
Fault Detection, Isolation and Accommodation

Using the Generalized Parity Vector Technique

by

Maira Omana

Master of Science in Electrical Engineering, UNB, 2006
Bachelor in Electrical Engineering, UIS, 2001

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

In the Graduate Academic Unit of Electrical Engineering

Supervisor(s): James Taylor, Ph.D., Electrical and Computer Engineering

Examining Board: Chris Diduch, Ph.D., Electrical and Computer Engineering
Howard Li, Ph.D, Electrical and Computer Engineering
Rickey Dubay, Ph.D., Mechanical Engineering

External Examiner: N. Viswanadham, Ph.D, Executive Director
Centre for Global Logistics and Manufacturing Strategies
Indian School of Business

This thesis is accepted by the
Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

September, 2009

c©Maira Omana, 2009



To my love Shafyn, my soul mate and my inspiration.
To my parents, my aunt, my brother and my sister,

for their love and encouragement through the development of this thesis.

ii



Abstract

In real industrial processes continuous production is required to achieve productivity

and profitability requirements. As a result, stopping a production line suddenly in

the middle of a process, to fix or replace a faulty sensor, may produce significant

economic losses. Therefore, the current fault management strategy challenge is not

only to detect and isolate faults, but also to accommodate them, to keep the safe

operation in the plant while maintenance can be scheduled without significantly

disturbing the process.

This research extends the generalized parity vector (gpv) approach originally pro-

posed by Viswanadham, Taylor and Luce and continued by Omana and Taylor, to

offer a complete sensor fault detection, isolation and accommodation (fdia) tech-

nique viable for implementation in real industrial applications. Fault detection and

isolation is also provided for actuators.

A new systematic approach to implement a recursive on-line transformation ma-

trix computation block using optimization is developed. The calculation of this

transformation matrix represents an important contribution to the fdi field using

directional residuals because it eliminates the restriction on the number of faults that

previous researches were able to isolate and significantly increases fdi robustness.

The special case for sensor-actuator faults and the hyperplane intersection problem

are identified and solved by extending the objective function during the optimiza-

tion process to compute the transformation matrix. This modification significantly
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improves the isolation results by reducing the ambiguous cases produced by these

inevitable special geometrical situations given by the system dynamics. This is a

major contribution, because it identifies and overcomes these critical limitations of

fdi using directional residuals that previous researchers were not aware of. The

plant model availability issue is overcome by incorporating an on-line system iden-

tification module before executing the fdia block. This shows that while the gpv

approach is a model-based fdi technique, it is still viable for those plants where an

a-priori mathematical model is not available.

A fault management strategy is implemented using a novel fault-size estimation,

classification and accommodation method based on the static gpv magnitude sig-

nature. The proposed fault accommodation technique not only preserves closed-loop

stability, but also compensates the actual variable affected by the faulty sensor. A

initialization section is introduced to make this fdia technique capable of handling

model and operating point changes. The fdi robustness is significantly improved by

incorporating an on-line threshold computation block and combining the strengths

of the static and dynamic gpv implementations during the decision-making process.

In this work the fdia technique is successfully analyzed and simulated on a gravity

three-phase separation process used in oil production facilities. This model closely

simulates a large scale process, which allows the gpv technique to be validated in a

higher dimensional space with more complex system dynamics.
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Chapter 1

Introduction

1.1 Overview and literature review

The continuous and accelerating advances in process control have resulted in large

and complex plants, increasing the need of high performance fault management

strategies. As a result, fault detection, isolation and accommodation (fdia) has be-

come a critical issue for safe and reliable plant operation and reduction of economic

losses. Several techniques using quantitative model-based methods [1], qualitative

model-based methods [2] and history-based methods [3] have been developed. They

have attempted to achieve faster detection times with lower false alarm and misde-

tection rates during the fault isolation process, in the presence of noise and distur-

bances [4]. The suitability of each technique depends on the plant characteristics

and model availability.

A general description of a fault detection, isolation and accommodation system is

illustrated in Fig.1.1. In general, faults are deviations from the normal behaviour in

the plant or its instrumentation. Faults of interest are usually sensor and actuator

faults. There may also be disturbances, which are extra inputs acting in the plant

and can be measurable or immeasurable. Measurable disturbances can be com-
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pensated so fdi performance is not compromised [5], but unmeasured disturbances

cannot. Finally, if the size of a sensor fault can be estimated then it can be accom-

modated by correction [6], e.g. subtracting a bias fault from an erroneous sensor

reading. In this research we are considering only measurable disturbances. Once

the fdia block is executed, the resultant diagnosis is sent to the intelligent control

and asset management (icam) system supervisor to display the corresponding fault

alarms through the human interface.

CONTROLLER

FDIA
HUMAN

INTERFACE

ICAM SYSTEM

SUPERVISOR
SENSORPLANTACTUATOR

Fault DisturbancesReference input Fault

_
Correction

Figure 1.1: Description of an fdia system

This thesis focuses on the development of a model-based approach using a parity

equation implementation of directional residuals for solving the fdia problem. The

research on the fault detection and isolation problem using model-based approaches

dates back to the 1970’s, when the aerospace fault detection community introduced

the concept of analytical redundancy. The basic idea of the analytical redundancy

approach is to compare the actual behaviour of the plant with that predicted by a

mathematical plant model [7], [8], [9], [10]. The resulting inconsistency is called the

residual, which should be close to zero when no fault occurs. However, it shows a

significant change when abnormal plant behaviour is detected [11].

In 1976, dynamic parity relations were introduced by Willsky [10], yielding a sys-
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tematic development of analytical redundancy provided by the mathematical model

of the plant. Later on, Chow and Willsky [7] proposed a procedure to generate par-

ity equations from the state-space representation of a dynamic system. Gertler and

Singer [12] extended it to statistical isolability under noisy conditions and general-

ized the isolability criteria by simultaneously minimizing the sensitivity of residuals

to small drifts in cases having only additive plant faults.

While previous approaches were able to detect the faults of a system, there was a

need to generate enhanced residuals, which were not only fault sensitive but also

fault selective. For the purpose of isolation, Viswanadham, Taylor and Luce [13]

introduced the generation of directional residuals using the generalized parity vector

(gpv) technique. The idea of this approach is that each failure will result in activity

of the parity vector along certain directions or in certain subspaces [13], [14], [15]

and [16]. Therefore, fault isolation amounts to determining which predefined fault

direction the parity vector is most nearly aligned with.

As another strategy for solving the isolation issue, a structural residual approach

was proposed by Gertler and Singer [12]. This approach is characterized by selective

fault responses; any residual responds only to a specific subset of faults, and to any

fault only a specific subset of the residuals responds. Structured residuals are tested

individually, in parallel, against pre-defined thresholds. The outcome of each test

is fired/not fired, usually represented by the binary values “1” and “0”. The set or

vector of simultaneous test bits is the observed binary fault signature or fault code

[11].

In parallel, several researches in the area of model-based fdi looked into the pos-

sibility of applying Kalman filters to solve fault detection and isolation problems.

The Kalman filter idea can be traced to R.K. Mehra and J. Peschon (1971) of Sci-

entific Systems Inc [17]. Other early contributors include Bernard Friedland (1979),
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then with the Singer Company [18], and Garru Leininger (1981), then at Purdue

[19], followed by Michelle Basseville (1985) of IRISA, France [20], and by Ramine

Nikoukhah (1994) of INRIA, France [21], among others [11]. The idea of this model-

based fdi technique is that a bank of Kalman filters designed on the basis of all the

available possible system models under all possible changes can be used for isolation

purpose [1], [22], [23]. This approach uses multiple estimators, each of which is

designed for detecting a specific fault. Since each estimator is designed based on a

specific hypothesis such as the failure of a single sensor or actuator, all the estima-

tors except the one using the correct hypothesis will produce large estimation errors

when a fault occurs. By monitoring the residual of each estimator, the specific fault

that has occurred can be detected and isolated.

Although quantitative model-based approaches have made an impact in mechanical

and aeronautical engineering applications, they have had little impact in process

industries [3]. One of the major advantages of using quantitative model-based ap-

proaches is that we will have some control over the behaviour of the residuals.

However, several factors such as system complexity, high dimensionality, process

nonlinearity and/or lack of good data often render it very difficult or even impracti-

cal to develop an accurate mathematical model for the system. This has limited the

usefulness of this approach in real industrial processes [1]. In the present work, an

on-line system identification (sid) agent has been proposed to overcome the model

availability issue and evaluate the gpv performance in the absence of an a-priori

mathematical model.

Fault accommodation is a crucial part of the fault management strategy as it mini-

mizes the economic losses due to sudden interruptions in the plant operation caused

by faulty sensors. Several techniques have been proposed during the past decades

for fault tolerant control (ftc) systems design [24], [25], [26], [27]. In [24] process

fault accommodation for nonlinear continuous-time systems is proposed by imple-

4



menting a new fault estimation module based on an adaptive estimator. Then a

fault tolerant controller is constructed to compensate for the effect of the faults by

stabilizing the closed-loop system. For lti systems a fault accommodation strategy

is proposed in [25]. The accommodation scheme is based on the generalized inter-

nal model control architecture for fault tolerant control. In order to improve the

performance after a fault, the compensation is considered in two steps according

with a fault detection and isolation algorithm. After a fault scenario is detected a

general fault compensator is activated. However, once the fault is isolated, a spe-

cific compensator is introduced. As another approach, an analytical model-based

control redesign for fault accommodation is proposed in [26]. The complete fault

accommodation system includes a dynamic process model, fault detection and isola-

tion, fault identification and state estimation, and a dynamic optimization module

for control redesign. State estimation is implemented using a pseudomeasurement

strategy based extended kalman filter and the dynamic optimization problem is

solved through the control parametrization or the simultaneous approach.

Another approach for fault accommodation is sensor measurement replacement

based on analytical redundancy using observers and neural networks [28], [29], [30].

In [28], neural networks are used to provide analytical redundancy, from which resid-

uals are generated, enabling the detection of failures on sensor measurements. Upon

detection of a failure, the faulty signal is replaced by the neural network based esti-

mate, commonly known as soft sensor. Similar results are presented in [29], where

the actual size of each fault is estimated by a multilayer perceptron neural network

used as a nonlinear function approximator. A method of sensor validation using

nonlinear minor-component analysis is proposed in [30] as a theoretical basis for a

sensor fdi module in a fault-tolerant control system. Once a fault in a sensor or any

other component is detected and isolated, the fault-tolerant control system would

automatically reconfigure itself to compensate for the effect of that fault to maintain
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acceptable control performance of the plant even in the presence of faults. In the

case of a faulty sensor, the system would utilize any available analytical redundancy

among all sensor signals to estimate the value of the physical quantity desired to be

measured by that sensor, and that value would then be used for feedback control.

Although satisfactory fault accommodation results have been shown for some appli-

cations using the proposed methods, some of them are highly dependant on model

accuracy or failed to accommodate faults that are quickly rejected by the controller.

For this type of faults, close loop stability is not an issue because the controller is

able to quickly drive back all the measured variables to their corresponding setpoint

values. However, the actual value of the variable corresponding to the faulty sensor

is not at its setpoint, affecting the actual system’s output. To improve some of the

limitations of these methods, this research has developed two new approaches for

fault accommodation using the gpv technique.

1.2 Comparison between different FDI method-

ologies

Quantitative model-based methods, such as parity space and observer-based ap-

proaches, have several desirable characteristics. If complete knowledge of all inputs

and outputs of the system, including all forms of interactions with the environment

are available, fault diagnosis using quantitative methods would be a well defined

problem, regardless of the number of components or faults present. However, some

of the limitations of model-based approaches are the difficulties related to model-

ing and the fact that they do not support an explanation facility owing to their

procedural nature.

The type of models the analytical approaches can handle are limited to linear and
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some very specific nonlinear models. For some nonlinear models, linear approxima-

tions can be poor and hence the effectiveness of these methods might be greatly

reduced. For methods like the Kalman filter, when a large-scale process is consid-

ered the size of the bank of filters can be very large, increasing the computational

complexity. This suggests that it would be efficient to use qualitative abstraction

hierarchies to quickly reduce the focus of diagnosis and then use filter banks in the

region of focus.

Rule-based expert systems can be used where fundamental principles are lacking and

there is an abundance of experience but not enough detail is available to develop

accurate quantitative models. Causal models are a very good alternative when the

quantitative models are not available but the functional dependencies are under-

stood. Abstraction hierarchies help to focus the attention of the diagnostic system

quickly to problem areas. One of the advantages of qualitative methods based on

deep knowledge is that they can provide an explanation of the path of propagation

of a fault. This is very important when it comes to decision-support for operators.

They can also guarantee completeness in that the actual fault will not be missed in

the final set of faults identified. However, they suffer from the resolution problems

resulting from the ambiguity in qualitative reasoning.

Pattern recognition approaches or classifiers are constructed generally from historic

process data. Neural network architectures, such as radial basis function networks

and ellipsoidal unit networks, have been demonstrated to perform well in terms of

robustness to noise and isolability requirements. However, the limitation of methods

which are based solely on historic process data is their generalization capability

outside of the training data. Besides its lack of ability to generalize to unfamiliar

regions of measurements space, networks also have a difficulty with multiple faults.

This brings out a crucial point of distinction between model-based approaches and
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classifiers based on historic process data. In the case of qualitative model-based

approaches, the combinatorial complexity is unavoidable and can only be partly

alleviated with efficient search. Because of the combinatorially many multiple fault

combinations, the search for multiple faults by specifying them explicitly as different

classes and obtaining training patterns for them is not feasible. The general limita-

tion of process history based methods is not in the classifiers that are available to

them, but in the availability of only a finite sampling of the distribution of the class

data in the measurement space.

From an industrial point of view, two of the most important considerations for

fdi are the adaptability of the systems and ease of deployment. Process plants

rarely remain invariant with periodic minor changes in operating policy, retrofit

design and so on. Once a diagnostic system is deployed, it should be able to adapt

with minimal effort as new situations are encountered and the scope of the system is

expanded. One of the important points that the comparison in this section has tried

to emphasize is that no single method is adequate to handle all the requirements

for a diagnostic system. Though all the methods are restricted, in the sense that

they are only as good as the quality of information provided, it was shown that

some methods might better suit the knowledge available than others. Thus, some of

these methods can complement one another resulting in better diagnostic systems.

Integrating these complementary features is one way to develop hybrid methods that

could overcome the limitations of individual solution strategies. As an example,

fault explanation through a causal chain is best done through the use of digraphs,

whereas, fault isolation might be very difficult using digraphs due to the qualitative

ambiguity and so analytical model-based methods might be superior. Hence, hybrid

methods might provide a general, powerful problem-solving platform [3].

Based on this idea of hybrid methods, three different approaches were considered

for fdi implementation in the initial design stage of the intelligent control and
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asset management of oil and gas production facilities research proposed in [31].

One of them was the generalized parity vector approach, which is the model-based

technique presented in this thesis. The other two approaches provided fault diagnosis

using digraphs [32] and Neuro-fuzzy [33] based methods respectively. These three

techniques were successfully implemented and tested using the jacketed continuously

stirred tank reactor (jcstr) model presented in appendix B. However, from the fdi

design experience with each of them, it was clear than only the gpv approach was

viable for implementation in larger and more complex plants.

The design stage using digraphs and neuro-fuzzy logic was very complex and time

consuming even for the simple jcstr three-input/three output model used as a case

study. Thus, it was evident that as the number of faults to identify in the system

increases, the practical implementation of these two methods was significantly re-

duced. Taking into consideration the scope of the petroleum applications of wireless

systems (paws) project and the strengths and limitations of these methods, it was

decided that the gpv technique was the most viable approach for fdi in the final

icam system supervisor prototype proposed in [34]. The overview for the paws

project and the icam system supervisor is presented in chapter 4.

