online control purposes

4. Repeat at the next step, tc+1

The advantages of the moving window approach are:

• It reduces the size of the NLP problem.

• It does not require keeping all the previous information but just the size of the

window, decreasing the data storage and computation requirements.

• Since the window has a finite length, information collected previous to the

window does not affect the current estimation; this is important if unmodeled

changes happen.

• The only tuning parameter for the nddr algorithm is the size of the history

horizon, H.

4.1.1.2 Discretization

The dynamic constraint, equation (4.2), needs to be discretized in order to solve the

NLP problem defined by equations (4.1) to (4.4). To achieve this, the differential

30



equations ẋ = f(y) are solved numerically over the window using the Euler algorithm

with a fixed step-size equal to the sampling time. The new NLP problem based on

the discretized model and a WLS objective function can be rewritten as:

min
ŷ

ni+ns∑
i=0

ηi

c∑
j=c−H

(
ỹij − ŷij

σi

)2, (4.5)

subject to:

Ψ(
dŷ

dt
, ŷ) = 0, (4.6)

h(ŷ) = 0, (4.7)

g(ŷ) ≥ 0, (4.8)

where Ψ(dŷ
dt

), h(ŷ) and g(ŷ) correspond to the constraints obtained through discretiza-

tion, η is a vector of weights, ni is the number of inputs and ns is the number of states;

in order to maintain the maximum-likelihood nature of the estimation scheme, the

weights ηi are all equal. If ẋ = f(y) is a physics-based nonlinear model then the

material and/or energy balance conditions are satisfied and h(ŷ) = 0 is not required.

The inequality constraints may include limits on process variables, for example the

separator input and output flows (FT in figure B.3) cannot be negative.

4.2 NDDR Results

The basic NDDR algorithm was implemented on the pilot plant model in order to

assess the performance of this method in a large scale, realistic model, and as a

first step to develop an agent capable of working within the ICAM system. For this

test, five inputs and five outputs are being estimated. True values were obtained by

simulating the nonlinear model at a time step of ∆t = 0.15 sec., and measurements

were created by adding Gaussian noise to the true values; they were assumed gross

error free. The noise added to the simulated data was Gaussian with zero mean,

and it has a standard deviation of 1% of the nominal operating point value of the
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corresponding variable. For this first test, there is no change in the setpoint, all the

variables are at their nominal operating point value. The window size, H was set to

10.

All the experiments shown in this thesis were performed in a DELL computer with the

following specifications: INTELr CoreTM2 Duo CPU, E8400 @3.00 Ghz. 2.99Ghz,

3.21 GB of RAM. The programs were performed in matlabrversion 7.6.0 324 (R2008a).

4.2.1 Data Reconciliation Results Using fminsearch

The first attempt to implement the NDDR was very similar to the approach used by

Laylabadi and Taylor [1]. The optimization was executed using the unconstrained

nonlinear method fminsearch. This is a direct search method that does not use

numerical or analytic gradients. Using this method on the separator model consumes

a large amount of computation time. The reason for such a slow performance is

because the optimization routine can not find a minimum, and it keeps iterating until

the maximum number of iterations or maximum number of evaluations allowed are

reached (200 times the number of variables). The conditions used in this test are:

• Window size H=10 samples.

• Initial guesses for optimization algorithm: Previous estimates.

• scaling: all the weights ηi = 1.

The results for this trial are shown in Figure 4.1. It can be observed that the estimates

appeared to be significantly smoother than the corresponding measurements. The

noise in the reconciled estimates was compared to the noise in the measurements

over the complete running time by evaluating sample statistics of the differences

between the measurements and the true values and the estimates and the true values.

Table 4.1 provides a quantitative summary of the results for this test. The table
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shows the standard deviations for the noise on the measurements and for the noise on

the reconciled estimates, and the percentage of reduction obtained. The root mean

square error (RMSE) for the measurements and for the estimates and its percentage

of reduction are presented as well. All estimate noise deviations and RMSE were

significantly smaller than the corresponding measurement.

Even though the algorithm is capable of obtaining estimates with less noise, it takes

an excessive large computation time to carry out this task. The algorithm was run for

a time span of tf = 20.1 sec., and the computation time used to complete the routine

was tcomp = 21, 094 sec. (approx. 1,049 times real time). This large computation

time is due to the fact that the pilot plant model is extremely complex, with an

optimization problem needing to be solved to balance oil and water separation at

each time step. The small sampling time is also a factor; it is based on the rapid gas

pressure dynamics.

Variable Measurem. Estimate % σ Measurem. Estimate % error
Std. Dev. Std. Dev. Reduction RMS error RMS error Reduction

In
pu

ts

Foutsep−liq 0.2042 0.0394 80.67 0.2042 0.0717 64.88
Foutsep−vap 0.0508 0.0128 74.69 0.0513 0.0221 56.88
Fouttreat−wat 0.0492 0.0071 85.39 0.0490 0.0175 64.17
Fouttreat−oil 0.0182 0.0034 81.24 0.0182 0.0084 53.57
Fouttreat−vap 0.0072 0.0018 73.94 0.0071 0.0034 51.78

O
ut

pu
ts Vsep−liq 1.3231 0.3155 76.15 1.3243 0.5235 60.46

Psep−vap 5.3857 1.6565 69.24 5.3699 2.0980 60.92
Vtreat−wat 0.7832 0.2425 69.02 0.7813 0.2659 65.96
Vtreat−oil 0.4591 0.1383 69.86 0.4578 0.1959 57.20
Ptreat−vap 1.9807 0.7026 64.52 1.9738 0.9950 49.58

Average 1.0261 0.3120 74.47 1.0237 0.4202 58.54

Table 4.1: NDDR first approach results
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Figure 4.1: First implementation NDDR on Pilot plant model
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4.2.2 Data Reconciliation Results Using fminunc

Although the results of the NDDR algorithm show a good performance in noise and

RMSE reduction, the computation time is an important issue. The NDDR algorithm

is going to be implemented as an agent which is part of the ICAM system, and in the

future, the complete system is going to be executed in real time, therefore the NDDR

algorithm needs to drastically improve the computation time.

The first step to reduce the computation time was to analyze the type of optimization

routine used. As it was mentioned before, the previous test was implemented with

the same method used by Laylabadi and Taylor [1] in order to establish the behavior

of that approach in a more complex model. The minimization function used was

fminsearch. In n dimensions, this method evaluates the objective function over a

polytope (a simplex) of n + 1 points in the parameter space (in two dimensions, the

simplex is a triangle). At each iteration, fminsearch computes the objective func-

tion at the points of the simplex, deletes the point with the highest (worst) objective

function value, and replaces it by a new point giving a new simplex. Where appropri-

ate, the simplex can shrink or grow in size. This is analogous to flopping a triangle

around the parameter space until it finds a minimum. fminsearch stops when the

objective function is the same (within some tolerance) in all points of the simplex,

or when the size of the simplex is less than the specified tolerance, or when the iter-

ation limit is reached. fminsearch requires no gradient information and can handle

function discontinuities. The disadvantage of fminsearch is that it converges very

slowly to the solution, especially for searches of three or more parameters [41]. The

pilot plant model includes five inputs and five outputs, for a total of ten parameters

to be estimated, this makes the function fminsearch not suitable for the problem

addressed in this thesis.