1.3 Contributions of this thesis

This thesis extends our previous work presented in [5], [6], [35], [36] and [37] to

provide a robust fdia technique based on the gpv approach, capable of accommo-

dating sensor faults and viable for industrial implementation despite the usual lack

of model availability. This is achieved by significantly extending and developing the

proposed fdia software to allow on-line initialization having as available information

only input-output data and the system time constants. The initialization section

makes this fdia technique feasible for implementation in systems where new iden-
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tified models need to be computed on-line for different operating points. To take

into account this situation, we also propose a system identification agent with fdia

self-diagnosis based on the identified model’s quality. This module plays a critical

role because it allows the implementation of the gpv technique in the absence of

an a-priori mathematical model, which is often the case in real industrial processes.

This represents a significant advance in the scope of application of quantitative

model-based approaches in process industries because it overcomes real industrial

limitations, such as such as using identified models with limited percentage of fitting

due to the complexity of the system.

In the present work we introduce a new systematic approach to implement a re-

cursive on-line transformation matrix computation block using optimization. The

calculation of this transformation matrix represents a major contribution to the fdi

field using directional residuals because it eliminates the restriction in the number

of faults that previous researches in this area were able to isolate. It also im-

proves significantly the fdi robustness and makes the proposed method a viable

implementation for systems where the identified model requires on-line changes to

accommodate nonlinear behaviour.

Through the course of this research we also uncovered the special case for sensor-

actuator faults and the hyperplane intersection problem, which are inevitable special

geometrical situations given by the system dynamics, that result in ambiguous iso-

lation when ignored. However, in this thesis we solve these issues by extending the

objective function during the optimization routine to compute the transformation

matrix. This modification significantly improves the isolation results by reducing

the ambiguous cases produced by these special geometrical situations. This is a

major contribution because it identifies and overcomes these critical limitations of

fdi using directional residuals that previous researchers were not aware of.
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The use of the static gpv is proposed to implement two novel fault-size estimation

and classification algorithms and improve the decision-making logic. By combining

the complementary strengths of the static and dynamic gpv implementations, the

detection time and ambiguous isolation cases are significantly reduced. The main

contribution of our fault accommodation method over the traditional measurement

replacement using observers is that it is less sensitive to modeling errors. Despite

being a model-based approach, our technique for fault-size estimation does not cal-

culate the fault size (Fsize) or the correct sensor measurement directly from the

model. Instead, Fsize is computed based on the change in the delta of static |GPV |
signature, which is proportional to the size of the fault.

The proposed gpv technique provides excellent fdia results, satisfactory robust-

ness with respect to noise for scenarios with reasonably large signal to noise ratio

(snr) and significantly shorter computation time than similar methods like Kalman

filters. The shorter computation time is crucial for real-time fdi implementation

in fast industrial processes, making the gpv technique a more viable option for

these situations. Also, the fact that our fdia technique can be fully designed on-

line makes it easy to deploy and adapt to changes in real industrial processes. In

this section the major contributions of this thesis have been highlighted. However,

chapter 10 presents a more detailed description of this research contributions.

1.4 Thesis organization

This thesis is outlined as follows: first, a general overview of stable factorization and

its application to implement the static and dynamic gpv is presented in chapter 2.

Next, in chapter 3, fault isolation using directional residuals for sensor and actuator

faults is presented, together with the implementation of disturbance decoupling.

The system overview and the interaction between the proposed fdia strategy and
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the icam system supervisor are summarized in chapter 4, followed by the sid agent

design guidelines in chapter 5. Chapter 6 proposes an on-line calculation of an

optimal transformation matrix to enhance the fdi properties.

In chapter 7, an improved decision-making logic is described and the gpv signature

concept is introduced. Chapter 8 defines the fault size estimation and accommoda-

tion methods using the gpv approach and shows the simulation results illustrating

the capabilities of the complete fdia strategy. Finally, chapter 9 evaluates the

fdia robustness with respect to noise and propose some modifications to improve

the tradeoff between detection time and sensitivity to high frequency influences.

Some relevant simulation results are also included in each chapter to clarify and

demonstrate the different aspects discussed in the corresponding section.
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Chapter 2

Residual Generation Using the

Generalized Parity Vector

Technique

2.1 Introduction

Quantitative model-based fdi methods rely on the comparison of a system’s avail-

able measurements, with a priori information represented by the system’s mathe-

matical model. There are two main trends of this approach: analytical redundancy

or residual generation methods and parameter estimation approaches [16]. In the

present work, the fdi methodology is developed based on residual generation.

Since quantitative model-based methods for fdi are developed based on some funda-

mental understanding of the physics of the process, fdi using analytical redundancy

methods is a viable implementation for systems where a priori knowledge is available

in terms of mathematical functional relationships between the inputs and outputs

of the system [1]. However, in chapter 5, it will be shown that quantitative model-

based techniques using residual generators are feasible even for those systems where
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the only available information is input-output data.

While there are several methods for residual generation, this work is focused on

residual generation using the generalized parity vector (gpv) technique, which is

developed in the stable factorization framework. Before introducing the gpv con-

cept, some of the fundamental mathematics of stable factorization are outlined in

this chapter.

2.2 Stable factorization

The significance of using the stable coprime factorization approach is that the parity

relations obtained involve stable, proper and rational transfer functions even for

unstable plants. Therefore the realizability and stability of the residual generator is

guaranteed. Given any n×m proper rational transfer function matrix P (s), it can

be defined in terms of its right and left stable coprime factors as follows [38]:

P (s) = N(s)D(s)−1 (2.1)

P (s) = D̃(s)−1Ñ(s) (2.2)

where N(s) and D(s) are said to be right coprime factors, and Ñ(s) and D̃(s)

are called the left coprime factors. All factors belong to the set of stable transfer

function matrices. For both cases, this implies that the matrix extension of the

Bezout identity holds [39]:

X(s)N(s) + Y (s)D(s) = I (2.3)

X̃(s)Ñ(s) + Ỹ (s)D̃(s) = I (2.4)

where X(s), Y (s), X̃(s) and Ỹ (s) are also in the set of stable transfer function ma-

trices; refer to [39] for further information. Equating the left and right descriptions

of P (s) given in equations (2.1) and (2.2), the following identity holds:

D̃(s)N(s)− Ñ(s)D(s) = 0 (2.5)
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Combining the identities in equations (2.3), (2.4) and (2.5), the double coprime

factorization of P (s) is defined as follows:




Y (s) X(s)

−Ñ(s) D̃(s)







D(s) −X̃(s)

N(s) Ỹ (s)


 =




I 0

0 I


 (2.6)

The two block matrices in the left-hand side of (2.6) are unimodular, and each

one is the inverse of the other. A unimodular matrix is a real square matrix with

determinant equal to one. More generally, a matrix with elements in the polynomial

domain F (s) is called unimodular if it has an inverse whose elements are also in F (s).

A matrix is therefore unimodular if its determinant is a unit of F (s). As a result,

the matrix inverse of a unimodular real matrix is another unimodular matrix [40].

Equation (2.6) is called the generalized Bezout identity [13].

2.2.1 Stable factors from state-space representations

The gpv technique is based on the stable factorization of the system transfer func-

tion matrix in terms of its state-space representation. The following is an abstract

from Vidyasagar, [39]: Let the system be described by the set of equations:

ẋ(t) = Ax(t) + Bu(t) + Gd(t) (2.7)

y(t) = Cx(t) + Eu(t) (2.8)

where x, u, d, and y represent the state variables, inputs, disturbances and outputs

of the system, respectively, and A,B, G, C, E are matrices of compatible dimensions.

The following derivations in this section are obtained assuming d = 0. The effect

of disturbances will be analyzed in section 3.5 and the corresponding modifications

to the left coprime factors computation will be presented there. The input/output

transfer matrix of this system is thus:
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P (s) = C(sI − A)−1B + E (2.9)

The objective is to derive a doubly coprime factorization of P , as it is given in

Theorem (2.2.1) by Vidyasagar, [39]. Before introducing this theorem, we define

some terminology involved in it.

Definition 2.2.1. Given the system (2.7)-(2.8), the matrix pair (A,B) is said

to be stabilizable if for every initial condition it is possible to find an input that

asymptotically steers the state x(t) to the origin. Therefore, there always exists a

matrix K such as A−BK is asymptotically stable [41].

Definition 2.2.2. Given the system (2.7)-(2.8), the matrix pair (A,C) is said to be

detectable if all the unobservable modes are stable. Therefore, there always exists a

matrix F such as A− FC is asymptotically stable [41].

Theorem 2.2.1. Given the system (2.7)-(2.8), suppose the pairs (A,B) and (A,C)

are stabilizable and detectable, respectively. Select constant matrices K and F , such

that the matrices Ao : A−BK, Ão : A−FC are both Hurwitz. Then P = NpD
−1
p =

D̃−1
p Ñp and 


Y X

−Ñp D̃p







Dp −X̃

Np Ỹ


 =




I 0

0 I


 (2.10)

where the various matrices are defined as follows [39]:

Ñp = E + C(sI − Ão)
−1(B − FE) (2.11)

D̃p = I − C(sI − Ão)
−1F (2.12)

Np = E + (C − EK)(sI − Ao)
−1B (2.13)

Dp = I −K(sI − Ao)
−1B (2.14)

X = K(sI − Ão)
−1F (2.15)

Y = I + K(sI − Ão)
−1(B − FE) (2.16)

X̃ = K(sI − Ao)
−1F (2.17)

Ỹ = I + (C − EK)(sI − Ao)
−1F ¥ (2.18)
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Using the definition given in equations (2.11) and (2.12), the left coprime factors

Ñp and D̃p are renamed for simplicity hereafter as Ñ and D̃. Also, to ease the

mathematical derivations, it is assumed that the state space matrix E in equation

(2.8) is equal to zero, implying that the plant input/output transfer matrix is strictly

proper. Based on these assumptions the left coprime factors are rewritten as follows:

Ñ = C(sI − Ão)
−1B (2.19)

D̃ = I − C(sI − Ão)
−1F (2.20)

2.3 Generalized parity vector technique

Consider the linear time invariant plant depicted in Fig. 2.1, which is described by

the n ×m transfer function matrix P (s). Let ud be the desired or correct control

input and u be the actual plant input (output of the actuator). The relation between

u and ud is given by equation (2.21):

u(t) = ud(t) + a(t) (2.21)

where a(t) is a time-varying vector with elements ai(t) representing various failure

modes of the ith actuator. Similarly, let yd be the actual output of the plant (desired

or correct sensor output) and y to be the actual output of the sensor. The relation

between these variables is expressed in equation (2.22):

y(t) = yd(t) + s(t) (2.22)

where s(t) is a time-varying vector with elements si(t) representing sensor failures.

As noted, the development here assumes noise-free signals; the effects of noise are

considered in chapter 9. The variables ud, y and d are “external” or available for fdi,

while u and yd are “internal” or inaccessible. In this research we have considered

only measurable disturbances, which is often the case for processes that are affected
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by external inputs that are not controlled by the system. Clearly, the presence of

unmeasured disturbances may defeat any fdi method that monitors ud and y. The

relationship among these signals is depicted in Fig. 2.1.

d d

Figure 2.1: LTI system with disturbances, sensor and actuator failure models, noise-
free case

Based on the system in Fig. 2.1, the definition of the transfer function matrix P (s)

given in equation (2.2) and taking the relationship among the desired control input,

ud, and the actual output of the sensors, y, the following fault-free relations are

obtained:

P (s) = D̃(s)−1Ñ(s) = Y (s)Ud(s)
−1 (2.23)

D̃(s)Y (s)− Ñ(s)Ud(s) = 0 (2.24)

Under ideal conditions, when the plant is linear, noise and fault free, equation

(2.24) holds. However, when a fault happens, this relation is violated, showing the

inconsistency between the actuator inputs and sensor outputs with respect to the

unfailed model. Using this fact, the generalized parity vector, p(s), is defined as:

p(s) = Tr[D̃(s)Y (s)− Ñ(s)Ud(s)] (2.25)

where the transformation matrix Tr is discussed below. Using the definitions in

Theorem (2.2.1) and equations (2.19) and (2.20) the gpv can be rewritten in terms

of the state space matrices as follows:

p(s) = Tr

{
[I − C(sI − A + FC)−1F ]Y (s)− [C(sI − A + FC)−1B]Ud(s)]

}
(2.26)
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The gpv p(t) = L−1[p(s)] is of small magnitude under normal operating conditions,

if modeling errors and noise effects are small enough. However, when a failure occurs,

the gpv exhibits a significant magnitude change, which depends on the fault size.

Each distinct fault produces a parity vector with different characteristics, allowing

the use of the gpv for isolation purposes. The effect of modelling error is important;

we address it by obtaining the best possible identified model (see chapter 5) and by

adapting decision thresholds accordingly. The effect of noise in the gpv behaviour

and how this affect the fdi results are discussed in detail in chapter 9.

A transformation matrix Tr is introduced in equation (2.25) to improve fault isola-

bility. The present work is focused on fault diagnosis using the direction of the

parity vector under various failure conditions. We assume hereafter that Tr is con-

stant, and that F in equations (2.19) and (2.20) is chosen such that Ão = −σI

where possible (which can always be done if (A,C) is observable and C is a square

matrix); this simplifies our discussion of gpv behaviour [13]. However, the static

and dynamic gpv implementations are also possible for rectangular C matrixes by

choosing an F matrix with proper dimensions that satisfies Definition (2.2.1) and

Theorem (2.2.1); Ão = −σI is most convenient as it yields just one tuning param-

eter, σ. This is illustrated in section 5.4 where the gpv technique was successfully

implemented using a rectangular identified model of a separation process with 5

inputs/outputs and 10 states and also in the paper by Viswanadham and Taylor

[13], where the gpv approach was effectively applied to the GE-21 turbine engine

using a rectangular model with 3 inputs/outputs and 2 states.

2.4 Time-domain implementation

In the time-domain the gpv can be implemented using either a static or dynamic

approach as presented in sections 2.4.1 and 2.4.2, each one exhibiting different fea-
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tures. These differences allow us to combine both implementations to enhance the

detection, isolation and accommodation capabilities of the parity vector technique.

These aspects will be discussed in more detail in chapter 7.

2.4.1 Dynamic parity vector

The gpv can be implemented as a detection filter whose numerator Ñ and denom-

inator D̃ in equation (2.23) are represented by the following general state space

models respectively:

ẋN(t) = ANxN(t) + BNuN(t) (2.27)

yN(t) = CNxN(t) + ENuN(t) (2.28)

ẋD(t) = ADxD(t) + BDuD(t) (2.29)

yD(t) = CDxD(t) + EDuD(t) (2.30)

Taking the Laplace transform of equations (2.27) to (2.30) and solving for XD(s) =

L(xD(t)) and XN(s) = L(xN(t)), the following relations are obtained:

sXN(s) = ANXN(s) + BNUN(s) ⇒ XN(s) = (sI − AN)−1BNUN(s) (2.31)

YN(s) = CNXN(s) + ENUN(s) (2.32)

sXD(s) = ADXD(s) + BDUD(s) ⇒ XD(s) = (sI − AD)−1BDUD(s) (2.33)

YD(s) = CDXD(s) + EDUD(s) (2.34)

Given that the residual vector output from the failure detection filter is given by

p = YD − YN , p(s) can be rewritten by substituting equations (2.31) to (2.34) and

properly grouping terms as follows:

p(s) = [ED + CD(sI − AD)−1BD]UD(s)− [EN + CN(sI − AN)−1BN ]UN(s) (2.35)

Comparing equation (2.35) with the definition of the parity vector given in terms of

the left coprime factors in equation (2.25), the following relations are established:
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Tr(s)Ñ(s)ud(s) = [EN + CN(sI − AN)−1BN ]UN(s)

= Tr[C(sI − Ão)
−1B]ud(s) (2.36)

Tr(s)D̃(s)y(s) = [ED + CD(sI − AD)−1BD]UD(s)

= Tr[I − C(sI − Ão)
−1F ]y(s) (2.37)

Equating terms in equations (2.36) and (2.37), the state space matrices for the

numerator dynamics given by equations (2.27) and (2.28) and the denominator

dynamics given by equations (2.29) and (2.30) can be defined as:

AN = Ão

BN = B

CN = TrC

EN = [0]

UN = ud (2.38)

AD = Ão

BD = −F

CD = TrC

ED = TrI

UD = y (2.39)

In general Ão is defined as Ão = A − FC, where F must be chosen such as Ão is

stable. However, if C is the identity matrix (which is often the case), F = σI +A is

a convenient choice, where σ is a real tuning parameter to be chosen based on the

process poles and it determines the speed of the detection filter. For an arbitrary C

matrix, F is chosen such as Definition (2.2.1) and Theorem (2.2.1) are satisfied.

Using the residual vector output definition p = YD − YN from the failure detection

filter and the state space matrices obtained in equations (2.38) and (2.39), the

gpv can be implemented by solving the set of differential equations for yD(t) =

L−1(YD(s)) and yN(t) = L−1(YN(s)) defined by (2.27) to (2.30). In this research the

dynamic gpv has been implemented by discretizing equations (2.27) to (2.30) using

the zero order hold method [42]; this is simpler, faster and more practical compared

with a continuous-time implementation.
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2.4.2 Static parity vector

The static parity vector provides a steady state implementation for the gpv. This

approach has some advantages with respect to the dynamic formulation in terms of

detection speed and fault size estimation and classification. Also, the static imple-

mentation is computationally simpler, since it does not involve solving differential

equations or discretization. These aspects will be discussed and illustrated in more

detail in chapter 7.

In order to derive the static gpv implementation, it is assumed an additive actuator

fault a(t) of the form described in equation (2.21). Substituting equation (2.21) into

(2.25) and noting that D̃y − Ñud = 0, the following relation is obtained:

pa(s) = −(TrÑ)a(s) (2.40)

To demonstrate the directional behaviour of the residual, consider a step or actuator

bias failure. Since Ñ(s) and D̃(s) are stable matrices, the steady-state parity vector,

pss, can be computed using the final value theorem [13] according to equation (2.41).

p ss = lim
s→0

sp(s) = lim
t→∞

p(t) (2.41)

Thus, for a constant actuator bias fault of magnitude b, the pss
a is given by:

p ss
a = lim

s→0

{
− TrÑ

[
b

s

]
s

}
= lim

t→∞
p(t) (2.42)

= −TrÑ(0)b (2.43)

Similarly, for the sensor case, it is assumed an additive bias fault s(t), of magnitude

c and the form described in equation (2.22). Based on the same assumptions used

for the actuator case, the steady-state gpv is computed as follows:

ps(s) = (TrD̃)s(s) (2.44)

p ss
s = lim

s→0

{
TrD̃

[c

s

]
s

}
= lim

t→∞
p(t) (2.45)

= TrD̃(0)c (2.46)
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2.5 GPV relation with Kalman filter

The Kalman filter is a recursive algorithm for state estimation that has found wide

applications in chemical as well as other industrial processes. The Kalman filter in

state-space model is equivalent to an optimal predictor for a linear stochastic system

in the input-output model. The essential Kalman filter theory can be summarized

briefly as follows.

Consider the linear finite dimensional stochastic system governed by the following

state space model [1]:

x(t + 1) = Ax(t) + Bu(t) + w(t) (2.47)

y(t) = Cx(t) + v(t), t ≥ 0 (2.48)

where x(t) is n-dimensional vector, A,B and C are matrices with suitable dimen-

sions, x0 has mean x̄0 and covariance Σ0. In order for the Kalman filter to converge,

the matrix pair (A,C) must be observable. The random variables w(t) and v(t)

are independent gaussian white noise sequences representing the process and mea-

surement noise, with expected values (means) E{w(t)} = 0, E{v(t)} = 0 and the

covariance matrix:

E

{(
w(t)

v(t)

)
(wT (τ), vT (τ))

}
=

(
Q S

S ′ R

)
δt−τ (2.49)

where δt−τ is Kronecker’s delta function. In the actual implementation of the filter,

the measurement noise covariance R is usually measured prior to operation of the

filter; this is generally practical (possible) because we need to be able to measure

the process output anyway (while operating the filter) so we should generally be

able to take some off-line measurements in order to determine the variance of the

measurement noise. The determination of the process noise covariance Q is generally

more difficult, as we typically do not have the ability to directly observe the process

we are estimating. In practice, Q and R might change with each time step or
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measurement, however here we assume they are constant [43]. The optimal Kalman

filter estimates the state x(t + 1) based on the observed data y(t) and u(t) by

minimizing the function:

J = lim
t→∞

E(eT (t)e(t)) (2.50)

where e(t) is the estimation error and it is defined as:

e(t) = y(t)− Cx̂(t) (2.51)

Assume the initial state and noise sequences are jointly Gaussian. Consider the

estimator x̂(t + 1) = E{x(t + 1)|y(t), ..., y(0), u(t), ..., u(0)}. Then, the filtered state

x̂(t + 1) is given by:

x̂(t + 1) = Ax̂(t) + Bu(t) + K(t)[y(t)− Cx̂(t)]; x̂0 = x̄0 (2.52)

The Kalman filter gain K(t) is given by:

K(t) = [AΣ(t)CT + S][CΣ(t)CT + R]−1 (2.53)

where Σ(t) is a n× n state error covariance matrix. Under conditions where Q and

R are in fact constant, both the state error covariance and the Kalman gain will

stabilize quickly and then remain constant. If this is the case, these parameters can

be pre-computed by either running the filter off-line, or, for example, by determin-

ing the steady-state value of Σ(t) as described in [44]. For this scenario Σ(t) and

K(t) would be constant matrices which would give the Kalman filter the maximum

computation efficiency. Since this section is presenting the basis to compare the fdi

performance in terms of computation time for the gpv and Kalman filter methods,

we assume from now on that K(t) and Σ(t) in equations (2.52)and (2.53) are con-

stant. This assumption will provide a more fair comparison between the gpv and

Kalman filter methods.

Now that the basis for the Kalman filter theory has been presented, we proceed

to show that the Kalman filter estimation error is equivalent to the gpv definition
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given in equation (2.25) [13]. First, let us rewrite equation (2.52) in a differential

form assuming a constant Kalman gain:

˙̂x(t) = Ax̂(t) + Bu(t) + K[y(t)− Cx̂(t)] (2.54)

Taking the Laplace transform of equations (2.51) and (2.54) and solving for x̂(s)

the following relations are obtained:

e(s) = y(s)− Cx̂(s) (2.55)

sx̂(s) = Ax̂(s) + Bu(s) + K[y(s)− Cx̂(s)]

⇒ x̂(s) = (sI − A + KC)−1Bu(s) + (sI − A + KC)−1Ky(s) (2.56)

Substituting equation (2.56) into (2.55) and rearranging terms, the estimation error

can be rewritten as:

e(s) = y − C[(sI − A + KC)−1Bu(s) + (sI − A + KC)−1Ky(s)]

e(s) = [I − (sI − A + KC)−1K]y(s)− C[(sI − A + KC)−1B]u(s) (2.57)

The Kalman gain matrix K in equation (2.57) is chosen such that the a posteriori

error covariance is minimized and the filter is stable. Similarly, matrix F in equation

(2.26) is chosen such as Ão : A−FC in theorem (2.2.1) is stable. Then, by comparing

equations (2.57) and (2.26) for the untransformed case (Tr = I), it can be established

that the Kalman filter estimation error is equivalent in form to the gpv definition.

As a result, the computation time required to run one Kalman filter or the gpv for

a given system is the same, assuming that K has been previously computed off-line.

If K has to be computed on-line, the computation time for the Kalman filter is

longer. This is an important result which will be used in section 3.7 to compare

the fdi performance for the gpv and Kalman filter methods based on computation

time.
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Chapter 3

Fault Isolation Using Directional

Residuals

3.1 Introduction

The basic idea of fdi using failure directions is that each fault will result in activity

of the parity vector along certain axes or in certain subspaces. These reference axes

or subspaces are determined by the state space matrices. This information can be

used to isolate the fault with fewer parity variables than required using voting based

on parity variable magnitude alone, as will be shown in this chapter. Therefore, in

many cases this approach is much simpler to implement than a voting scheme.

Note that the gpv activity will only be restricted to specific fdi axes or subspaces

if there is only one fault. Multiple simultaneous faults can only be detected, not

isolated. However, it will be shown that a second fault can be detected and isolated

if an earlier fault has been successfully detected, isolated and accommodated as it

is presented in section 8.5.1.

Depending on the dynamics of the system, some of these reference directions may

be similar or identical, making the isolation for some faults difficult or unachievable.
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To overcome the angle separation problem between the reference directions, the

calculation of an optimal transformation matrix Tr is proposed in chapter 6.

3.2 Actuator faults

In order to analyze actuator fdi, an additive fault aj(t) of the form described in

equation (2.21) is assumed in the jth actuator. Substituting equation (2.21) into

(2.25) and noting that D̃y − Ñud = 0, the following relation is obtained:

pa,j(s) = −(TrÑ)jaj(s) , (TrBn)jaj(s) (3.1)

Equation (3.1) shows that pa,j(s) is restricted to exhibit activity along the direction

defined by the jth column of TrÑ . For a system with output y=x, or state space

matrices C = In×n and E = 0n×m, as in the jcstr and separator models used

through out this research, equation (2.19) can be rewritten more simply as:

Ñ = (sI − Ão)
−1B = [diag(s + σ)]−1B (3.2)

Using equation (3.2), equation (3.1) can be rewritten as follows:

pa,j(s) , (TrB)j aj(s)

s + σ
(3.3)

Comparing equations (3.1) and (3.3), the jth actuator reference direction, Bj
n, is

defined as Bj
n = Bj in this special case. Therefore, equation (3.3) can be written in

terms of the the jth actuator reference direction as:

pa,j(s) , (TrBn)j aj(s)

s + σ
(3.4)

Assuming a step or bias failure in the jth actuator, and since Ñ(s) and D̃(s) are

stable matrices, the steady-state parity vector, pss, can be computed using the final

value theorem [13] according to equation (3.5).

lim
s→0

sp(s) = lim
t→∞

p(t) = p ss (3.5)
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Thus, for a constant bias of magnitude bj on the jth actuator, the pss
a,j is given by:

p ss
a,j = lim

s→0

{
− (TrBn)j

[
bj/s

s + σ

]
s

}
= −(TrBn)j bj

σ
(3.6)

For Tr = I, the actuator fault isolation is based on the angle Θj between the gpv

and Bj
n as illustrated in Fig. 3.1. If the jth actuator is faulty, this angle should be

zero in the ideal case or very small, to account for model uncertainty, noise and/or

unknown disturbances. It should be noticed that to make the illustration easier, the

gpv in Figs. 3.1, 3.2 and 3.3 is plotted in a 3-dimensional space. However, for the

separator model described in section 4.3, fdi is performed in a 5-dimensional space,

which corresponds to the number of inputs and outputs of the system.

j

j
nB

GPV
1x

2x

3x

Figure 3.1: Actuator FDI

3.3 Sensor faults

Similarly, to explain sensor fdi an additive fault si(t), of the form described in

equation (2.22) is applied to the ith sensor. Based on this assumption, the parity

vector in equation (2.3) reduces to:

ps,i(s) = (TrD̃)isi(s) (3.7)

Assuming the same special case state space representation used in section 3.2, C = I

and (sI − Ão) = [diag(s + σ)], equation (2.20) can be simplified as:

D̃ = I − (sI − Ão)
−1F = I − [diag(s + σ)−1]F (3.8)
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Recalling that we chose Ão = A − FC = [diag (−σ)] = −σI for the special case

C = I, we have F = A + σI, so equation (2.20) can be rewritten as follows:

D̃ = I − [diag(s + σ)−1][A + σI] (3.9)

To simplify equation (3.9) the vector Bd is defined as:

Bd = −F = (−A− σI) (3.10)

Using the previous definitions, equation (3.7) can be rewritten in terms of the

vectors which define the sensor reference hyperplane as:

ps,i(s) =

[
T i

r +
(TrBd)

i

s + σ

]
si(s) (3.11)

Thus, for the sensor failure case, it is not possible to confine ps,i(s) to lie along a

fixed axis. Only for fortuitous cases, depending on the dynamics of the system, can

this be achieved. However, for any system, the gpv always lies in a hyperplane of

the generalized parity space, defined by the column vectors T i
r and (TrBd)

i.

As in actuator fdi, to demonstrate the directional behaviour of the residual, consider

a step or bias failure in the ith sensor. Then, the steady-state parity vector, pss, can

be computed using the final value theorem [13] according to equation (3.5). For a

constant bias of magnitude ci on the ith sensor, the p ss
s,i is given by:

lim
s→0

s

[
T i

r +
(TrBd)

i

s + σ

]
ci

s
= lim

t→∞
p(t) = p ss

s,i (3.12)

p ss
s,i = (TrBs)

i ci

σ
(3.13)

where

Bs = σI + Bd (3.14)

The sensor fault isolation is based on the angle Θi, between the gpv and the ith

sensor reference hyperplane, SP i, as illustrated in Fig. 3.2. If the ith sensor is faulty,

29



this angle should be zero or very small.

i

i
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Figure 3.2: Sensor FDI

3.4 Special case for sensor-actuator faults

We consider a special case in terms of the actuator direction Bj
n and the SP i normal,

N i
sp shown in Fig. 3.2 and defined by N i

sp = T i
r ⊗ (TrBd)

i as:

Bj
n ·N i

sp = 0 (3.15)

If the dot product of Bj
n and the normal to the ith sensor reference hyperplane is

zero, then the jth actuator axis lies on the ith sensor reference hyperplane [45] as is

illustrated in Fig. 3.3. This condition would be a result of the system state space

)BT( i
dr

i
spN

i
rT

iSP
j

nr )BT(

1x

2x

3x

Figure 3.3: Special case for Sensor-Actuator FDI

structure. For this case it is not possible to calculate a transformation matrix Tr such

as the actuator reference direction can be taken out of the sensor reference hyper-

plane. This can be demonstrated mathematically by showing that equation (3.16)
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is satisfied for arbitrary Tr, which was done by symbolic manipulation in matlabr.

From this proof it is concluded that equation (3.16) holds for any transformation

matrix Tr, which means that the jth actuator reference direction will always lie on

the ith sensor reference hyperplane, regardless of Tr.

(TrBn)j · (T i
r ⊗ (TrBd)

i) = 0 (3.16)

Under this circumstance we may still be able to distinguish between these faults by

taking a more detailed look at the parity vector relation in equation (3.11): Let us

assume that si(s) = ci/s (a bias fault) [13]; we can apply the initial value theorem

to show that the initial gpv activity is in the direction T i
r , as follows:

lim
s→∞

s

[
T i

r +
(TrBd)

i

s + σ

]
ci

s
= lim

t→0
p(t) = p o

s,i (3.17)

p o
s,i = T i

r ci (3.18)

and invoke the results obtained in equations (3.12), (3.13) and (3.14) using the final

value theorem, to demonstrate that the steady-state gpv activity is in the direction
[
T i

r + (TrBd)i

σ

]
, (TrBs)

i. Thus p ss
s,i and p o

s,i define a sector in the hyperplane SP i

that encompasses the dynamic behaviour of ps,i.

This was demonstrated for the jcstr model described in appendix B by applying

volume (S1) and temperature in the tank (S2) sensor faults at t=0.5 hours. Figures

3.4 and 3.5 show that after the fault is applied, the angle between the gpv and Bs

approaches zero, while the angle between the gpv and Tr grows. Thus the gpv

swinging from Tr to Bs for the faulty case is shown. However, this is only valid for

the pure linear case.