The minimization function fminunc, which is an efficient large-scale algorithm, was
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thus selected to perform the optimization. This algorithm is a subspace trust-region

method and is based on the interior-reflective Newton method explained in [42]. Each

iteration involves the approximate solution of a large linear system using the method

of preconditioned conjugate gradients (PCG). The idea of this algorithm is to form

a linear approximation to the problem and solve it. This determines a direction to

search along, and it predicts a step length in that direction. This is why the gradient

is required in this function. For a complete description of fminunc, the trust-region

method, and the PCG method, please refer to [41].

The NDDR was implemented using the large-scale optimization algorithm and it was

tested in the same scenario as in section 4.2.1. The size of the window H is 10, the

initial guesses used are the previous estimates, the scaling is equal for all the variables

and is set to 1. The step time is ∆t = 0.15 sec., and the elapsed time is tf = 20 sec.

The results are shown in figure 4.2. Table 4.2 shows the quantitative results for

this test as well as a comparison between the results obtained with fminsearch and

fminunc. An important reduction in the computation time was observed: using

fminsearch the computation time was tcomp = 21, 094 sec. (1,049 times the running

time) and using fminunc the computation time was reduced to tcomp = 1, 368 sec. (68

times the running time). Even though this time is still large, it is a big improvement.

The noise reduction achieved using fminunc is smaller that the reduction obtained

using fminsearch, but still it is significant. The amounts of RMSE reduction are very

similar between the two approaches. This may be due to the fact that the strategies

for finding solutions are different for each algorithm, which means that the path of

iterations can be completely distinct, so the iterations may find different solutions.

fminsearch tends to be slower, especially for larger problems but it may be more

robust to handle some problems such as derivative discontinuities.
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Figure 4.2: NDDR results Using fminunc
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% Noise reduction % RMSE reduction
Variable fminsearch fminunc fminsearch fminunc

In
pu

ts

Foutsep−liq 80.68 65.62 64.88 60.21
Foutsep−vap 74.69 57.49 56.88 55.60
Fouttreat−wat 85.40 59.01 64.17 61.59
Fouttreat−oil 81.25 74.63 53.57 54.10
Fouttreat−vap 73.94 63.60 51.78 50.14

O
ut

pu
ts

Vsep−liq 76.15 72.35 60.47 62.75
Psep−vap 69.24 69.49 60.93 61.72
Vtreat−wat 69.03 80.24 65.97 70.33
Vtreat−oil 69.87 70.52 57.21 60.39
Ptreat−vap 64.52 54.59 49.59 45.25
Average 74.48 66.72 58.54 58.21

Table 4.2: Comparison NDDR performance using fminsearch and fminunc

Even though the results show significant noise reduction in a shorter time, the time

consumed is still too long. To enhance the overall performance of the NDDR al-

gorithm, several options were tested. These options included modifying the size of

the horizon window, trying different initial guesses for the optimization routine, and

using scaling. Data used for the different tests are the same as described previously,

but the algorithms were executed for an elapsed time of (tf = 10 sec.), to shorten

run times. The results and conclusions for these tests are presented in the following

sections.

4.2.3 Modifying Window Size H

One of the advantages of using a history horizon window as part of the solution

strategy for NDDR is that the length of the window acts as a tuning parameter for

the performance of the data reconciliation scheme. For that reason, the size of the

window (H ) was the first parameter value to be investigated. Increasing H would

provide more information for the optimization algorithm and it would yield more noise

reduction, although the optimization would take longer. Therefore it is necessary to

find a balance between time consumed and noise reduction achieved.
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Tables 4.3 and 4.4 show the percentage of noise reduction and percentage of RMSE

reduction respectively when the NDDR algorithm is executed using different values

for H. The running time for the test is tf = 10.05 sec. It can be observed that

the time consumed to execute the algorithm increases proportionally to value of H.

Regarding noise reduction and RMSE reduction, the results show that the larger H

is, the smoother the estimates are, which is the expected behavior. The level of noise

reduction and RMSE reduction increase substantially with H, but only up to a certain

value (in this case approximately H= 16). For larger values of H, the improvement

in the estimates is not significant. The level of noise reduction and RMSE reduction

tend to stabilize for large values of H, while the time consumed continues increasing.

Figure 4.3 shows the relation between size of window and percentage of noise and

RMSE reduction for Fouttreat−vap. It can be observed the effect explained previously:

noise reduction is rather flat for H > 16 but drops off significantly for H < 14.
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H Time
(samples) (sec.)

22 1029.5 88.77 94.01 98.16 94.30 91.72 92.17 92.38 92.63 90.79 90.01 92.49
20 1010.7 89.78 91.32 95.35 94.95 93.49 87.35 89.07 91.87 91.27 85.33 90.98
18 955.16 95.82 93.33 96.77 94.57 91.14 89.42 96.36 96.47 98.17 93.79 94.58
16 838.58 90.25 93.92 93.99 95.81 93.06 94.88 91.84 99.06 94.81 79.92 92.75
14 782.52 82.62 90.56 89.74 94.96 86.01 89.24 88.13 92.55 89.53 75.49 87.88
12 673.94 75.22 80.13 67.82 83.14 67.25 76.20 67.37 77.24 79.78 46.78 72.09
11 644.07 66.00 77.99 58.85 83.90 62.86 78.27 62.73 73.53 84.14 40.42 68.85
10 618.89 67.23 77.23 58.95 79.95 62.71 76.32 63.87 79.67 80.59 65.54 71.21
8 481.36 69.84 74.82 61.68 74.43 54.95 66.49 63.22 74.06 79.98 62.12 68.16
6 375.42 60.59 56.81 53.87 71.39 47.86 66.72 57.07 61.76 67.97 65.05 60.91
5 316.60 53.45 54.06 48.06 64.81 43.87 63.71 57.05 47.49 71.75 56.98 56.12
4 267.11 48.30 46.34 42.05 62.07 37.86 61.25 41.18 39.71 61.92 43.90 48.46

Table 4.3: Percentage of noise reduction for different values of H
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% RMSE reduction
Comp.
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H Time
(samples) (sec.)

22 1029.5 83.71 83.93 81.10 93.53 72.60 90.60 73.61 69.87 88.95 59.05 79.70
20 1010.7 84.96 84.15 80.72 94.42 72.44 84.65 72.00 70.46 87.21 62.56 79.36
18 955.16 85.22 80.84 80.09 91.66 73.88 84.15 69.87 67.13 84.67 46.38 76.39
16 838.58 83.24 78.91 77.31 91.89 69.79 87.95 66.74 62.64 91.34 57.44 76.72
14 782.52 79.24 77.46 80.07 88.10 66.94 81.77 64.12 59.07 89.48 50.47 73.67
12 673.94 57.63 75.31 69.80 82.60 60.35 72.48 70.45 75.28 71.90 46.34 68.21
11 644.07 55.13 74.12 64.62 83.84 57.80 72.33 64.96 71.04 73.87 39.06 65.68
10 618.89 55.88 73.79 64.55 79.90 56.80 74.20 65.85 72.54 75.65 46.82 66.60
8 481.36 51.96 70.69 60.30 74.38 52.00 64.45 61.68 67.77 70.91 48.34 62.25
6 375.42 44.85 59.41 52.80 67.77 45.76 59.00 52.41 61.04 59.86 48.16 55.11
5 316.60 44.66 54.28 51.41 65.60 42.65 53.02 51.10 53.71 54.73 25.26 49.64
4 267.11 44.17 49.30 41.14 58.01 37.63 34.28 33.53 43.31 49.63 25.08 41.61

Table 4.4: Percentage of RMSE reduction for different values of H
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Figure 4.3: Percentage of reduction in noise and RMSE Vs H for Fouttreat−vap
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In order to obtain percentages of noise reduction and RMSE reduction above 50%,

the window size chosen is H = 8. Using this value the computation time is reduced

from 68 times real time to 48. An improvement in time is achieved while obtaining a

decent reduction in noise.

4.2.4 Using Scaling

The previous section demonstrated the compromise when setting the window size.

Although a faster performance has been achieved, the computer time is still too large

to allow the application to be implemented in real time. Thus H was set to 8 and

some other experiments were done by changing other parameters to reduce time and

improve performance of the NDDR.

In this section a second trial was done by changing the scaling. Initially all the values

of the weights were equal and set to 1 in order to preserve the maximum-likelihood

nature of the estimation scheme. However, it was considered that the optimization

could be affected by the spread range of values of the variables involved in the pilot

plant model. To normalize the optimization function, the value of ηi in equation (4.5)

was set to the inverse of the nominal operating point value of every variable (Table

3.2).

Table 4.5 shows the outcome of the scaling test. The results show that using scaling

provides a faster and in general more efficient reconciliation. The final time for

the algorithm is t = 10.05 sec., and the computation time was tcomp = 425.4 sec.,

which is lower than in the previous test performed using H = 8 and without scaling

(tcomp = 481.36 sec.). In general the majority of the variables exhibit a greater

reduction in noise and RMSE as well.
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NO Scaling Scaling
Variable % σ % RMSE % σ % RMSE

Reduction Reduction Reduction Reduction

In
pu

ts

Foutsep−liq 69.84 51.96 81.08 74.08
Foutsep−vap 74.82 70.69 67.08 63.61
Fouttreat−wat 61.68 60.30 88.03 75.71
Fouttreat−oil 74.43 74.38 79.72 77.66
Fouttreat−vap 54.95 52.00 58.97 59.88

O
ut

pu
ts Vsep−liq 66.49 64.45 73.68 72.42

Psep−vap 63.22 61.68 63.42 56.35
Vtreat−wat 74.06 67.77 51.91 44.50
Vtreat−oil 79.98 70.91 81.72 75.40
Ptreat−vap 62.12 48.34 66.73 31.21

Average 68.16 62.25 71.23 63.08

Table 4.5: NDDR results using scaling

4.2.5 Modifying Initial Guesses

The initial guess for the optimal solution to the NLP problem was another factor

modified in order to obtain a faster optimization. According to previous studies ([16]

and [1]), having good initial guesses can improve the robustness of the algorithm.

The estimates from the previous time step are the most reasonable initial guesses,

and they were used for all the previous experiments. In order to assess the impact of

changing initial guesses, several possibilities were evaluated. These included setting

initial guesses to the mean of the measurements in the previous window, the previous

measurements and the estimates at the beginning of the window.

The results are shown in tables 4.6 and 4.7, the running time for this test is tf =

10.05 sec. It can be observed that the best performance with the fastest results are

obtained with the previous estimates as initial guesses, as expected.
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%Noise reduction
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Initial Time
Guesses (sec.)

Previous
estimate

481.36 69.84 74.82 64.68 74.43 54.95 66.49 63.22 74.06 79.98 62.12 68.16

Mean pre-
vious win-
dow

529.65 79.41 73.83 89.14 87.65 62.93 98.75 91.05 94.85 97.55 41.67 81.68

Previous
measure-
ment

815.47 37.59 14.34 66.30 88.51 54.49 90.67 58.57 90.94 86.64 87.23 67.53

Estimate
at start of
window

770.20 48.17 79.54 75.49 79.17 51.45 96.15 93.35 94.11 94.45 93.08 80.49

Table 4.6: % Noise reduction using different initial guesses
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Initial Time
Guesses (sec.)

Previous
estimate

481.36 51.96 70.69 60.30 74.38 52.00 64.45 61.68 67.77 79.91 48.34 62.25

Mean pre-
vious win-
dow

529.65 73.30 68.14 77.26 79.08 63.32 98.02 87.13 76.05 70.31 52.49 74.51

Previous
measure-
ment

815.47 1.74 7.77 35.49 32.93 57.74 93.64 67.45 81.99 88.40 -82.40 38.48

Estimate
at start of
window

770.20 39.93 70.24 75.07 81.14 59.76 95.34 82.59 47.40 82.46 -0.35 63.36

Table 4.7: % RMSE reduction using different initial guesses
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4.2.6 Change in Optimization Algorithm’s Parameters

The next step in trying to find a better performance for the NDDR was to modify

some parameters that govern the behavior of fminunc. These changes included mod-

ifying the termination tolerance on the objective function value (default 1e− 3) and

the termination tolerance on the estimates, ŷ (default 1e − 3). Several tests were

performed in order to establish the effect of these parameters on the performance of

the algorithm. Table 4.8 shows the results for some of the tests executed.

Comp. %
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P
tr
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v
a
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A
ve

ra
ge

Optimization Time of
Parameters (sec.) Reduct.

T ŷ = 1e− 3
481.37

Noise 69.8474.8261.6874.4354.9566.4963.2274.0679.9862.1368.16
T Fun = 1e− 3 RMSE 51.9670.7160.3574.3852.0164.4561.6967.7770.9248.3462.25
T ŷ = 1e− 2

360.11
Noise 71.1872.3759.7375.7757.2166.3454.9066.1281.9436.0364.15

T Fun = 1e− 2 RMSE 50.5868.2658.5674.2355.3263.1953.8065.6973.6211.5557.48
T ŷ = 1e− 1

283.11
Noise 67.1073.6853.3875.3951.2164.3060.1761.4079.3122.6560.85

T Fun = 1e− 1 RMSE 48.6977.5247.4979.2034.3955.6162.3173.9875.12 -87.7 46.65
T ŷ = 1

700.37
Noise 99.8099.8599.8093.0799.8090.8941.3367.9574.3510.9877.78

T Fun = 1 RMSE -72.8 83.0991.2630.31 -224 87.11 -57.4 67.68 -0.15 -3566 -356
T ŷ = 1e− 4