Nevertheless, we can still clearly isolate the ith sensor fault from the jth actuator

fault unambiguously as long as Bj
n is not in or near the cone angle (sector) between

T i
r and (BsTr)

i [5], using the following logic:

31



0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

Time (hrs)

de
gr

ee
s

 GPV swinging respect to T
r
1 and (T

r
B

s
)1 for a Volume Sensor Fault

 

 

Ð GPV, (T
r
B

s
)1

Ð GPV, T
r
1

Figure 3.4: ] (GPV, T 1
r ) and ] (GPV, (TrBs)

1) for a Volume Sensor Fault

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

90

Time (hrs)

de
gr

ee
s

 GPV swinging respect to T
r
2 and (T

r
B

s
)2 for a Temperature Sensor Fault

 

 

Ð GPV, (T
r
B

s
)2

Ð GPV, T
r
2

Figure 3.5: ] (GPV, T 2
r ) and ] (GPV, (TrBs)

2) for a Temperature Sensor Fault

32



if ](GPV, SP i) ≤ θT then

if ](GPV,Bj
n) ≤ θT then f j

a

else f i
s





(3.19)

where θT is a small angle threshold and f i
s and f j

a denote the ith sensor and jth ac-

tuator faults respectively. Based on equation (3.19), a sensor fault is declared if just

the angle between the gpv and SP i is smaller than a threshold value. Conversely,

an actuator fault is announced if both the angles between the gpv and SP i and the

gpv and Bj
n are smaller than the angle threshold θT [35].

For some cases when Bj
n is inside the cone sector, depending on the dynamics of the

system, a sensor fault may produce a gpv aligned with the jth actuator reference

direction. This condition makes the sensor fault isolation incorrect, since the jth

actuator will be the one declared faulty, according with the logic in equation (3.19).

Although it was already proved in equation (3.16) that the the actuator reference

direction can not be taken out of sensor reference hyperplane, it is still possible to

ensure that the jth actuator reference direction is not aligned with the sensor fault

steady-state gpv. This is achieved by extending the objective function or equiva-

lently adding an optimization constraint during the Tr calculation, as presented in

section 6.3.

3.5 Disturbance decoupling

In real world processes there are many disturbances acting on the plant. It would

be desirable that an fdi technique should be unaffected by such disturbances, to the

extent possible. Many disturbances in real plants are accessible/measurable, and it

is possible to compensate for their effect in this fdi approach. This is implemented

by introducing them as extra inputs to the fdi algorithm (parity vector filter), by
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extending the filter inputs, the B matrix and the left coprime factor Ñ accordingly.

Note that we are not assuming that such disturbances exhibit any particular tem-

poral behaviour [11]; it suffices that they are not involved in the system’s control

loops as sensor or actuator signals. Faults, on the other hand, are modelled as ad-

ditive inputs at particular sensors and actuators, and may have specific temporal

behaviour. For instance, sensor measurements can be affected by a ± bias level,

making the readings off by a constant value. Also, some actuators (e.g., valves) can

be stuck at some fixed value and are thus unable to perform the required control

action. Any other extra inputs that are not sensor or actuator signals and have an

effect on the process are categorized as disturbances. It is desirable that the fdi

approach not be affected by such extra inputs.

In order to demonstrate that residual directionality can be unaffected by extra inputs

whose measurements are available, equation (2.7) is rewritten as follows:

ẋ(t) = Ax(t) + B̃ũ(t) (3.20)

where B̃ = [ B G ] , ũ = [ u d ]T , and G and d represent the disturbance allocation

matrix and inputs respectively. Using equation (3.20), the coprime factorization

definition given by equation (2.19) can be rephrased by replacing B with B̃ as:

Ñ = C(sI − Ão)
−1B̃ (3.21)

Using the modified definition of Ñ given by equation (3.21) and the extended input

ũ, disturbance decoupling is implemented in the stable factorization framework to

make the gpv immune to measurable disturbance effects.

To illustrate the effect of implementing disturbance decoupling in the fdi algorithm,

a -50% temperature sensor fault is applied at t=2.5 hours to the jcstr, followed by

a 50% low inlet flow disturbance 1, Fin, at t= 6 hours, for setpoints that differ from

1Note that inlet flow is neither an actuated nor sensed variable; it is exogenous.
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Figure 3.6: Disturbance time-histories

nominal, ∆V=40% and ∆T=10%. The corresponding time histories are shown in

Figs. 3.6, 3.7 and 3.8. Since we are considering only measurable disturbances, they

are already known and therefore there is no need for isolation; our aim is to decouple

fdi from the effect of disturbances.

In Fig. 3.9 (fdi without disturbance decoupling) it is observed that the |GPV | is

significantly decreased after the disturbance is applied. Since for small fault sizes the

magnitude increment after a fault is not very large, this reduction may be enough to

cause an indication that the fault disappeared. However, when disturbance decou-

pling is incorporated into the fdi algorithm, this situation is overcome as illustrated

in Fig. 3.10, where the disturbance is rejected quickly, driving the |GPV |faulty back

to its undisturbed value.

The effect of disturbances is even more significant in the ∠GPV behaviour, as il-

lustrated in figure 3.11. After the disturbance is applied, the temperature sensor
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Figure 3.11: ∠GPV without disturbance decoupling
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Figure 3.12: ∠GPV with disturbance decoupling
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∠GPV increases substantially, becoming larger than the volume sensor and outflow

valve ∠GPV . As a result, the fdi algorithm will declare a volume sensor fault

instead, yielding an incorrect isolation. To avoid these false alarms, disturbance

decoupling is implemented in the fdi algorithm to maintain the gpv directionality

in the presence of disturbances, as portrayed in Fig. 3.12. It is observed that after

the disturbance is applied at t= 6 hours, the temperature ∠GPV is only slightly

affected for a short period of time while the disturbance is completely rejected.

Similarly, the other ∠GPV are just trivially perturbed and keep their undisturbed

directionality, allowing a clear isolation of the temperature sensor fault. There-

fore, by incorporating disturbance decoupling, the fdi algorithm becomes robust to

disturbance effects [37].

3.6 Selection of σ

The real tuning parameter σ is chosen based on the real part of the eigenvalues of

the state space model and determines the speed of the detection filter. Note that

σ > 0 is required to ensure the stability of the parity vector filter. To illustrate the

effect of σ, fdi is performed using the separator model described in section 4.3 for

+1% bias fault applied to sensor S4, the treator oil volume sensor, at t=160 sec.

The fdi results were obtained using the 5th order identified state space model shown

later in Fig. 5.2 and calculated with gbn as excitation signals. Its eigenvalues are:

λ1 = 0.0000155, λ2 = 0.0000323, λ3 = −0.00134, λ4 = −0.0275 and λ5 = −0.0695.

The corresponding time histories for the treator and the separator are included in

appendix A, Figs. A.3 and A.4. Figures 3.13 to 3.16 show the gpv magnitude and

angles using the dynamic implementation for different values of σ. For very small

values of sigma, the parity vector becomes too slow and takes longer to reach steady

state. As a consequence, if a small fault happens before |GPV | has reached steady

39



0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2
 GPV magnitude

0 20 40 60 80 100 120 140 160 180 200
0

50

100

de
gr

ee
s

 Sensor Failure Angles 

 

 

S1
S2
S3
S4
S5

0 20 40 60 80 100 120 140 160 180 200
0

50

100

Time (sec)

de
gr

ee
s

 Actuator Failure Angles 

 

 

A1
A2
A3
A4
A5

Figure 3.13: Dynamic |GPV | and ∠GPV using σ = λ1, S4 faulty
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Figure 3.14: Dynamic |GPV | and ∠GPV using σ = λ4, S4 faulty
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Figure 3.15: Dynamic |GPV | and ∠GPV using σ = λ5, S4 faulty
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Figure 3.16: Dynamic |GPV | and ∠GPV using σ = 10× λ5, S4 faulty
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Figure 3.17: Static |GPV | and ∠GPV using σ = λ4, S4 faulty

state, |GPV | may even decrease after the fault is applied and take very long for

∠GPV to reach steady state. This results in a delayed fault detection and also

unclear isolation for a long period of time, while ∠GPV stabilizes. This situation

is illustrated in Fig. 3.13, where even fault detection is impossible assuming a low

magnitude threshold, for σ = λ1, the smallest process eigenvalue. As a result, the

fdia block is unable to run for a longer period of time since it is required to wait

until the dynamic gpv reaches steady state to have a proper initialization for correct

fdi.

It is observed that as σ increases, the |GPV | change after the fault is applied is

sharper, giving a faster detection. But at the same time, if σ is too large with

respect to the system eigenvalues, the |GPV | becomes small rapidly, as the control

loop starts rejecting the fault. This results in a wrong “fault free” diagnosis after
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a short period of time, since the |GPV | returns to its fault free gpv magnitude

(|GPV |ff ) value although the system is still faulty. For these cases where the fault

is quickly rejected by the control loop, it is desirable to have a dynamic gpv that

can provide clear isolation for a period of time that is long enough to satisfy the

decision-maker requirements presented later in chapter 7. Large values of σ also

give short periods of ambiguous isolation due to the rougher gpv angles behaviour

during the |GPV | minimums as illustrated in Figs. 3.15 and 3.16.

From Figs. 3.16 and 3.17 it is seen that as σ gets bigger, the dynamic parity vector

behaviour approaches the static one. It should be noticed that for the static case,

the tuning parameter σ only affects the |GPV | scale and not its dynamics. This

was expected, since this approach gives a steady state implementation of the par-

ity vector. From the previous results it is established that the selection of σ is a

tradeoff between several factors that have different priority depending on the system

specifications. For this particular state space model obtained for the three-phase

separator, σ = λ4 (Fig. 3.14) provided a good tradeoff, giving excellent fdia results

overall.

3.7 FDI comparison between the GPV and bank

of Kalman filter methods

Several researchers have shown that a bank of Kalman filters designed on the basis

of system models incorporating all possible faults can be used for isolation purpose

[1], [22], [23]. This fdi approach uses multiple estimators, each of which is designed

for detecting a specific fault. Since each estimator is designed based on a specific

hypothesis such as the failure of a single sensor or actuator, all the estimators except

the one using the correct hypothesis will produce large estimation errors when a

fault occurs. By monitoring the residual of each estimator, the specific fault that
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has occurred can be detected and isolated.

For the sensor fault isolation case, the bank of Kalman filters contains m Kalman

filters where m is the number of sensors being monitored. Each filter estimates the

state vector using m−1 sensors. The sensor which is not used by a particular filter is

the one being monitored by that filter for fault detection. For instance, the ith filter

uses the sensor subset yi that excludes the ith sensor, where i is an integer from 1 to

m. In the event that sensor i is faulty, all filters will use a corrupted measurement,

except for filter i. Consequently, filter i is able to estimate the state vector from

fault-free sensor measurements using equation (2.52), whereas the estimates of the

remaining filters are distorted by the fault in sensor i.

In order to evaluate the accuracy of state estimation, the residual vector is generated

for each filter using the Kalman estimation error or residual in equation (2.51).

From this residual, a weighted sum of squared residual (wssr) is computed. The

fault indicator signals (i.e., WSSRi for the ith filter) will be compared against the

detection threshold θ in order to detect a sensor fault; if WSSRi < θ then sensor i

is faulty.

Actuator fdi using the bank of Kalman filters method is more challenging than

sensor fdi. In the general Kalman filter approach, it is assumed that the actuators

are properly set to the values that a control system demands. However, if a large

discrepancy between commanded and true actuator positions does exist due to an

actuator fault, it can result in significant state estimation errors. In this method,

an actuator fault is modeled as a bias, which results in an inconsistency between

an actuator command used as a Kalman filter input and a true actuator position

under which the plant is operating. To account for a potential bias, the actuator

bias vector b is added to the actuator command inputs.

A bank of Kalman filters is also applied for actuator fdi, although their structures
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are different from those for sensor fdi. The filter for actuator j fdi will use all m

sensors and estimate an augmented state vector, which includes an actuator j bias.

Using the augmented state space structure, a Kalman filter is designed for each of

the k actuators using equation (2.52). After the estimation of the augmented state

variables and sensor measurements, a fault indicator signal is generated for each

filter similar to the sensor fdi approach using equation (2.51). The fault indicator

signal (WSSRj) will be compared against a given detection threshold in order to

detect an actuator fault. When an actuator is biased, all filters except filter j use

corrupted information, however, the jth filter with the correct hypothesis is able to

accommodate it. Therefore, this particular filter will maintain a low residual value

and consequently can be isolated from the rest of the filters. For more details on

sensor and actuator fdi using a bank of Kalman filters see [22], [23].

From this overview of fdi using a bank of Kalman filters it is clear than this method

requires the implementation of m + k filters to be able to generate the number of

residuals needed to provide isolation for m sensors and k actuators. Therefore, when

a large-scale process is considered, the size of the bank of filters can be very large,

thus increasing significantly the computational complexity. Conversely, fdi using

the gpv methodology proposed in sections 3.2, 3.3 and 3.4 is capable of isolating

m + k sensor and actuator faults by exploiting the direction of only one residual.

Recall that it was already established in section 2.5 that the definition for the gpv

and Kalman filter error are equivalent in form and consequently it takes the same

computation time to run either of them. Therefore, since fdi using the Kalman filter

method requires m + k filters, it takes m + k times longer to run than fdi using

only one parity vector. This longer computation time becomes a crucial limitation

when it comes to real-time fdi implementation in fast industrial processes. For

these type of scenarios, fdi using the gpv technique will provide a more feasible

implementation.
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Chapter 4

System Overview

4.1 Introduction

The purpose of this research is to develop an fdia technique and implement it

as an agent to be an important actor, as part of the icam supervisory system

intended to be implemented on a pilot plant of the paws project, which emulates

an offshore oil production facility. An sid module has also been built to overcome

the model availability issue and also, to improve the fdia accuracy at different

operating points. So far the mathematical bases for fdi using a parity equation

implementation of directional residuals have been presented. In this chapter, fdia

using the gpv technique and its relation with the sid and data reconciliation agents

and the icam system supervisor are discussed, to illustrate the significance that the

work presented in this thesis has in the performance of the entire system.

The fdia and sid agents, which are the main contributions of the present work, are

presented in detail in the following chapters. Here we overview the paws project,

the icam system supervisor proposed and implemented by Taylor and Sayda [34],

[46], [47], [48] and the dynamic data reconciliation (ddr) agent developed by Lay-

labadi [49], [50] and being extended and implemented by Moreno [51], to provide
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the context and framework for presenting the components contributed by this re-

search and development effort. A more detailed discussion of contributions is given

in chapter 10, after all the technical details are presented.

4.2 The PAWS project

Driven by the technical and economic demands of the offshore oil and gas industry in

Atlantic Canada, a joint venture between several Atlantic Canadian universities, the

National Research Council of Canada, and international companies was established

in order to advance wireless systems technology in the oil and gas industries and

to assess the feasibility of an icam system built on a wireless sensor network. The

paws project scope is to develop a control and information management system

which consists of two subsystems. The first subsystem is a wireless sensor network

which will alleviate the need for data cables in offshore oil rigs and improve flexibility

for adding and reconfiguring sensors [47].

The second subsystem intelligently manages the massive data flow from oil rigs and

interprets it so as to help operators take more appropriate decisions during normal

operation and abnormal events and, through intelligent control, improve process

economics. As part of the paws project, a practical intelligent multi-agent sys-

tem has been developed by Taylor and Sayda [46], [47], [48], [34] to manage the

massive information flow from offshore oil rigs. Multi-agent systems (mas), which

can be considered as an instantiation of distributed artificial intelligence, is another

conceptual framework for modeling and implementing complex systems. A mas

is defined as a loosely coupled network of problem solvers that work together to

solve problems that are beyond their individual capabilities [52]. The mas platform

emphasizes distribution, autonomy, interaction (i.e., communication), coordination,

and organization of individual agents. Agents in a mas can be defined as con-
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ceptual entities that perceive and act in a proactive or reactive manner within an

environment where other agents exist and interact with each other based on shared

knowledge of communication and representation [53]. Each agent contains processes

for behaviour generation, world modeling, sensory processing, and value judgment

together with a knowledge database. The final developed system will be deployed

and validated on a pilot plant which emulates an offshore oil production facility [46].