818.67
Noise 69.0773.3662.5575.5757.5271.0856.9270.8376.3055.1866.83

T Fun = 1e− 4 RMSE 53.3470.8861.8875.3353.3368.4058.4267.0569.6352.6463.09

Table 4.8: NDDR results changing optimization parameters

It was observed that for larger values of tolerance, the computation time was shorter,

as expected. However the level of bias, reflected in the RMSE, increases. The per-

centage of noise reduction for tolerances of 1e − 3, 1e − 2, and 1e − 1 is similar for

all the variables except for Ptreat−vap, which reconciliation is negatively affected when

the tolerance is increased. For larger values of tolerance, the estimates of Ptreat−vap

present more noise and more bias level. When the tolerance is equal to 1 the noise

reduction seems to be optimal for the majority of the variables, reaching values close

to 100%; nevertheless, the reconciliation is not correct because a high level of bias is

added to the estimates.
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Figure 4.4: Results for Foutsep−liq with difference optimization parameters
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Figure 4.5: Results for Ptreat−vap with difference optimization parameters
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Figures 4.4 and 4.5 show the response of the variables Foutsep−liq and Ptreat−vap to

the reconciliation algorithm using values of 1e− 3, 1e− 2, and 1, respectively. It can

be observed the increment in the bias level in Foutsep−liq and the negative effect on

noise and RMSE reduction for Ptreat−vap. In the case of the variable Foutsep−liq with

a tolerance of 1, the estimate is completely flat; this is because the tolerance is large

enough to be satisfied with the first initial guess, so the algorithm does not need to

find a new value. When the tolerance of the optimization algorithm is increased, the

minimization process is truncated, producing inaccurate estimates. The effect of this

phenomenon is more evident in variables with fast dynamics such as, in our particular

case, Ptreat−vap.

4.2.7 NDDR Results in Scenarios with Set Point Changes

The best compromise in performance was obtained for the size of window (H ) equal to

eight, using the previous estimates as initial guesses, applying scaling in the optimiza-

tion routine, and using the default values for the optimization algorithm parameters.

These conditions are selected as part of the definitive NDDR algorithm. In order to

show the effectiveness of this NDDR algorithm two different scenarios are presented:

In the first scenario, the simulation runs for a time tf = 100 sec. The plant starts

working at the nominal operating point, and a positive setpoint change of 2% is

applied at the time t = 50 sec. Table 4.9 and figure 4.6 present the results obtained.

The noise added to the simulation values has a standard deviation of 1% nominal

operating value of each variable. This study required a computation time of tcomp =

4827.87 sec. or 48.27 times real time to complete the reconciliation.
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Figure 4.6: NDDR results for a positive set point change
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Variables
Inputs Outputs

Percentage
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A
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of
reduction

Noise 73.52 75.57 73.13 70.49 68.52 63.20 68.47 78.64 77.88 56.51 70.59
RMSE 73.30 75.06 73.85 64.89 70.10 63.23 65.25 72.80 77.52 52.94 68.89

Table 4.9: NDDR results for a positive set point change

The second scenario illustrates the application of the NDDR algorithm for a case

when a larger negative setpoint change of 5% is applied at the time t = 50 sec., in

a run with tf = 90 sec. The results are presented in Figure 4.7 and table 4.10. The

computation time for this run is tcomp = 4261.76 sec.; this is equivalent to 47.32 times

the real time.

Variables
Inputs Outputs

Percentage

F
ou

t s
ep
−l

iq

F
ou

t s
ep
−v

a
p

F
ou

t t
r
ea

t−
w

a
t

F
ou

t t
r
ea

t−
o
il

F
ou

t t
r
ea

t−
v
a
p

V
se

p
−l

iq

P
se

p
−v

a
p

V
tr

ea
t−
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of
reduction

Noise 64.76 65.57 65.46 65.77 68.53 69.23 61.75 69.11 69.13 60.01 65.93
RMSE 65.11 64.64 55.75 44.15 26.61 68.89 61.50 68.49 68.32 53.12 57.66

Table 4.10: NDDR results for a negative set point change

It can be observed that for both cases the estimate values contained far less noise

than the simulated measurements. The NDDR algorithm is able to reduce noise and

reduce RMSE in transient and steady state conditions.
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Figure 4.7: NDDR results for a negative set point change
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4.3 NDDR vs Low Pass Filtering

The main difference between data reconciliation and other filtering methods is that

DR uses the model constraints to obtain the estimates of the process variables. The

measurements are adjusted so that the estimates meet the constraints. In that way,

the estimates present less noise than the measurements and at the same time they

fulfill the relationship between process variables established by the model constraints,

including material and energy balance. Even though standard filtering techniques

reduce noise significantly, they may introduce some dynamic lag in the response or

they may reduce overshoot or undershoot after a step change, especially in process

variables with a fast dynamic behavior. The following examples show a comparison

between the performance of the NDDR algorithm and a low pass filter.

The filter used was an exponential filter, which is one of the simplest forms of linear

recursive filter. The exponential filter is described by the following expression:

zk = αzk−1 + (1− α)yk (4.9)

where

• zk is the output of the filter at the current time;

• zk−1 is the output of the filter at the previous time step;

• yk is the input of the filter;

• 0 ≤ α ≤ 1.0 is the parameter of the filter.

Equation 4.9 indicates that the filtered measurement is a weighted sum of the current

measurement zk and the filtered value at the previous sampling instant zk−1. The

filter constant α is defined as:

α
.
=

∆t

τ + ∆t
(4.10)
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where τ is the time constant of each variable, which are listed in table 3.1, and ∆t

is the sampling time, which is set to ∆t = 0.15 sec. The value of the filter constant

dictates how strong the filtering action will be. If α → 1, the degree of filtering is

larger and the measurement does not play a big role in the calculation of the average.

On the other extreme, if α → 0 less filtering is being performed. The filter constants

calculated according with these values are presented in table 4.11.
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P
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v
a
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Filter
Constants

Calculated 0.9958 0.9543 0.9856 0.9592 0.4692 0.9958 0.9543 0.9856 0.9592 0.4692

Table 4.11: Filter constants - Filter One

The filter was applied to the pilot plant model and the filtered signal was compared

with the estimated values obtained with NDDR. For this case, the simulation was

initialized with all the variables at the nominal operating point, and at time t =

50 sec. a positive setpoint change of 2% was applied. Figure 4.8 show the performance

of the low pass filter using the constants presented in table 4.11. Table 4.12 shows

the comparison between the performance of the filter and the performance with the

NDDR. Comparing the filtered signals with the estimated values it is observed that

although the filter is more efficient at reducing the noise in the signals, there is a

large dynamic lag introduced in the filtered values. However, this is not a reasonable

comparison, given that the filtered signal contain less noise than the estimated values.

In order to have a fair comparison, the filter constants were adjusted to obtain ap-

proximately as much noise reduction with the filter as it was achieved with the NDDR

algorithm. The filter constants used are presented in table 4.13, and the noise reduc-

tion obtained is presented in table 4.14. The previous scenario was executed again

with the new filter parameters, and the outcomes from the filter and from the NDDR
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Variables
Inputs Outputs

Percentage

F
ou

t s
ep
−l

iq

F
ou

t s
ep
−v

a
p

F
ou

t t
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A
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Noise

reduction

Filter 78.11 86.54 82.64 87.90 79.57 78.26 88.25 93.33 73.17 79.00 82.68
NDDR 63.49 61.87 62.85 450.61 68.52 63.83 68.47 68.02 65.48 56.51 62.97

Table 4.12: Noise reduction comparison between filter one and NDDR

were compared. It can be observed that the filter introduced a smaller dynamic lag

compared with the previous scenario but still is bigger than the one obtained with

NDDR. A closer view of the variables Fouttreat−wat, and Fouttreat−oil is shown in

appendix D, in figures D.1 and D.2 respectively. Table 4.14 shows the quantitative

comparison.