4.3 PAWS application: a gravity three-phase sep-

arator

Three-phase separators, as depicted in Fig. 4.1, are designed to separate and remove

the gas and free water from the mixture of crude oil, water and natural gas. The

College of the North Atlantic (cna) has a three-phase separator pilot plant that is

fully instrumented and under five loops of automatic control. This facility has been

selected as the primary test-bed for the paws project. In order to facilitate research

and testing at unb, a detailed nonlinear model of a three-phase gravity separator

was developed by Sayda and Taylor [47] for use as a simulation test-bed under

matlabr. The process description in this section is a synopsis taken from [47] and

it is presented here to establish another aspect of the context for this research.

The simulation model corresponds to these two process steps shown in Fig. 4.1. The

first process represents the two-phase separator (first vessel), in which hydrocarbon

fluids from oil wells are separated into two phases to remove as much light hydro-

carbon gases as possible. The produced oil and water mixture is then pumped to

the second process which corresponds to the three-phase separator (second vessel),

which models how water and solids are separated from oil. The gas that is separated

is compressed and treated for sales and the produced oil is then pumped out and

sold to refineries and petrochemical plants if it meets the required specifications.
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Figure 4.1: Gravity three-phase separator process

The two separation processes of the simulation model are controlled to maintain

the operating point at its nominal value, and to minimize the effect of disturbances

on the produced oil’s quality. As shown in Fig. 4.1, the first separation process is

controlled by two PI controller loops. In the first loop, the liquid level is maintained

by manipulating the liquid outflow valve. The second loop is to control the pressure

inside the two-phase separator by manipulating the amount of the gas discharge.

The second separation process has three PI controller loops. An interface level PI

controller maintains the height of the oil/water interface by manipulating the water

dump valve. The oil level is controlled by the second PI controller through the oil

discharge valve, and the second vessel pressure is maintained constant by the third

PI loop [47].

4.4 The ICAM system

In order to have the icam system requirements deployed in a real-world application,

a prototype has been developed by Taylor and Sayda [34]. In this prototype, data

from the external plant (the pilot plant at cna) or the simulation model of the

separation process described in section 4.3 is received by the ddr agent, which pre-

processes the data by removing undesired discrepancies such as outliers and missing
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data and reconciles the measurements to reduce noise and enforce dynamic con-

straints [49], [50]. Processed data is stored in a real-time database for logging and

other purposes, and is then sent to the sid and fdia agents for further processing.

When a change in the operating point is detected, the sid and fdia agents are

alerted to further identify the nature of the data change. If a significant change in

the process operating point occurs, the icam system supervisor asks the sid agent

to update the process model parameters. The sid agent also notifies the supervisor

of the quality of fit of the identified model, so other agents (fdia, ddr) can asses

their own capabilities. If the change is a process fault (i.e., a sensor or actuator

failure), the fdia agent detects, isolates and, if possible, accommodates the fault

and notifies the icam system supervisor for further processing. For every event that

occurs, the supervisor is notified, which in turn monitors, directs, and assesses the

logical behaviour of the system. Processed data from every agent is assessed by

the supervisor and sent to an operator interface, which allows operators make the

appropriate decision depending on the plant situation.

The fdia agent exploits the gpv technique to generate a set of directional residu-

als, from which process faults can be determined. This agent plays a crucial role in

the icam process since it diagnoses the system health and provides accommodation

to keep the safe operation in the plant under failure situations. The data recon-

ciliation agent filters the measurements and removes missing data and outliers by

exploiting the median absolute deviation algorithm [54]. The sid agent estimates

the multivariable linearized state space plant model by using the standard prediction

error/maximum likelihood method (pem) implemented in matlabr. The task of

this agent is very important since it provides the plant model which is the basis for

fdia and ddr, and also generates the quality-of-fit metrics for diagnostic purposes.

The icam system supervisor is a G2 real-time expert system [52], which codifies the

icam system internal and external behaviour in its knowledge base.
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4.5 Data reconciliation agent

In general, measured data in chemical processes are subject to be corrupted by

noise. In addition, sensor data may not obey the laws of conservation of mass and

energy of the system, due usually to instrumentation errors or process disturbances.

The procedure of adjusting the measurements to meet the laws of conservation and

dynamic constraints is known as data reconciliation [51]. The general nonlinear

dynamic data reconciliation (nddr) formulation can be expressed as follows [55]:

min
ŷ(t)

Φ[ỹ, ŷ(t); σ], (4.1)

Subject to

f [
dŷ(t)

d(t)
] = 0, (4.2)

h[ŷ(t)] = 0, (4.3)

g[ŷ(t)] ≥ 0, (4.4)

where

ỹ = corrupted measurements,

σ = measurement noise standard deviations,

f = process dynamic constraints,

h = energy and/or material balance constraints,

g = process variable limits,

ŷ(t) = reconciled measurements.

The lengths of ŷ(t), ỹ and σ are equal to the total number of variables (states

and inputs). Operators f, h and g depend on the specific problem. Most of the

applications use a simple weighted least-squares as the objective function. Solving

the general nddr problem requires optimizing an objective function by adjusting

the estimated measurements, which are constrained by differential and algebraic

equalities and inequalities [55].

The ddr agent proposed in [51] is also in charge of detecting steady state conditions

in the process. The method presented in [51] for steady state detection performs
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a linear least square regression over a moving data window, whose length depends

on the time constants of the variables. Once the parameters of this regression are

obtained, the attention is focused on the behaviour of the slope of this line. If the

slope is smaller than a threshold, steady state is declared. This threshold is chosen

based upon the setpoint variation and the standard deviation of the noise.

4.6 FDIA agent

fdia using the generalized parity vector technique and its relation with the sid

and data reconciliation agents and the icam system supervisor are presented in this

section, based on the block diagram shown in Fig. 4.2. The details for the different

blocks in the fdia agent are discussed in the following chapters; here we overview

the entire system to provide the framework for presenting the components.

If there is no model available or there has been a setpoint change that is large enough

to make the previous model invalid, the system identification module presented in

section 5.2 and the initialization section are performed using the reconciled inputs-

outputs measurements sent by the data reconciliation agent [49], [50] 1. The validity

of the model is determined based upon the severity of nonlinearities in the system;

this is learned from simulation experience. The resulting model is the basis for fdia.

The initialization section starts with the calculation of the corresponding coprime

factors, reference directions and hyperplanes based on the identified state-space

model. Using these directions, the transformation matrix calculation block described

in section 6.4 is executed to obtain an optimal Tr that maximizes the minimum

separation angle between all the reference directions and hyperplanes. This block is

recursively computed until the minimum gpv angle (∠GPVmin) obtained during the

1The use of a data reconciliation agent as a preprocessor justifies the assumption that the data
for fdia is noise free.
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optimization process is greater than a prespecified isolation angle threshold (ΘT ) or

the maximum number of trials is exceeded. The icam system supervisor is notified

while the Tr is being calculated and when it has been successfully computed.

With the previous information, the fitting calculation block illustrated later in chap-

ter 8 (Fig. 8.1) is performed. For the bias case, the fault size (Fsize) is calculated

based on the change in static gpv magnitude peak (∆|GPV |peak). Conversely, for

the ramp case, Fsize is computed using the static gpv magnitude slope (|GPV |slope)

after the fault is detected. In both cases, different fault-size scenarios are simulated

to obtain the corresponding ∆|GPV |peak vs. Fsize or |GPV |slope vs. Fsize pairs. Us-

ing these sets of data, the best low-degree polynomial fitting is calculated for each

case, providing an equation for Fsize as a function of ∆|GPV |peak or |GPV |slope,

depending on the fault type declared previously. The complete theory for the pro-

posed fault size estimation method is presented in sections 8.2 and 8.3. This is the

end of the initialization section, which is executed only after the state space model

changes. The fact that the initialization section is performed only once and the

total computation time in a Pentium 4 PC is 10.48 minutes (including the sid block

execution), makes the proposed on-line implementation viable for operation in real

industrial processes.

The initialization section adds a lot of flexibility to the gpv technique in terms

of fault size estimation and sensor accommodation. It allows the efficient on-line

computation of the transformation matrix for different state space models, and also

the calculation of the corresponding set of curve fitting equations for fault size

estimation. These blocks are discussed in detail in chapters 6 and 8 respectively.

Once the initialization section finishes, the gpv magnitude and angles are computed

by the static residual generator for each input-output set at every sample. Then, the

decision-maker block described in chapter 7 detects, isolates and classifies the fault
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based on the static gpv magnitude (|GPV |st), the gpv direction match (∠GPVmin)

and the |GPV |slope and sends the diagnosis to the icam system supervisor. Once the

detection, isolation and classification steps are performed, the algorithm proceeds to

estimate the fault size Fsize, if the isolated fault corresponds to one of the sensors.

The fault size is computed using the polynomial equations obtained previously by

the fitting calculation block. For the actuator fault case, there is no purpose in

calculating Fsize, since it is not possible to perform accommodation. If a valve is

stuck, it cannot be compensated and must be repaired as soon as possible to avoid

further loses in production. The accommodation block is continuously performed

until the “sensor fixed” message is received from the icam system supervisor.
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Chapter 5

System Identification Agent

5.1 Introduction

Chemical processes are generally higher-order and nonlinear in nature, making it

very difficult and impractical to derive an accurate mathematical model for the

system. This has been one of the main reasons that has limited the application of

quantitative model-based fdi techniques in real industrial processes [3], while they

have been widely used in aerospace applications. So far, the gpv technique had

been successfully implemented only using well defined mathematical models, for the

GE-21 jet engine [13] and jacketed continuously-stirred tank reactor [5], [37].

In order to address the model availability issue for the practical application of the

gpv technique to industrial processes, a system identification module was imple-

mented in this research for the gravity three-phase separator described in section

4.3, which closely emulates the cna pilot plant of the paws project. The fact that

an identified model can be used for fdia using the gpv approach, as shown in

this research, represents a significant extension in the scope of application of this

technique. It should be noticed that this model took six months of research and de-

velopment effort to create; this underscores the importance and challenge of working
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with identified models in practical applications.

In this chapter some identification results are presented with the general guidelines

to implement an on-line sid module (agent) for any process. The sid approach

is established in the literature [56]; the contribution here is demonstrating how to

“package” such techonlogy to make it useable in an automated agent-based system.

5.2 System identification

The purpose of identification tests for control is to excite and to collect control

relevant information about the process dynamics and its environment (disturbances).

Often several different types of tests need to be performed, each of them for collecting

specific information about the process. The model is estimated from the final tests

where the process inputs are perturbed by some test signals. These excitation

signals must be carefully designed so the normal operation in the plant is preserved.

Three aspects are important in selecting test signals for sid, the first is the shape

or waveform, the second is its power spectrum or frequency content and the third

is amplitude.

In order to have data with high signal to noise ratios, one needs to have as much

excitation signal power as possible. In practice, on the other hand, the test sig-

nal amplitudes are constrained because they should not disturb the normal process

operation and should not excite too much the nonlinearities for linear model identi-

fication. Therefore, for a given signal power, a small amplitude is desirable. There

are several types of test signals commonly used, such as pseudo random binary

sequences (prbs), filtered white noise or autoregressive moving average (arma)

processes, sums of sinusoids, or generalized binary noise (gbn) among others [56].

In this research we were able to identify adequate models using both prbs and gbn

as excitation signals. However, the gbn signals were easier to design and gave more
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consistent results overall. This was expected, given the advantages of the gbn signals

with respect to the prbs which are discussed in more detail in section 5.2.1. On the

other hand, the prbs signal design was more empirical, and it sometimes provided

poor quality models just with small variations in the prbs signal parameters.

5.2.1 Generalized binary noise signals

This signal was proposed by Tullenken (1990) [57]. The motivation was to generate

a test signal that is suitable for control relevant identification of industrial processes.

A gbn signal u(t) takes two values, -a and a. At each candidate switching time t,

it switches according to the following probabilistic rule:

P [u(tk) = −u(tk−1)] = psw

P [u(tk) = u(tk−1)] = 1− psw (5.1)

where psw is switching probability. The distribution for the event at each switching

time is an independent uniform distribution with parameter psw. Because of this,

the gbn has zero mean. Define the minimum switching time Tmin as the time (in

samples) to keep the signal constant and switching time Tsw as the elapsed time (in

samples) between two switches, then the mean switching time is determined by:

E[Tsw] =
Tmin

psw

(5.2)

and the gbn power spectrum is given as:

Φu(ω) =
(1− q2)Tmin

1− 2q cos(Tminω) + q2
(5.3)

where q = 1− 2psw. For more details on the gbn test signals formulation see [57].

In general, white noise signals are not a good choice of test signals as they do not

have adequate low frequency content. However, low-pass gbn signals are generated

by reducing the switching probability psw, or, equivalently, increasing the mean
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switching time E[Tsw]. Although low-pass prbs and gbn signals look similar in

the time domain, the spectrum of a low-pass gbn signal does not have “dips” at

frequencies 2π/Tclk, 4π/Tclk, ..., where Tclk denotes the clock period in the prbs

generator; this spectral behaviour is advantageous. Another advantage with gbn is

that the signal length is flexible. gbn signals can be generated using realizations of

independent uniformly distributed random variables in the set [0,1] [56].

After the type and the amplitudes of the test signals are determined, it is then

important to chose the proper spectral distributions. The signal spectra should be

designed in such a way that the identified model is best for the intended use of the

model. If only the error caused by disturbance (variance error) is considered, then

it is possible to derive an optimal spectrum Φopt
u (ω) as follows [56]:

Φopt
u (ω) ≈ µ

√
Φc

u(ω)Φv(ω) (5.4)

where Φv(ω) is the spectrum of disturbance, Φc
u(ω) is the spectrum of the control

signal and µ is a constant adjusted so that the input power is constrained. This

formula tells us that the power of the test signal should be high at frequencies where

the power of the control signal is high, in order to mimic the situation where the

model is used. The power should also be high when the disturbance power is high,

in order to counteract it. Guided by this formula, the following design rule for the

mean switching time of the gbn signal is derived [56]:

E[Tsw] =
98% settling time

3
=

4τ

3
(5.5)

where τ is the corresponding variable’s time constant. The reasoning behind this

formula is that the spectra of both the disturbance and the control signal are deter-

mined by the bandwidth of the process. The factor 1/3 is obtained from simulation

exercises and project experience. Using this formula the mean switching time is

a simple function of process settling time or time constant (which are assumed to
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be known from pre-test data or from operational experience) corresponding to the

operating point chosen for linearization [56].

5.2.2 Identification test design

In practice, it is often desirable or even necessary to carry out identification tests in

closed loop operation. For most industrial processes where the controllers are already

in place and operational, it will cause production loss or even safety problems if the

loops are opened. In such cases the only option is to perform the identification tests

in closed loop. Moreover, even when open loop testing is viable, there are many

advantages to closed loop testing [56] for example, when a multivariable open loop

test is implemented, some of the outputs may drift and the operator may need to

intervene in order to prevent product quality deterioration, while in a closed loop

test, the amplitude of the setpoint movement can be specified and the controller

should keep the outputs within their operation limits. Closed loop tests are also

easier to carry out, considering the need for disturbance reduction: In an open loop

test, operator intervention may be necessary in order to keep the process outputs in

range, though manual control can be a difficult task when many inputs are excited.

For these reasons, closed loop tests are more acceptable to operators.

In this research system identification is performed for the gravity three-phase sep-

aration process described in section 4.3 with the intent of demonstrating that the

proposed fdia approach is viable for industrial implementation in gas and oil fa-

cilities. Given the advantages presented above, the system identification results

presented in section 5.4 were obtained using a closed loop identification test which

makes this approach more feasible for real industrial implementation.

The following aspects should be taking into account in designing the closed loop

identification test:
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• It is assumed that the range of normal operation (or the high/low limits of pro-

cess outputs) and time constants are known a-priori from operator knowledge

or pre-test.