Variables

F
ou

t s
ep
−l

iq

F
ou

t s
ep
−v

a
p

F
ou

t t
r
ea

t−
w

a
t

F
ou

t t
r
ea

t−
o
il

F
ou

t t
r
ea

t−
v
a
p

V
se

p
−l

iq

P
se

p
−v

a
p

V
tr

ea
t−

w
a
t

V
tr

ea
t−

o
il

P
tr

ea
t−

v
a
p

Filter
Constants

Adjusted 0.82 0.9 0.9 0.89 0.8 0.8 0.85 0.75 0.8 0.85

Table 4.13: Filter constants - Filter two

Variables
Inputs Outputs

Percentage

F
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iq
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w
a
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V
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o
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P
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v
a
p

A
ve

ra
ge

of
Noise

reduction

Filter 65.44 70.34 63.82 52.52 41.71 67.50 69.89 63.43 66.17 60.47 62.14
NDDR 63.49 61.87 62.85 450.61 68.52 63.83 68.47 68.02 65.48 56.51 62.97

Table 4.14: Noise reduction comparison between filter two and NDDR

53

user
Line

user
Line

user
Line



0 20 40 60 80

144

146

148

150

152

154

Time

S
ep

ar
at

or
 li

qu
id

 v
ol

um
e,

 V
se

p−
liq

 

 
Measured Values
Estimated  Values
Filtered Values
True Values

20 40 60 80 100

610

620

630

640

650

Time

S
ep

ar
at

or
 v

ap
or

 p
re

ss
ur

e,
 P

se
p−

va
p 

0 20 40 60 80 100
19.6

19.8

20

20.2

20.4

20.6

20.8

21

Time

S
ep

ar
at

or
 li

qu
id

 o
ut

flo
w

, F
ou

t se
p−

liq

20 40 60 80 100
4.85

4.9

4.95

5

5.05

5.1

5.15

Time

S
ep

ar
at

or
 v

ap
or

 o
ut

flo
w

, F
ou

t se
p−

va
p

 

 

0 50 100
75

76

77

78

79

80

81

82

Time

T
re

at
or

 w
at

er
 v

ol
um

e,
 V

tr
ea

t−
w

at

0 50 100
45

46

47

48

49

Time

T
re

at
or

 o
il 

vo
lu

m
e,

 V
tr

ea
t−

oi
l

0 50 100
190

195

200

205

210

Time

T
re

at
or

 v
ap

or
 p

re
ss

ur
e,

 P
tr

ea
t−

va
p

0 50 100

4.85

4.9

4.95

5

5.05

5.1

5.15

5.2

5.25

Time

T
re

at
or

 w
at

er
 o

ut
flo

w
, F

ou
t tr

ea
t−

w
at

 

 

20 40 60 80 100

1.9

1.95

2

2.05

Time

T
re

at
or

 o
il 

ou
tfl

ow
, F

ou
t tr

ea
t−

oi
l

 

 

20 40 60 80 100

0.67

0.68

0.69

0.7

0.71

Time

T
re

at
or

 v
ap

or
 o

ut
flo

w
, F

ou
t tr

ea
t−

va
p

Figure 4.8: Separator signals filtered with low-pass filter
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Chapter 5

A Hybrid Approach to Solving

Dynamic Data Reconciliation

The results presented in chapter 4 show that the estimates obtained with NDDR

are significantly smoother than the corresponding measurement. However, the time

consumed by the algorithm is still too large. Another drawback to this approach is

the need for a nonlinear process dynamic model, which is often not available or not

practical to develop. In order to reduce the computation time and address the model

availability issue, a new hybrid approach was developed and tested. The main idea

is to use two different methods to perform the data reconciliation according to the

state in which the system is: transient or steady state.

Using the Steady-state algorithm explained in chapter 3, it is possible to know the

state of the system. During transient periods, the data reconciliation is executed

using the linearized model of the plant provided by the System Identification Agent

[38] operating on perturbation variables, i.e., δy = y− y0 where y0 is the steady state

operating point. This approach is valid for small changes in the set-points and main-

tains the goal of DR, namely energy and material balance is retained in y0. In the

steady state intervals, the data reconciliation is performed using an equilibrium find-
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ing approach. Instead of solving numerically the differential equations that describe

the system over the window, an equilibrium finding algorithm is used to determine the

value of the states at the equilibrium point. Subsequently, the value of the outputs for

the equilibrium point are calculated. It is faster to obtain the equilibrium point than

to run the model for ten samples every iteration of the optimization loop. However,

using a dynamic model for equilibrium finding is still substantially less efficient than

using a static process model directly. Thus the real promise of the hybrid approach

will be realized in applications for which a static model exists, which is not true for

the pilot plant. The following is a feasibility study, to demonstrate that the hybrid

approach works.

The nonlinear pilot plant model is defined in terms of the differential equation as

ẋ = f(x, u). For an input value u0 and its corresponding equilibrium x0, the output

value is y0 = h(x0, u0). The perturbation variables can be defined as δx = x − x0,

δu = u−u0, and δy = y− y0. If the perturbations are small and if continuous partial

derivatives exist at (x0, u0), the behavior of the original nonlinear system near x0 is

similar to that of:

δẋ = Aδx + Bδu (5.1)

δy = Cδx + Dδu (5.2)

where A = [ δf
δx

]x0,u0 , B = [ δf
δu

]x0,u0 , C = [ δh
δx

]x0,u0 , and D = [ δh
δu

]x0,u0 [43]. A, B, C and

D are obtained by the System Identification Agent [38].

In transient state, for small changes in the setpoint, the linearized model can be used

as the constraints in equation (4.2). However, in steady state it is not accurate to

use a linear approximation, given that the equilibrium point for the linearized model

is different than the equilibrium point for the nonlinear model. Furthermore, the

concept of data reconciliation is to adjust the measurements according to conservation

laws constraints. This definition would not be satisfied by using the linearized model,
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because although the behavior of the original nonlinear system is similar to the linear

model the linear model does not provide the physical relationship between inputs and

outputs. Therefore the conservation laws constraints would not be fulfilled.

For the steady state case, the plant has reached an equilibrium. This is why it is valid

to calculate the estimates as the response of the plant to the equilibrium point value.

Once the equilibrium state values (x0) are calculated using an equilibrium finding

algorithm, it is possible to obtain the value of the outputs (y0). This procedure is

faster than to running ten-point simulations of the plant in every loop of the NDDR

optimization.

5.1 Hybrid Approach Results

The scenario used to test the hybrid approach starts at the nominal operating point

and at the time t = 50 sec. a positive set point change of 2% is applied to all the

variables. The sampling time is ∆t = 0.15 sec. and the final time is tf = 300 sec.

Figure 5.1 show the results for the test. The computation time is tcomp = 7494.30 sec.;

this correspond to twenty four times the final time.

It can be observed that the estimates present less noise than the measurements,

in both the transient and the steady state. In the moment of the transition from

transient to steady state (t = 249.9 sec.), outliers are present in some of the variables.