• The test time can be set in the range of 6 to 18 times the process maximum

settling time (ts). A minimum length of test time is necessary to make use

of available theoretical results of identification which are often asymptotic in

the number of data points N (assuming N → ∞). However, it should be

kept in mind that long test times are not desirable because the plant is being

disrupted and also, the model computation time is longer, delaying the fdia

agent initialization. The test time can be decreased to 5 to 8 times ts, if the

number of inputs is small and if the signal-to-noise ratio is high, or even to

1 to 2 times ts, if the process is linear and almost noise free. Conversely, the

test time should be longer, 14 to 18 times ts, if there are many inputs and the

signal to noise ratio is low.

• When it comes to the signal shape selection, the gbn signals are highly rec-

ommended because of the features presented in section 5.2.1 and also, the fact

that operators are familiar with binary test signals. The amplitudes of the

test signals should be chosen such that the signal to noise ratio is reasonably

high and, at the same time, the process operation is not disturbed too much

and it does not drive the process out of a nearly linear operating range [56].

This requires judgment and some knowledge of the process dynamics.

5.3 On-line identification of systems

Figure 5.1 illustrates the on-line implementation for the sid agent introduced pre-

viously in Fig. 4.2. The sid agent is executed only if there is no model for the

process or there is a significant setpoint change that makes the previously identified
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model invalid. First, the excitation signals are generated based on the gbn theory

presented in section 5.2.1. Since it is assumed that the process time constants are

known by the icam system supervisor it is possible to use equation (5.5) as an on-

line design rule to chose a suitable mean switching time E[Tsw]. For the separator

model described in section 4.3 the time constants were obtained from simulation

results.
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We have chosen the gbn excitation signals to design the identification test because

the fdi results using this identified model were slightly better overall than the results

obtained using the model identified with prbs as excitation signals. This will be

discussed in more detail in section 5.4. Once the gbn signals are generated, they are
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applied as setpoint variations to excite each control loop and generate the controller

output (plant inputs) and the plant outputs. These input/output measurements

are preprocessed by the data reconciliation agent before system identification is

performed, to reduce noise.

Then, the linearized state space model and the corresponding % of fitting for each

output are calculated using the prediction error/maximum likelihood method (pem)

in matlabr for the reconciled input and output measurements. If the % of fitting

in any of the outputs is less than a prespecified threshold (TSID), a warning stating

that the “Sensor accommodation might be inaccurate for the ith sensor” is displayed.

For instance, for the gbn model illustrated in Fig. 5.3 the following warning message

is displayed for sensor 4:

“System identification in output 4 has a low % of fitting: 76.98%. As a result sensor

accommodation might be inaccurate for sensor 4”.

From numerous simulation results using the separator model it was established that

fault detection and isolation are quite tolerant to modeling errors (imperfect % of

fitting). However, fault size estimation, and therefore sensor accommodation, are

more sensitive to it. From experimental results, a threshold TSID = 85% was found

to give good sensor accommodation results overall. If the % of fitting in all the

outputs is greater than TSID, the model computation is considered successful.

5.4 System identification results

The system identification results presented in this section were obtained using the

gravity three-phase separator nonlinear model described in section 4.3 to simulate

the plant and generate the input/output measurements. However, it is assumed

that the actual nonlinear model for the plant is not available and also the system

order is unknown, so an analytical linearized state-space representation cannot be
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obtained. The only available information is input-output data corresponding to

prbs or gbn signals applied as setpoint variations to excite each of the system ref-

erence inputs. For both cases, the amplitude of the excitation signals is +/-1% of

the nominal value, so the normal operation in the plant is only slightly disturbed

and the process is not driven out of the linear range. On-line system identification

is performed based on the logic depicted in Fig. 5.1 and using the standard pre-

diction error/maximum likelihood method (pem) implemented in matlabr, which

provides a linearized state space model. Since the model order is not specified, this

is calculated automatically using the subspace-based method in matlabr(n4sid),

to provide the best fitting.

The first 600 sec. of the input/output measurements are used to identify the model,

while the last 300 sec. are used to validate it. The test time of 600 sec. was chosen

based on the guidelines given in section 5.2.2 and simulation experiments which

provided good identification results for several different trials. This is approximately

6.4 times the longest process settling time, which fits into the 5 to 8 times range

given the assumption that the signals are essentially noise free (because they are

received from the data reconciliation agent) and the number of inputs is not very

large. Figures 5.2 and 5.3 show the system identification validation results for each

output variable using prbs and gbn as excitation signals respectively.

The “best model order” obtained during the identification process using prbs sig-

nals is 10, which is considerably higher than the actual order of five. Nevertheless,

this order discrepancy allows us to test the gpv technique using a state space model

whose state variables do not correspond to physical parameters as in the original

nonlinear model. After many trials to identify the model using different prbs signals

it was not possible to find a 5th order model that provides satisfactory fdi perfor-

mance. Even using the model shown in Fig. 5.2 which has very high % of fitting,

the fdi results were slightly better overall using the identified model obtain with
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Figure 5.2: System identification results using prbs signals
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gbn signals. After studying different options for system identification and based on

the overall fdi performance, we decided to use gbn as the best option for excitation

signals.

Although the average % of fitting for the identified model using prbs in Fig. 5.2

is higher than the one using gbn signals in Fig. 5.3, this does not mean that the

identified prbs model is actually better. The higher % of fitting in Fig. 5.2 is due to

the fact that the excitation signals do not have sufficient high-frequency content to

excite their dynamics (see outputs 2, 4 and 5), which have smaller time constants. As

a result, the % of fitting given by the compare function in matlabr and calculated

using equation (5.6) does not give a real estimate of this model’s quality, given that

the excitation signals are not persistent enough for all the outputs:

Fit % = 100

{
1− norm(Y − Ŷ )

norm(Y −mean(Y ))

}
(5.6)

where Y is the output of the validation data and Ŷ is the model output.

Even though this set of prbs signals does not properly excite the system, we chose

to use this model to show some aspects of the gpv technique using a higher order

identified model. Given the highly nonlinear nature and complexity of the process,

the % of fittings obtained in Fig. 5.3 are considered acceptable. Also, since the

excitation signals are properly designed taking into account the time constants for

each output variable, the % of fitting actually gives a good estimate of the model’s

quality.

In order to evaluate the performance of the identified models obtained using prbs

and gbn signals the following fault scenario is simulated: +10% bias fault is applied

to the separator vapor outflow valve (A2) at t=60 sec. The corresponding time

histories for the treator and the separator are attached in appendix A, Figs. A.9 and

A.10. For both models, an optimal σ was chosen according to the guidelines given
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in section 3.6. It is observed in Fig. 5.4 that the model obtained using prbs signals

and depicted in Fig. 5.2 produces S2 as the minimum angle, giving an erroneous

faulty sensor 2 isolation. On the other hand, using the gbn identified model, we

see in Fig. 5.5 that the S2 and A2 angles are both almost zero, giving a clear A2

isolation by applying the logic giving in equation (3.19). It should be noticed that

for this gbn model, loops 2 and 5 belong to the special case for sensor-actuator fdi

as it will be discussed in more detail in section 6.2. This is the reason that the logic

in equation (3.19) must be used.

The fdi results illustrated in Fig. 5.4 correspond to one of the few cases where the

identified 10th order model obtained using prbs as excitation signal does not provide

good identification results. This scenario was carefully chosen to show a situation

where the fdi performance was significantly better using the gbn model. However,

the prbs model also provides satisfactory fdi results in general and could be safely

used to implement the proposed fdi method if a better model is not available.

To illustrate a situation where the fdi results given by the identified prbs model

are more representative of its overall performance, the following fault scenario is

simulated: -5%/min ramp fault is applied to the treator water volume sensor (S3)

at t=60 seconds, for a setpoint variation of 5% for all the loops. The corresponding

time histories for the separator and the treator are attached in appendix A, Figs.

A.11 and A.12. It is observed in Fig. 5.6 that the |GPV | increases more than

100% just 0.25 sec. after the fault was applied, providing fast detection, even for

faults slowly increasing with time. Also, the S3 angle moves towards zero rapidly

while keeping a minimum separation angle of approximately 16 degrees with the

other reference directions, giving a clear isolation. Thus, the fdi performance is

excellent using the 10th order model even for a setpoint variation of 5%. These

results demonstrate that the state-space representation does not require the actual

system order and/or physical states to provide suitable left coprime factors for the

68



0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500
 GPV magnitude

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

de
gr

ee
s

 Sensor Failure Angles 

 

 

S1
S2
S3
S4
S5

0 10 20 30 40 50 60 70 80 90 100
0

50

100

Time (sec)

de
gr

ee
s

 Actuator Failure Angles 

 

 

A1
A2
A3
A4
A5

Figure 5.4: Dynamic |GPV | and ∠GPV using the prbs model
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Figure 5.5: Dynamic |GPV | and ∠GPV using the gbn model
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Figure 5.6: Dynamic |GPV | and ∠GPV using the prbs model

gpv computation. As a result, fdi is possible even for those systems where input-

output data is the only accessible information.

The above overview of the sid agent demonstrates the procedure developed in this

thesis for taking solid theoretical results, such as the (pem) and (n4sid) model

identification algorithms, and constructing software agents that use these methods

in an automated and “self diagnosing” manner to produce useful and reliable results

viable for industrial implementation.
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Chapter 6

Transformation Matrix

Optimization

6.1 Introduction

Fault detection and isolation based on the stable coprime factorization approach as-

sures that the parity relations obtained involve stable, proper and rational transfer

functions even for unstable plants. Therefore the realizability and stability of the

residual generator using the gpv approach is guaranteed. However, fdi techniques

based on parity equation implementation of directional residuals are highly depen-

dent on the dynamics of the system. This means that for some cases, the reference

directions for some faults might be close or identical, making their isolation difficult

or unachievable.

Most previous research in this area had the restriction that the number of faults

for which independent directional responses could be determined was limited to the

number of plant outputs (number of sensors). As a result, the maximum number of

faults that could be isolated with those techniques were limited to m, where m is

the number of plant outputs [11], [14].
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As an important contribution of this research, the calculation of an optimal trans-

formation matrix Tr is described in this chapter to overcome various directionality

problems and the limit in the maximum number of faults that can be isolated. It

will be shown in the different simulation results using the separator model described

in section 4.3 that the gpv technique is capable of clearly isolating 10 different faults

for a system with five outputs. An additional contribution is the implementation

of diagnostic logic in the Tr optimization process, to warn the operators if isolation

ambiguities may occur.

6.2 Problem definition

The transformation matrix Tr in equation (2.25) plays an important role in fdi

using directional residuals. Its significance is based on its ability to change the

original set of reference directions to a new one, with better features to improve fdi

discrimination and robustness. We state our objectives as follows:

• The calculated Tr should transform the original system in such a way that the

gpv magnitude (|GPV |) after a fault exhibits a significant magnitude change.

This requirement assures a clear fault detection.

• Tr should provide enough separation between the reference directions and hy-

perplanes, guaranteeing unambiguous fault isolation despite nonlinear effects

and modelling uncertainty. The ability to separate depends upon the dynam-

ics, the degree of nonlinearity and the presence of noise.

In all the studies performed during this research, it was always possible to compute

a suitable Tr. In most cases it is necessary to compute a suitable transformation

matrix (Tr 6= In×n), as is evidenced in the following results obtained for the separator

model described in section 4.3.
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Figure 6.1: Dynamic |GPV | and untransformed ∠GPV , A3 faulty

Figure 6.1 shows the |GPV | and angles using the 5th order identified model illus-

trated in Fig. 5.3 for a +9% bias fault applied to the treator water outflow valve

(A3) at t=160 sec. The corresponding time histories for the separator and treator

are attached in appendix A, Figs. A.1 and A.2. In Fig. 6.1 it is observed that there

is a significant increment (3.4 times increase) in the gpv magnitude in one second,

giving a fast detection. However, isolation would be ambiguous since the angles

between the gpv and A3 and A5 reference directions, and the gpv and S2, S3 and

S5 reference hyperplanes, are all close to zero.
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The isolation problem is due to the dynamics of the system which do not provide

a well separated set of reference hyperplanes and directions. This fact is better

demonstrated in tables 6.1, 6.2 and 6.3 which include the angles between the differ-

ent actuator reference directions (Ai) and sensor reference hyperplanes (Si) for the

separator model in section 4.3.

] ( ◦) A1 A2 A3 A4 A5

A1 - 73.46 15.84 16.10 14.52

A2 73.46 - 87.41 87.42 87.46

A3 15.84 87.41 - 11.99 8.20

A4 16.10 87.42 11.99 - 8.96

A5 14.52 87.46 8.20 8.96 -

Table 6.1: Actuator/actuator untransformed reference directions angles

] ( ◦) S1 S2 S3 S4 S5

S1 - 89.93 89.95 89.97 89.84

S2 89.93 - 90 89.96 75.57

S3 89.95 90 - 89.30 50.69

S4 89.97 89.96 89.30 - 43.97

S5 89.84 75.57 50.69 43.97 -

Table 6.2: Sensor/sensor untransformed reference hyperplanes angles

From these tables it is observed that the separation angles between some reference

directions are large enough, which is desirable to provide clear isolation. However,

the underlined angles might not be large enough, making the isolation difficult

because the gpv will be close to or lie on more than one reference hyperplane

or direction. This situation can be addressed by transforming the original system

using a suitable Tr that improves its fdi capabilities. The transformation matrix

computation is presented in the following section.
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] ( ◦) A1 A2 A3 A4 A5

S1 38.98 59.54 43.64 52.50 46.65

S2 3.98 0.25 8.27 9.03 1.16

S3 16.59 89.20 5.79 3.66 6.03

S4 10.53 78.77 17.62 11.09 11.29

S5 14.10 75.42 6.42 5.99 0.10

Table 6.3: Sensor/actuator untransformed reference directions and hyperplanes an-
gles

It should be noticed in table 6.3, that although the separation angle between S2 and

A2, and that between S5 and A5 are not exactly zero, we can treat loop 2 and loop

5 as belonging to the special case for sensor-actuator fdi illustrated previously in

Fig. 3.3 and defined by equation (3.15), and thus these faults can be isolated. Based

on this observation, these angles will be excluded from the objective function for Tr

calculation in section 6.3. Given that these angles are almost zero, it is very difficult

to compute a Tr that can separate them without affecting the other angles. If these

angles are included in the objective function, the optimization problem becomes ill-

conditioned, increasing the computation time and decreasing significantly the other

transformed angles.

6.3 Transformation matrix computation

It is desirable to choose Tr to increase the separation angle between the original set

of reference directions as much as possible, to enhance robustness and maximize the

number of faults that can be isolated and the number of disturbances that can be

decoupled, beyond the number of outputs of the system [14].

This can be formulated as a constrained optimization problem, whose objective is

to maximize the angles between the transformed reference directions, to the extent
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possible. These angles were calculated using the subspace function in matlabr

which computes the angle between two hyperplanes embedded in a higher dimen-

sional space. The optimization routine maximizes the minimum of Fi, j (Tr), where

Fi, j (Tr) is the objective function containing the angles between the reference direc-

tions that are separable [5]. This is implemented by minimizing −Fi, j (Tr), using

the fminimax function in the matlabr optimization toolbox, which uses a sequen-

tial quadratic programming (SQP) method. According with the description pre-

sented in the matlabr optimization toolbox user guide [58], this method solves the

constrained optimization problem in a similar way as Newton’s method for uncon-

strained optimization. An approximation of the Hessian of the Lagrangian function

is made at each major iteration, using a quasi-Newton updating method. This re-

sult is used to generate a QP subproblem whose solution is used to form a search

direction for a line search procedure [58].