It takes a window of H samples for the system to adapt again using the nonlinear

dynamic model. Table 5.1 show the quantitative results for this test, confirming the

results mentioned above. The fastest variables (Psep−vap and Ptreat−vap) are the most

affected by the the transition.
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Figure 5.1: Hybrid NDDR results
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In this test the computation time is shorter than the time consumed in the examples

presented in chapter 4 (approximately 49 times real time). However, this is due to

the long transient period, where the linearized model is used. Using the equilibrium

approach with the current pilot plant model derived by Sayda and Taylor [2] does

not substantially improve the time consumed for the data reconciliation algorithm.

Nevertheless, if a simpler nonlinear steady state model based on material energy

balance would be available, the equilibrium algorithm would be more efficient and it

could be used in the hybrid approach to obtain a faster and reliable data reconciliation

routine. The derivation of the new nonlinear steady state model is not part of the

scope of this project and it is suggested as future work.

Variables
Inputs Outputs

Percentage Final

F
ou

t s
ep
−l

iq

F
ou

t s
ep
−v

a
p

F
ou

t t
r
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w

a
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F
ou

t t
r
ea

t−
o
il

F
ou

t t
r
ea

t−
v
a
p

V
se

p
−l

iq

P
se

p
−v

a
p

V
tr

ea
t−

w
a
t

V
tr

ea
t−

o
il

P
tr

ea
t−

v
a
p

A
ve

ra
ge

of Time
reduction (sec.)

Noise 7494.3 70.21 67.14 68.90 63.01 50.83 68.74 -23.53 67.97 63.59 -103.08 39.38
RMSE 7494.3 69.94 67.05 68.94 63.07 50.90 68.73 -23.46 68.04 63.30 -102.73 39.37

Table 5.1: Hybrid approach results

5.2 Solving the Steady-state/Transient Transition

Problem

A routine, which detects changes in the steady state flag and analyzes the values

of the estimates during the succeeding window, was designed. The objective of this

routine is to solve the problem with the transition from transient state to steady

state, eliminating the outliers produced by the switching between the models. When

the steady state flag changes from unity to zero or vice versa, the algorithm starts

to compare the current estimate (zc) with the previous one (zc−1). If the difference
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between them is larger than five times the standard deviation of the previous data

window, then the zc is replaced by zc−1. Table 5.2 shows the noise and RMSE re-

duction for this new approach, and figure 5.2 shows the results for Ptreat−vap using

the hybrid approach and the routine to eliminate the outliers. It can be observed

that the transition is conducted without the negative effects in the estimates that are

apparent in figure 5.1.

Variables
Inputs Outputs

Percentage Final

F
ou

t s
ep
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F
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w
a
t

V
tr
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o
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P
tr

ea
t−

v
a
p

A
ve

ra
ge

of Time
reduction (sec.)

Noise 7490.1 69.24 68.36 70.34 68.65 69.36 68.20 68.34 67.79 67.85 63.31 68.15
RMSE 7490.1 68.93 67.38 67.68 61.31 52.42 68.42 67.94 68.00 67.80 60.75 65.06

Table 5.2: Hybrid approach results after solving transition problem
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Figure 5.2: Hybrid NDDR results solving transition problem for Ptreat−vap
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Chapter 6

Gross Error Detection and

Removal (GEDR) and Adaptive

NDDR

The technique presented in chapter 4 assumed that only random errors are present

in the data. However, this assumption is not valid given that gross errors may occur,

caused by non-random events such as instrument malfunctioning, miscalibration, cor-

rosion in sensors, faulty analog-digital conversion, etc. Even though gross errors are

less common, if not removed, they affect the complete reconciliation. The objective

is not only to identify the presence of gross error but also correct it.

Laylabadi and Taylor [1], proposed the adaptive NDDR and Novel GEDR techniques

in order to give solution to two different but related problems. The first is to apply

NDDR to systems with unknown error statistical models and the second is to detect

and to remove the gross errors. These techniques are explained in this chapter and

the results of implementing the combined ANDDR + GEDR algorithm in the pilot

plant model are presented. The contribution in this area is extending and/or refining

the methods in [1] to make them applicable in more realistic industrial conditions.
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6.1 Gross Error Detection and Removal

The method used to solve GEDR utilizes the same moving-horizon window approach

used for the basic NDDR. The technique is based on calculating the difference dc,i

between each new measurement ỹc,i and the previous value of the mean. Assuming

a statistical model is available, the difference is compared at each time step with a

multiple of the previous standard deviation, σc−1,i. If |dc,i| is bigger than the threshold,

then the system detects the presence of a gross error and proceeds to replace it with

the previous estimate. The subscript c corresponds to the number of the sample and

the subscript i represent the number of the variable.

6.2 Adaptive Nonlinear Dynamic Data Reconcili-

ation ANDDR

Most dr methods assume gross-error free measurements and known statistical models,

but this is idealistic and difficult to find in real plants. The Adaptative NDDR +

GED was designed to work in cases where there is not a statistical model for the

noise and with data which may contain outliers. The method consists of applying

first the GEDR technique, explained above, to eliminate the undesired outliers and

subsequently to calculate a new standard deviation based on the new measurements.

In this case, measurements in the window are used to calculate the standard deviation

σc,i and the mean value m̂c,i. The method is based on an assumption of isolated gross

errors, this means gross errors do not happen in consecutive samples. The following

equations summarize the procedure:

dc,i = ỹc,i − m̂c−1,i (6.1)

If |dc,i| > 3σc−i,i then ỹc,i is a Gross Error (6.2)
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m̂c,i =
c∑

j=c−H

(
ỹi,j

H + 1
) (6.3)

σ̂c,i =

√√√√
c∑

j=c−H

(
(ỹi,j − m̂c,i)2

H + 1
) (6.4)

The flowchart presented in Figure 6.1 shows a review of the complete method con-

sisting of ANDDR and GEDR.
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Figure 6.1: ANDDR and GEDR flowchart [1]
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6.3 ANDDR + GEDR Results

This section shows the performance of the ANDDR + GEDR algorithm. The mea-

surements were obtained by simulation of the pilot plant and addition of gaussian

noise and non-random gross errors. The plant was ran for a time tf = 80 sec.; ini-

tially the plant starts at the nominal operating point and at time t = 50 sec. a positive

set point change of 2% is applied. Gaussian noise with zero mean and a standard

deviation of 1% is added to the simulated data. Different isolated non random errors

were added to every variable.

Figure 6.2 shows the results obtained when gross error are present in measurements.

The black line shows the true values, the green line represents the noisy measurements,

the red line corresponds to the estimates obtained when the ANDDR + GEDR al-

gorithm is used to implement the data reconciliation, and the blue line represents

the estimates obtained by applying the basic NDDR algorithm without gross error

detection. The interval 40 ≤ t ≤ 70 sec. is plotted, to more clearly show the benefit

of GEDR. As expected, both estimates contained far less noise than the simulated

measurements. In the case of ANDDR + GEDR estimates, the gross errors were suc-

cessfully detected and removed. However, it can be observed that there is a significant

effect of the gross errors in the basic NDDR results. The outliers produce substantial

deviations in the basic NDDR estimates for H points after the event. For example,

the input variable Foutsep−liq has gross errors at times t = 46.35 sec., t = 52.2 sec.,

t = 57.9 sec., and t = 66.6 sec. in the time span plotted; it can be observed that

at these times, the NDDR estimates (blue lines) are perturbed as long as the data

window contains the gross error.
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Figure 6.2: ANDDR + GEDR results with positive set point change
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A quantitative comparison between the noisy measurements, the basic NDDR sti-

mates and the ANDDR + GEDR estimates confirming the qualitative results men-

tioned above is presented in table 6.1. In every variable, GEDR produces a significant

decrease in noise standard deviation.

% Noise reduction % RMSE reduction
Variable NDDR ANDDR+GEDR NDDR ANDDR+GEDR

In
pu

ts

Foutsep−liq 69.72 83.67 62.93 83.40
Foutsep−vap 69.06 78.58 67.37 71.21
Fouttreat−wat 78.09 90.73 69.79 88.64
Fouttreat−oil 65.72 69.12 55.32 58.63
Fouttreat−vap 65.60 85.96 68.49 85.96

O
ut

pu
ts

Vsep−liq 68.51 85.96 68.49 85.96
Psep−vap 69.47 83.12 63.33 81.94
Vtreat−wat 77.76 88.70 73.14 88.65
Vtreat−oil 72.84 84.67 68.70 84.73
Ptreat−vap 49.91 82.19 43.71 80.09

Table 6.1: Comparison between NDDR and ANDDR+GEDR

This study was performed to confirm the value of GEDR, as proposed in [1]. The

approached was tested, and refined in order to make it more efficient to work in a

complex model such as the pilot plant.
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Chapter 7

Thesis Observations

Previous studies implemented DR and GED in academical models such as the jacketed

continuous stirred tank reactor. The focus of the present research was to extend

previous work on these techniques to implement them in a complex and realistic

model such as the pilot plant. Several problems that were not seen with academic

models, were presented, faced, and solved. Different tests were performed with the

NDDR algorithm presented by Laylabadi and Taylor [1] [4]. As a result, important

conclusions were obtained, which helped to refine and to implement more efficiently

the technique into the pilot plant model. A new hybrid approach was proposed and

tested. This new approach allows the technique to be applied into systems that do

not have a dynamic nonlinear model available. A SSD algorithm was developed and

implemented in the pilot plant as well. The algorithms developed in this thesis are

compatible with the ICAM System [5].

In this chapter a summary of the most important conclusions and contributions at-

tained from this thesis are presented, and future work is proposed.
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7.1 Conclusions

The following conclusions can be drawn from the work presented in this thesis:

1. An algorithm for steady-state detection was developed and successfully tested

on the pilot plant model using different scenarios. The algorithm can accurately

determine when a single variable and/or the complete system are in transient

or steady state conditions.

2. The steady-state algorithm was implemented as an agent which is compatible

to work in conjunction with the smart supervisory system [5]. The algorithm is

able to continually inform the supervisor about the state of the variables and

the state of the system overall.

3. Statistical methods fail at detecting steady-state for the pilot plant model. This

is due to the constraints imposed by the nonlinear model. The amount of

noise and set-point change allowed by the nonlinear model are limited and in

some cases these values can be very close. When the set-point change and the

standard deviation of the noise are similar, the statistics of the data cannot

provide a pattern that permit differentiating transient from steady state. The

method developed in this thesis can accurately establish the state of the plant

even when the set point change and the standard deviation of the noise are

equal.

4. The NDDR algorithm presented by Laylabadi and Taylor [1] [4] was imple-

mented and tested in the pilot plant model. The outcome of the different test

show that their approach used to tackle the optimization problem for the con-

tinuous stirred tank reactor (CSTR) or the Jacketed CSTR (JCSTR) models is

not efficient when it is applied to a more complex model such as the pilot plant

model.
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5. The ANDDR algorithm was refined by using a large-scale optimization algo-

rithm. The optimization routine used is based on the interior-reflective Newton

method and it requires the gradient of the objective function to perform the

minimization. The NDDR implemented with the large-scale algorithm provide

a robust, efficient and reliable data reconciliation for the separator model.

6. Applying the ANDDR technique to such a complex model as the pilot plant

is very expensive timewise. In order to reduce the computation time a hybrid

approach was developed and tested. This algorithm uses different methods to

perform the data reconciliation depending of the plant state (transient or steady

state). The effectiveness of the hybrid algorithm to reduce the computation time

depends on the availability of a simpler model for the steady state interval.

7. There are different parameters that affect the performance of the data recon-

ciliation algorithm. These parameters include the size of the history window,

the use of scaling, the initial guesses at the optimal solution, and the tolerance

of the optimization routine. The selection of these parameters was studied to

determine the effect on the efficiency of the algorithm.

8. The size of the history window is an important tuning parameter for the op-

timization routine. This parameter allows making a compromise between the

amount of noise reduction required and the computation time spent.

9. Good initial guesses at the optimal solution for the minimization problem can

help to obtain a faster optimization. The best performance was obtained when

the estimates at the previous step were used as initial guesses.

10. Using the large-scale optimization routine, the ANDDR and GEDR algorithm

were implemented on the separator model. Gross errors were detected and

removed. The reconciliation was performed successfully in scenarios with un-

69



known noise statistical model.

11. The ANDDR + GEDR algorithms were implemented as an agent compatible

with the ICAM supervisor system.

7.2 Future Work

There are two important steps to continuing with the developments undertaken in this

study. The first step is to develop a simpler steady state model based on material and

energy balance to be used as part of the hybrid algorithm. Using a simpler model will

help to reduce the computation time, and it will allow running the data reconciliation

algorithm in real time.

The second step will be the implementation of the two agents presented in this the-

sis using the actual data from the pilot plant facility at the College of North At-

lantic (CNA), which is part of the Petroleum Application of Wireless System (PAWS)

project. This will allow the SSD and ANDDR + GEDR agents to be tested in a real

industrial application.
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Appendix A

ANDDR+GED and SSD

Interaction with Multi-agent

Supervisory System

The figure presented in this appendix illustrates the communication and data ex-

change process between the ANDDR + GED Agent, Steady-state Agent and other

agents in the system, as discussed in chapter 2. This shows how my contributions fit

into the large and complex ICAM system.
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Appendix B

Simulation Model

The simulation model used for developing and testing the two algorithms presented

in this thesis consists of a two-phase separator followed by a three-phase separator or

treator. Gravity separators are hydrodynamic separation mechanisms used to remove

grit, heavy sediments, grease, debris and floatable matter from water and crude oil

through gravitational settling and trapping. In oil production facilities the function

of a separator is to divide the oil well stream into either two phases (gas and liquid

streams) or three phases (gas, crude oil and water). A separator works based on the

relatively low solubility of petroleum products in water and the difference between

the specific gravity of water and the specific gravity of petroleum compounds.