In this context, the term “separable” refers to those directions which do not satisfy

equation (3.16). The angle between those actuator reference directions which are

lying on one of the sensor reference planes, should be excluded from the Fi, j (Tr)

function, since it was already demonstrated in equation (3.16) that it is not possible

to calculate a Tr to separate them. By eliminating this special case, the optimization

performance is improved. The mathematical formulation is given by:

Fi, j (Tr) = ](Zi , Zj) (6.1)

max
Tr

min
{Fi, j}

{Fi, j (Tr)} (6.2)

such that c (Tr) ≤ 0

where c(Tr) ≤ 0 represents nonlinear inequality constraints; and Zi and Zj are

transformed reference directions. These directions are given by transforming Bj
n, Bi

d

and I i, where by convention I i is the ith column of In×n. The nonlinear inequality

constraints can be used to set a desired minimum separation angle between the
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transformed reference directions as presented in equations (6.4) and (6.6).

The Tr calculation approach proposed using optimization is highly flexible because it

allows extending the objective function or adding different nonlinear constraints to

take into account the dynamics of the system and solve some geometrical restrictions,

such as handling the special case for sensor-actuator fdi discussed in section 3.4

and dealing with the hyperplane intersection situation presented in section 6.3.1. In

order to improve the optimization results towards the fdi application proposed in

this research, the objective function is extended or nonlinear constraints of the form

ceq(Tr) are implemented as presented in section 6.3.1.

As the number of inputs and outputs in the system increases, the optimization

problem becomes more challenging, since there are more reference directions and

reference hyperplanes to separate. For the separator model described in section 4.3,

the system has five inputs and five outputs, which produces 45 different combina-

tions of reference directions, reference hyperplanes and combination of both to be

separated in the objective function (consider five sensor reference directions, each

to be distinguished from 4 others and from 5 actuator reference directions, yielding

5 × 9 combinations). Despite the large number of separation angles to maximize,

the original objective function in equation (6.1) was able to provide a transforma-

tion matrix that increases the angles in the original set of reference directions and

reference hyperplanes well enough to provide clear isolation.

To illustrate the Tr effect, fdi is performed for the same fault scenario used to

generate Fig. 6.1, but this time using the Tr obtained by optimization to transform

the original set of reference directions. It is observed in Fig. 6.2 that the transformed

gpv rapidly moves towards the A3 reference direction, while keeping a minimum

separation angle of 21.2 degrees with the other reference directions. Conversely, if

the untransformed set of angles in Fig. 6.1 is used for isolation, it is not possible
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Figure 6.2: Dynamic |GPV | and transformed ∠GPV , A3 faulty

to distinguish which one is the faulty element. This shows the significance of the

transformation matrix for fdi using directional residuals.

The transformed set of reference directions and hyperplanes is given in tables 6.4, 6.5

and 6.6. Although the transformed set of reference directions and hyperplanes has

some smaller angles, the objective of maximizing the smallest angles in the original

set was achieved. The transformed set provides better separation angles overall,

with a minimum angle of 19.79 degrees between A3 and S3, which is considered

large enough to provide clear isolation based on a 10 degrees threshold assumption.
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] ( ◦) A1 A2 A3 A4 A5

A1 - 74.73 76.33 68.29 87.10

A2 74.73 - 69.56 28.22 78.99

A3 76.33 69.56 - 57.23 40.61

A4 68.29 28.22 57.23 - 81.22

A5 87.10 78.99 40.61 81.22 -

Table 6.4: Actuator/actuator transformed reference directions angles

] ( ◦) S1 S2 S3 S4 S5

S1 - 80.99 82.26 71.94 81.79

S2 80.99 - 85.39 69.68 36.61

S3 82.26 85.39 - 51.22 65.99

S4 71.94 69.68 51.22 - 80.34

S5 81.79 36.61 65.99 80.34 -

Table 6.5: Sensor/sensor transformed reference hyperplanes angles

] ( ◦) A1 A2 A3 A4 A5

S1 19.79 83.60 42.43 83.69 51.95

S2 66.19 NT 36.86 25.61 19.79

S3 69.75 42.63 19.79 19.79 59.24

S4 28.23 19.82 67.41 20.19 76.97

S5 79.44 35.55 37.97 23.50 NT

Table 6.6: Sensor/actuator transformed reference directions and hyperplanes angles

NOTE: The abbreviation NT in table 6.6 refers to the angles that were not optimized,

due to their belonging to the special case for sensor-actuator FDI discussed previously

in section 6.2.
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6.3.1 Objective function extensions

The reference hyperplanes are generally not parallel, so they intersect with each

other in a line. This condition may adversely affect the fdi performance if a sensor

failure produces a faulty steady-state gpv that lies on or close to the hyperplane

intersection line, in which case it appears to lie nearly on both hyperplanes. For

simplicity, although the separator fdi is performed in a 5-dimensional space, the

hyperplane intersection situation illustrated in Fig. 6.3 is plotted in a 3-dimensional

space.

i
SP

3x

2x

1x

i
ssGPV

LI
120

k
SP

Figure 6.3: Planes intersection

Fig. 6.3 shows that if the GPV i
ss lies on or close to the hyperplane intersection line

(IL), its angle with respect to the ith and kth reference hyperplanes are both zero

or close to zero, giving an ambiguous isolation. Nevertheless, this ambiguity can

be avoided by adding equation (6.3) to extend the objective function proposed in

(6.1). This assures that the separation angle between the faulty steady-state gpv

for the ith sensor and the kth sensor reference hyperplane is maximized to provide

an unambiguous isolation. This can be expressed mathematically as:

Fi, j (Tr) = ](Tr GPV i
ss , Zk) (6.3)

However, if a specific minimum separation angle between ](Tr GPV i
ss , Zk) is re-

quired, equation (6.3) can be reformulated in a nonlinear constraint as follows:
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](Tr GPV i
ss , Zk) ≥ Θmin (6.4)

where Θmin is the desired minimum separation angle. If the objective function is

not extended as proposed in equation (6.3) or the nonlinear constraint in equation

(6.4) is omitted during solution of the optimization problem, then there is no guar-

antee that the resulting Tr will not produce a GPV i
ss aligned or close to the ith-kth

hyperplanes intersection line [36]. This modification is required only for those cases

where optimization using the original objective function in equation (6.1) returns a

transformation matrix that pushes a faulty steady-state gpv close to a hyperplane

intersection line.

To illustrate the hyperplane intersection issue and the effect of equation (6.3) during

the Tr calculation, the fdi algorithm is tested using the 10th order identified state

space model illustrated in Fig. 5.2 for the separation process described in section

4.3. The scenario is described as follows: At t=300 sec. a 16.43%/min ramp fault

representing an inaccurate sensor reading increasing with time is applied to the

separator liquid volume sensor (S1) at the nominal operating point. The fdi results

illustrated in Fig. 6.4 were obtained using a Tr calculated by extending the objective

function as proposed in equation (6.3).

It is observed that even for faults slowly increasing with time, the gpv magnitude

increases around 15 times, only 0.9 sec. after the fault is applied, providing immedi-

ate detection even though the deviation at that time is only 0.25%. Also, the gpv

angle corresponding to sensor 1 (S1) moves toward zero very rapidly, reaching a

minimum separation of 11.29 degrees with respect to the other reference directions

within the first 20 sec. These detection and isolation times are acceptable, since the

fault was applied to the liquid phase which has slower dynamics than the gas phase.

The time histories for the separator and treator are shown in appendix A, Figs. A.5

and A.6. However, if the modification to the objective function given by equation

81



0 100 200 300 400 500 600
0

0.5

1

1.5

X: 300
Y: 0.001107

 GPV magnitude

0 100 200 300 400 500 600
0

20

40

60

80

 

 

X: 599.8
Y: 11.29

de
gr

ee
s

 Sensor Failure Angles 

S1
S2
S3
S4
S5

0 100 200 300 400 500 600
0

20

40

60

80

Time (sec)

de
gr

ee
s

 Actuator Failure Angles 

 

 

A1
A2
A3
A4
A5

Figure 6.4: Static |GPV | and ∠GPV , S1 faulty - Modified
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Figure 6.5: Static |GPV | and ∠GPV , S1 faulty - Unmodified

82



(6.3) is omitted for this case, the GPVss lies very close to the intersection line for

hyperplanes 1, 3 and 4, giving an isolation angle close to zero for all of them. This

is illustrated in Fig. 6.5, where the angles corresponding to S1, S3 and S4 are all

close to zero, making the isolation ambiguous.

Similarly, if the system dynamics lead to the special case defined by equation (3.15)

the objective function must also be extended. The actuator fdi issue is overcome by

implementing the logic presented in equation (3.19), which is only effective if the jth

actuator direction vector which lies on the plane SP i is outside the cone defined by

vectors Bi
s and I i. Figures 6.6 and 6.7 illustrate how these sensor fault sectors are

defined for the jcstr model described in appendix B and their relations with Bj
n.

In Fig. 6.6 it is observed that the outflow valve (A1) reference direction (B1
n) lies

on the boundary of the volume sensor (S1) fault sector, making isolation difficult.

Ideally, isolation based on the steady-state gpv activity along B1
s should still be

feasible. However, it has been observed that this does not work in the nonlinear

case.

Conversely, in Fig. 6.7 the heating inflow valve (A2) reference direction (B2
n) is well

outside of the temperature sensor fault sector, which is desirable for the sensor fault

isolation. In the situation depicted in Fig. 6.6 we can maximize the angle between

B1
n and B1

s if the steady state gpv strategy is used.

To overcome the fdi ambiguity arising from the sensor-actuator special case defined

in section 3.4 when Bj
n is inside the cone sector, the objective function needs to

be extended. This assures a minimum separation angle between the steady-state

gpv for the ith sensor and the jth actuator reference direction to be large enough to

provide an unambiguous isolation. This can be expressed mathematically as:

Fi, j (Tr) = ](Tr GPV i
ss , Zj) (6.5)

However, if a specific minimum separation angle between ](Tr GPV i
ss , Zj) is re-
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quired, equation (6.5) can be reformulated in a nonlinear constraint as follows:

](Tr GPV i
ss , Zj) ≥ Θmin (6.6)

where Θmin is the desired minimum separation angle. If the objective function is not

extended as proposed in equation (6.5) or the nonlinear constraint in equation (6.6)

is omitted during the optimization routine, there is no guarantee that the resulting

Tr will provide enough separation to distinguish the ith sensor fault from the jth

actuator fault, for systems satisfying equation (3.15).

The effect of equation (6.5) is reflected in Figs. 6.8 and 6.9 which correspond to

the |GPV | and angles for a -10% bias fault applied to the separator vapor pressure

sensor (S2) at t=60 sec. These results were obtain using the 5th order identified

model illustrated in Fig. 5.3 for the separation process described in section 4.3.

We chose to apply a fault in this sensor since S2 and A2 were considered belonging

to the special case for sensor-actuator fdi in section 6.2. The corresponding time
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Figure 6.8: Dynamic |GPV | and ∠GPV , S2 faulty - Unmodified
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histories are shown in appendix A, Figs. A.7 and A.8. Figure 6.8 shows that if Tr is

computed with the original objective function proposed in equation (6.1), the gpv

for a S2 fault lies not only in sensor 2 reference hyperplane, but almost in the A2

reference direction during the next 40 sec. after the fault was applied. This would

result in a wrong A2 isolation instead of S2, according to the logic in equation (3.19).

However, if the objective function is extended as presented in equation (6.5), the

A2 gpv angle starts moving away from zero right after the fault is applied, rapidly

reaching the required angle threshold in equation (3.19) to clearly declare a fault in

sensor 2.

6.4 On-line implementation

Figure 6.10 shows the detailed transformation matrix evaluation logic block diagram

corresponding to the “Transformation matrix calculation block” shown in Fig. 4.2.

The logic in Fig. 6.10 allows the on-line Tr computation for any new identified

state space model. It also implements automatically the required objective function

modifications proposed in section 6.3.1 to solve the hyperplanes intersection issue

and the ambiguity arising from the sensor-actuator special case defined in section

3.4 when Bj
n is inside the cone sector.

The transformation matrix calculation starts whenever a new state space model

is available and its corresponding actuator reference directions and sensor reference

hyperplanes are computed. If any sensor reference hyperplane and the corresponding

actuator reference direction satisfies equation (3.15), they are excluded from the

objective function since it was already shown in equation (3.16) that they are not

separable, so there is no point trying to improve the situation. The other reference

directions and hyperplanes are included in the objective function. Once the objective

function is assembled, the optimization algorithm is executed until the computed Tr
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provides a transformed set of reference directions whose minimum separation angle

is larger than a prespecified angle threshold ΘT or the maximum number of trials

allowed is exceeded. ΘT defines the limit between clear and ambiguous isolation

during the decision-maker process, as it will be explained in more detail in chapter

7.

Once the Tr is calculated the first time, the algorithm proceeds to self-diagnose

its performance before it is used for fdia in the actual plant. To evaluate the Tr

performance, fdi tests are executed using a linear simulator of the plant built with

the identified model. A medium size fault is applied to each sensor, Si, to determine

if it is required to extend the objective function and recalculate Tr. The medium size

fault assumption is valid to generalize the fdi performance for an arbitrary sensor

fault, given that the gpv direction for different fault sizes is almost the same and

there is only a magnitude increase when the fault size Fsize increases. If the isolation

result for each case corresponds to the faulty sensor i in the linear simulation, it

means that the computed Tr does not need to be recalculated.

On the other hand, if the isolation results obtained from the linear simulation do not

correspond to the sensor fault that was applied, the algorithm proceeds to identify

the causes of this wrong diagnosis. If the minimum separation angle between the

transformed reference hyperplane for the faulty sensor i using this Tr is greater than

ΘT and the isolation is ambiguous with respect to the kth sensor, it means that we

have the hyperplane intersection issue between sensor i and k. Then, the algorithm

proceeds to estimate the steady state gpv for a fault in sensor i (GPV i
ss) using the

linear simulator with Tr equal the identity matrix. Using GPV i
ss, equation (6.3)

can be implemented to extend the objective function to maximize its separation

angle with respect to the kth reference hyperplane which was the one intersecting

hyperplane i using the Tr computed with the original objective function.
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Conversely, if the minimum separation angle between the transformed reference

hyperplane for the faulty sensor i using the Tr computed with the original objective

function is not greater than ΘT or the isolation is not ambiguous with respect to

a sensor, the logic proceeds to check for the sensor/actuator special case. If the

isolated fault was an actuator fault and it satisfies equation (3.15) with respect to

the faulty sensor i, this means that we have the fdi ambiguity arising from the

sensor-actuator special case defined in section 3.4 when Bj
n is inside the cone sector.

Then, the algorithm proceeds to estimate the steady state gpv for a fault in sensor i

(GPV i
ss) using the linear simulator with Tr equal the identity matrix. Using GPV i

ss,

equation (6.5) can be implemented to extend the objective function to maximize its

separation angle with respect to the jth actuator reference direction that lies on the

ith sensor reference hyperplane.

Once the objective function is extended for the different cases as required, the Tr

is recalculated until the minimum separation angle given by ΘT is achieved or the

maximum number of trials is exceeded. If after the final Tr calculation the minimum

separation angle of the transformed set of reference directions is greater than ΘT ,

the Tr computation is considered successfully. Otherwise, the following warning is

displayed:

“The ∠ between Zi and Zj is less than ΘT . Isolation might be ambiguous.”

This means that the isolation between element i and j might be ambiguous since

the separation angle between their reference directions is not greater than the angle

threshold. It should be noticed that the recalculation process is intended to identify

and solve the special cases described by equations (6.3) and (6.5). Thus, the previous

warning might be still generated since the recursive Tr calculation cannot guarantee

that the minimum separation angle will be greater than ΘT . However, it is expected

that if the maximum number of a trials is selected properly, the optimization results

will give a Tr satisfying the angle requirements. For the 5th order identified model
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in Fig. 5.5, Tr was successfully computed with only one trial giving a minimum

separation angle of 19.79 degrees as shown previously in table 6.6. Nevertheless,

depending on the complexity of the system dynamics and the number of reference

directions to separate, the maximum number of trials required may be higher.
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Chapter 7

Decision Maker

7.1 Introduction

The decision-maker block plays a crucial role in fdi using the gpv technique, since

it translates the detection, isolation and classification diagnosis made in terms of

the gpv magnitude, angles and slopes, to a simple operator display that can be

easily understood without knowing the mathematical background behind it. It also

has the capability to decide whether the system is facing the special case for sensor-

actuator faults presented in section 3.4 or an ambiguous isolation situation between

two different elements. Robustness is also increased by implementing the logic in

equations (7.1), (7.2) and (7.3), which ensures that there is enough information

about the faulty element, before a final isolation statement is made to start fault

accommodation. The decision-maker also exploits the advantages of the dynamic

and static gpv implementations in its logic to provide fault classification, faster

detection and clearer isolation. The new contribution described here is the demon-

stration that a complicated decision process can be automated, based on human

logic, although an fdi expert has to tune the logic.