A nonlinear model and control system for the two phase separator followed by three

phase separator were developed by Sayda and Taylor [2]. This model corresponds to

the real pilot plant located at the College of North Atlantic (CNA) and was chosen

as a test bed for the paws project. This chapter describes the general operation of a

gravity separator, and the model implemented by Sayda and Taylor.
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B.1 Process Description

A two-phase separator operates on the same principles as a three-phase one, except

the liquid component is not separated into crude oil and water. We will focus here on

the more complex three-phase separator. The function of a three-phase separator is

to divide the water from the mixture of oil and water. A basic scheme of a separator

is shown in figure B.1.

Gas

Water

Inlet

Inlet
diverter

Gas Out

Oil Out

Water Out

Mist
extractor

Oil

Figure B.1: Three phase separator scheme

The fluid enters the device and collides with an inlet diverter; in this part of the

process occurs the first coarse separation of liquid and vapor. The inlet diverter

minimizes the amount of gas that remains in the liquid and assures that the liquid is

not going to flow above the gas/oil or oil/water interface. The vapor flows over the

inlet diverter to settle down above the liquid section. The gas may contain small drops

of liquid, which are then separated by gravity and fall to the gas-liquid interface. A

mist extractor is used to remove the remaining liquid from the gases before they are

pumped out.

B.2 Gravity Separator Mathematical Model

The purpose of this section is to show the three phase gravity separator mathematical

model developed by Sayda and Taylor. A brief explanation of the model and the
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equations are provided. For a complete description refer to [2].

The three phases of the separator are: Aqueous, oil and gas. The phases and the

different streams flowing between them are shown in figure B.2.
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1
h

F

1
g

F

Figure B.2: Separated component streams

The fluid injected into the separator Fin is a mixture of gas, oil and water with molar

fractions of Zg, Zo and Zw respectively. The hydrocarbon component is divided in two

different streams; Fh1, which separates by gravity and goes directly to the oil phase

and Fh2 that remains in the aqueous phase due to incomplete separation. The gas

component is divided as well into two streams Fg1 and Fg2; the former flows out of the

oil phase due to the pressure drop in the separator, and the second stays dissolved in

the oil phase. The dynamics of each phase of the separator were modeled separately.

B.2.1 The Aqueous Phase

The dynamic material balance equations of the aqueous phase are:

Fh1v =
ε(Zg + Zo)FinMwh

62.43SGh

Fh2v =
(1− ε)(Zg + Zo)FinMwh

62.43SGh

Fwout =
ZwFinMww

62.43SGw

+ Fh2v

dVwat

dt
=

FinMwin

62.43SGin

− Fwout − Fh1v
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In the previous equations, ε is the unseparated hydrocarbon fluid volume fraction,

Mwh, Mww and Mwin are the molecular weights for the hydrocarbon, water and

incoming mixture, Fh1v and Fh2v are the separated and unseparated volumetric flow

components of the hydrocarbon fluid, and SGh, SGw and SGin correspond to the

specific gravities. Vwat is the aqueous phase volume; and Fwout is the water discharge

volumetric outflow.

B.2.2 The Oil Phase

The separated hydrocarbon stream (Fh1) is composed by gas and oil (Zg1, Zo1). A

part of the gas is flashed to the gas phase and the other part remains in the oil phase.

Using the following equations is possible to find the quantity of flashing gas Fg1, the

amount of gas that stays dissolved in the oil phase Fg2 and the oil discharge flow

Foout:

x = P/Pv

Fg1 = (1− x)Zg1Fh1

Fg2 = xZg1Fh1

Foout = Fo + Fg2

dNoil

dt
= Fh1 − Fg1 − Foout

MwO1 = xMwg + (1− x)Mwo

SGO1 =
xMwgNoil + (1− x)MwoNoil

xMwgNoil
SGg

+ (1−x)MwoNoil
SGo

where x is the mole fraction of gas into the liquid phase, P is the total pressure of the

vapor phase, Pv is the vapor pressure of the gas, Zg1 is the gas molar fraction, Noil

is the number of liquid moles in the oil phase, Fo is the molar oil component in the

oil discharge flow Foout, Mwg and Mwo are the gas and oil molecular weights and

finally SGg and SGO are the gas and oil specific gravities.
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B.2.3 The Gas Phase

In the gas phase it is assumed that the gas in the vapor phase is an ideal gas. The

gas pressure is estimated from the ideal gas law:

dNgas

dt
= Fg1 − Fgout

Voil =
Mwo1Noil

62.43SGo1

Vgas = Vsep − Vwat − Voil

P =
NgasRT

Vgas

where Ngas is the number of gas moles in the gas phase, Fgout is the gas molar outflow

from the separator, Voil, Vgas and Vsep are the volumes of the oil phase, gas phase and

separator respectively. R is the universal gas constant and T is the absolute separator

temperature.

B.3 Pilot Plant Model

The plant model used in this thesis as the test bed simulation model is based on the

three-phase gravity separator as explained in section B.2, preceded by a two-phase

separator. The simulation model schematic is shown in figure B.3. The plant can

be observed as two different processes. The first part is a two-phase separator which

divides hydrocarbon fluids extracted from oil wells into two phases, gas and oil +

water. This separator is 15ft long and has a diameter of 5ft. To model this part of

the process one takes into account just the liquid and gas phases explained before.

The second process is a three-phase separator or treator, which takes the liquid pro-

duced previously and separates water and solids from oil. The oil produced is then

pumped out and sold to refineries and petrochemical plants. The length of the three-
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Figure B.3: Pilot Plant model, comprised of a separator and a treator

phase separator is 8.6ft and a diameter of 4.8ft.

Both separation processes are controlled to operate at their nominal values. The first

separation process uses two PI controller loops to maintain the liquid level and the

pressure inside the two-phase separator. The second process has three PI controller

loops to maintain the level of water/oil interface, the level of oil/gas interface and the

vessel pressure [2].
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Appendix C

SSD Algorithm Results

Figure C.1 illustrates the application of the SSD algorithm to the pilot plant model in

the scenario where the setpoint change and noise standard deviation are equal. In this

example the setpoint change is applied at time t = 0 sec. for all the variables. The

percentage of change in the setpoint is 2%, as is the σ. It is important to observe that

the method adopted to establish steady-state works properly even when the change

in the variable is the same as the noise.

Figure C.2 shows the performance of the algorithm for an scenario with positive and

negative set point changes. The plant starts at nominal operating point, and at the

time t = 100 sec. a set point change of −5% is applied to Vsep−liq. Afterwards, at time

t = 450 sec., Psep−vap has a set point variation of +10%. Later, at time t = 500 sec.,

there is a set point change of −2% in Vtreat−wat. Subsequently, Vtreat−oil has a set

point change of +10% at time t = 550 sec., and finally at time t = 650 sec. there is

a set point variation of −10% in Ptreat−vap.
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Figure C.1: SSD Separator Outputs - Setpoint change = Noise standard deviation
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Figure C.2: SSD Separator Outputs - Positive and Negative Setpoint change
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Appendix D

Comparison between NDDR and

low pass filtering

Figures D.1 and D.2 show the pilot plant response to the NDDR and to the low pass

filter for the variables Fouttreat−wat, and Fouttreat−oil. It can be observed that there

is a significant dynamic lag presented in the filtered signal.
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Figure D.1: Comparison NDDR Vs Filter for Fouttreat−wat
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