In most real world processes the operating point is continuously changing, and
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this becomes an issue for model-based fdi techniques applied to nonlinear plants

[59]. To overcome this situation, an on-line threshold computation block has been

implemented as part of the decision-making strategy to take into account modeling

errors [60]. The proposed decision-maker logic is presented in this chapter based on

the block diagram in Fig. 7.3. First, however, the concept of |GPV | signature is

introduced in section 7.2.

7.2 GPV magnitude signature

So far, the generalized parity vector magnitude, |GPV |, has been used only for fault

detection purposes. However, it is possible to characterize a |GPV | signature using

the static gpv for fault-size estimation and classification, for further use in sensor

accommodation. The |GPV | signature is defined in terms of its slope after the fault

occurs (|GPV |slope) and the peak change of gpv magnitude, (∆|GPV |peak) [6]. This

signature is best exhibited by the static gpv implementation, as it will be shown in

the following simulation results.

In order to illustrate the gpv signature concept, the following fault scenarios are

simulated: a -3% bias fault is applied to the separator liquid volume sensor (S1)

and a -10%/min ramp fault is applied to the treator oil volume sensor (S4), both

at t=60 sec. The separator and treator time histories for each fault are shown in

appendix A, Figs. A.13 to A.16 respectively. It is observed in Fig. 7.1 that for the

bias case, the static gpv magnitude exhibits an abrupt change right after the fault

is applied, while for the ramp fault case |GPV | initially shows a ramping behaviour,

as illustrated in Fig. 7.2. As a result, a fault can be clearly classified as bias or

ramp type, using the static gpv magnitude behaviour at the time that the fault

is detected. In contrast, for the dynamic gpv implementation, the gpv magnitude

change does not exhibit a clearly different behaviour for the bias and ramp fault
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cases. It should be noticed that for the dynamic implementation a suitable σ was

chosen, following the guidelines in section 3.6.

From Figs. 7.1 and 7.2 it is also observed that the |GPV | change after the fault is

applied is larger using the static gpv implementation, which is highly desirable to

provide fast detection. Also, Fig. 7.2 shows that the static gpv magnitude (|GPV |st)
reaches steady state faster than the dynamic one during normal operation. This is

advantageous to reduce the calculation time for the on-line threshold computation

block presented in section 7.3.1. This qualitative behaviour was found to be a

pattern after extensive simulations were performed using different sizes of bias and

ramp faults, for all ten faults. Based on these results, we have chosen the static gpv

as the best option to implement the on-line threshold computation, fault detection,

fault classification, fitting calculation and fault size estimation blocks.

7.3 Decision-maker logic

The decision-maker logic is composed of four modules: the on-line threshold com-

putation, fault detection, fault classification and fault isolation blocks as shown in

Fig. 7.3. These blocks are discussed in detail in the following subsections.

7.3.1 On-line threshold computation block

Once the residuals are generated, the on-line threshold computation block is ex-

ecuted to estimate the magnitude threshold (MT ) at the corresponding operating

point. The on-line threshold computation is executed only once, after the identified

model has changed, but before the fault free gpv magnitude (|GPV |ff ) is known.

It is assumed that the system is in normal operation for a period of time that is long

enough for the static gpv magnitude |GPV |st to reach steady state (|GPV |st = SS).

However, since the static gpv follows the dynamics of the system, it will stabilize as
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soon as the system reaches steady state. When the |GPV |st reaches steady state, the

|GPV |ff is defined as the static gpv magnitude value at the steady state time (tss).

Thus, the threshold magnitude can then be computed on-line as MT = n×|GPV |ff ,

where n > 1 regulates the tradeoff between detection speed and the occurrence of

false alarms. If n is too small, it may generate false alarms due to noise and modeling

errors. Conversely, if n is very large, the detection may be very slow or impossible

for small bias or ramp faults. Ideally, the identified model and the on-line estimated

|GPV |ff , should be still valid for small setpoint variations. However, there will be

an increase in the fault free |GPV | during transients, due to modeling errors. In or-

der to avoid false fault alarms, but still be able to identify possible faults happening

through these transients, the value of n is increased during such periods. Thus, the

magnitude threshold, MT = n × |GPV |ff has a different value depending on the

state of the process. The corresponding values of n are empirically chosen to provide

a good tradeoff between false alarms and misdetection rates. The complete fdia

performance during the transient is evaluated in section 8.5.3 using the separator

model. This aspect is also clarified in appendix C using a simple linear model.

In our previous research, see [37], four different techniques were proposed to imple-

ment an adaptive threshold: Empirically scheduled, piece-wise linear, quadratic and

cubic threshold logics. Although these techniques perform very well overall, they

require a lot of previous testing to obtained the necessary data to implement them.

Conversely, the on-line threshold computation logic proposed in this section, gives

a more practical and accurate way to compute a suitable magnitude threshold.

7.3.2 Fault detection and classification blocks

The detection block is executed following the magnitude threshold computation.

If the static gpv magnitude is greater than the magnitude threshold, a fault is

detected at t=tfault and the classification and isolation blocks are then executed.
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Otherwise, normal operation is declared. The fault classification block exploits the

gpv magnitude signature concept presented in section 7.2 to identify the fault type

(Ftype). If the static gpv magnitude changes abruptly at t=tfault then the fault is

classified as bias, otherwise, a ramp fault is declared.

If a bias fault is detected, the isolation is performed based on the dynamic gpv

angles. Conversely, for the ramp case, the isolation is based on the static gpv

angles. Previous research using the gpv technique, see [13], only used the dynamic

gpv implementation for fault detection and isolation. However, given the faster

behaviour of the static gpv, its use is not only convenient for detection, classification

and fault size estimation, but also for isolation of slowly varying (ramp) faults. This

is illustrated in Figs. 7.4 and 7.5 for +1%/min ramp fault applied to the treator

water volume sensor (S3) at t=200 seconds; the corresponding time histories for the

separator and treator area attached in appendix A, Figs. A.17 and A.18.

In Fig. 7.4 it is observed that the static |GPV | increases significantly right after

the fault is applied, giving a detection time of 1.7 sec. (using n=2 during the MT

computation). At the same, the S3 gpv angle moves rapidly towards zero reaching

a minimum separation angle of approximately 5 degrees within the first 8.095 sec.

These detection and isolation times are excellent taking into account that the fault

varies very slowly with time as shown in Fig. A.18. Conversely, it is seen from

Fig. 7.5 that the dynamic gpv takes 12.4 sec. to detect the fault and 40 sec. to

isolate it using the same threshold criterions; these detection and isolation times are

approximately 7 and 5 times longer than the ones obtained using the static gpv.

Depending on the application, these delays to perform the diagnosis might cause

safety issues or product quality degradation.

To illustrate the convenience of using the dynamic gpv implementation for bias fault

isolation, a -15% bias fault is applied to the treator oil volume sensor (S4) at t=60
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sec. The corresponding time histories for the separator and treator are attached in

appendix A, Figs. A.23 and A.24. Since a fault in sensor 4 only affects loops 4 and 5,

the fault is quickly rejected by the controller and all the input-output measurements

return to their fault free values as it is seen in Figs. A.23 and A.24. However, S4 is

still faulty, making the actual oil volume in the treator significantly higher than the

sensor reading. Faults that are quickly rejected by the controller are particularly

challenging to identify given the short detectability period. In Fig. 7.6 it is observed

that the static gpv magnitude decreases rapidly, reaching the fault free threshold

conditions 61.7 sec. after the fault was detected. Also, when the gpv magnitude

becomes very small (t=73.94 sec.), the directional behaviour is lost, making the

isolation ambiguous. In contrast, the dynamic gpv magnitude in Fig. 7.7 decreases

slowly and exhibits smooth angular behaviour. As a result, S4 remains close to

zero during the entire simulation time, providing clear isolation. These simulation

results show that the combined static-dynamic gpv implementation proposed in the

decision-maker logic improves significantly the fdi performance.

7.3.3 Fault isolation block

It should be noticed that the fault isolation methodology presented in this section

is developed assuming a single fault occurrence. This assumption is based on the

observation that in most real industrial processes is very unlikely to have simultane-

ous faults in sensors or actuators happening at exactly the same time. It is usually

more likely to have consecutive faults, as a consequence of the effect of the first fault

in the rest of the system. For this type of scenarios, the gpv technique has shown

satisfactory results, as presented in section 8.5.1. In that case study it is shown to

be possible to perform fdia for a different consecutive fault, as long as the first one

has been already isolated and accommodated.

After the fault has been classified and the suitable gpv implementation has been
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decided, the fault isolation block in Fig. 7.3 is executed. Although the gpv is

computed at every sample and detection and isolation are provided accordingly,

eventually the fault will be rejected by the control loop making it undetectable.

The impact of this situation in the fdi performance was analyzed in the case study

shown in Figs. 7.6 and 7.7 in the previous section. The rejection period varies

depending on the system time constants and the controller performance. However,

given the features of the combined static and dynamic gpv logic, it is possible to

detect and isolate the faults for a time window (Tw) that is long enough to make a

definite isolation statement, even if the faults are quickly rejected by the controller.

The time window should be long enough to make sure that the final isolation state-

ment corresponds to the actual faulty element, but at the same time, it should not

be excessively long because this will delay fault accommodation. Also, if Tw is too

long, the fault might be totally rejected and undetectable at the end of this window

even using the dynamic gpv implementation. As a result, if the time window con-

ditions in equations (7.1) to (7.3) are not satisfied, a final isolation statement is not

achieved and sensor accommodation cannot be implemented.

The time window length depends on the system time constants and also varies

according to the gpv behaviour for each fault scenario. Tw starts at the time that

the fault is detected and finishes when the following conditions from Fig. 7.3 are

satisfied:

∠GPV k
min = SS (7.1)

max(Fault-counter) > m
τmax

Ts

(7.2)

Isolation-ratio =
Fault-counter(k)

Fault-counter(i)
> q (7.3)

The condition in equation (7.1) checks if the gpv has already reached its steady state

direction, so the minimum gpv angle corresponding to the kth element (∠GPV k
min)

is pointing in a meaningful direction. The steady state condition is detected by the
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data reconciliation agent as described in section 4.5. We define “Fault-counter” in

equation (7.2) as an array that stores in the corresponding index the number of

times that each element has had the minimum gpv angle and has been tentatively

isolated. Thus, the condition in equation (7.2) guarantees that there is an element

that has been declared faulty at least for a minimum number of samples given by the

maximum system time constant (τmax), the sampling time (Ts) and the parameter m,

chosen such that the system outputs are settled before the final isolation statement

is made. The condition in equation (7.3) is implemented to handle cases where

there are two gpv angles close to zero at different times within the time window,

making the isolation ambiguous; fault k is declared if its angle was small more often

than the others, as defined by the safety factor q > 1. If the mathematical model

used for the gpv implementation closely describes the system dynamics and the

value of q for the isolation ratio condition is large enough, the isolated fault should

correspond to the actual faulty element as was verified after extensive simulation

using the separator model. The parameters m and q regulate the tradeoff between

reliability and speed to make a final isolation statement. For the separator model

in section 4.3, m=2 and q=2 provided a good tradeoff.

Following the fault isolation logic in Fig. 7.3, a final isolation statement is made if

the time window defined by equations (7.1) to (7.3) has been completed. Otherwise,

the isolation process based on the gpv angles continues. If the difference between

the smallest gpv angle corresponding to element k (∠GPV k
min) and the second

smallest gpv angle (∠GPV2) is greater than the threshold angle (ΘT ), a fault in

the kth element is isolated and its corresponding fault counter is increased. This

fault counter is used to check the time window condition in equation (7.2). If the

ΘT is not met and the ∠GPV k
min has not reached steady state, the isolation is

considered in progress and the “isolating fault” option is shown in the operator

display. Conversely, if the ∠GPV k
min is already in steady state, but the minimum
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separation angle is not large enough, it is possible to have the special case for

sensor-actuator fdi discussed in section 3.4. If the pair of elements corresponding

to ∠GPV k
min and ∠GPV2 are a sensor/actuator pair satisfying equation (3.15), this

means that the actuator that lies on the hyperplane is faulty. This diagnosis is made

using the logic in equation (3.19). On the other hand, if ∠GPV k
min and ∠GPV2 do

not satisfy equation (3.15), both elements are displayed as possibly faulty in the

operator display until Tw has been completed.

When the time window conditions are met, the isolation block is able to make

a final isolation statement that is sent to the supervisor and also used for fault

accommodation. The final isolation results will be continuously displayed in the

operator panel until the faulty element is fixed. It should be remarked that for

the sensor case is crucial to have correct isolation since accommodation will be

performed accordingly. This validates the need to implement the logic in equations

(7.1) to (7.3) using a conservative choice for the parameters m and q, instead of

having a fixed time window.

7.4 Simulation results

In this section two simulation results are presented to show the operator display

obtained using the decision-making logic proposed in section 7.3. We chose to apply

a fault in sensor 5 and then in actuator 5, since this loop corresponds to the special

case for sensor-actuator fdi illustrated previously in Fig. 3.3 and discussed in section

6.2. These two fault scenarios allow us to evaluate the decision-maker performance

for challenging isolation situations.

The first scenario corresponds to a -25% bias fault applied to the treator vapor

pressure sensor (S5) at t=60 sec. The corresponding time histories for the separator

and treator are shown in appendix A, Figs. A.19 and A.20 respectively. Following
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the decision-making logic described in section 7.3, the fault is quickly detected and

classified as a bias fault using the static |GPV | in Fig. 7.8. Since Ftype = bias,

the dynamic gpv is used to execute the isolation block. The operator display in

Fig. 7.9 shows a fault in actuator 5 during the first 32.4 sec. after the fault was

detected. This is a result of the A5 angle slowly moving away from zero in Fig. 7.8.

This result validates the use of equation (7.2), which states that the final isolation

statement cannot be made before 2τmax seconds, where τmax = 23.44 sec. for this

system. If the final isolation statement was done before 2τmax = 46.88 sec. (without

using equation (7.2)), A5 would be wrongly declared the faulty element according

to the results shown in fig. 7.8.

However, once the angle threshold of 5 degrees is achieved between S5 and A5 in Fig.

7.8, the operator display correctly isolates S5 at t=92.55 sec. This isolation time

is considered satisfactory, given that fdi for S5 and A5 is very challenging because
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this pair correspond to the special case for sensor-actuator fdi, as mentioned. At

t=150 sec. S5 has been isolated for more than 2τmax sec. and also has doubled the

isolation period for A5. S5 can also be considered steady enough, so the conditions

in equations (7.1) to (7.3) are satisfied and the final isolation statement is made 90

sec. after the fault was applied. If faster accommodation is desired, the value of

the parameter q in equation (7.3) can be reduced accordingly to the minimum value

that meets the reliability standards for the given plant. At t=150 the fdi results

are sent to the sensor accommodation block and the icam system supervisor. This

diagnosis time provides a good tradeoff between reliability and isolation speed for

the separator model. It should be noticed that a few samples showing the “isolating

fault” option in the operator display are because the angle threshold is not satisfied

and the minimum gpv angle is not in steady state.

The second scenario corresponds to a -25% bias fault applied to the treator vapor

outflow valve (A5) at t=60 sec. The corresponding time histories for the separator

and treator are shown in appendix A, Figs. A.21 and A.22 respectively. Similarly,

the fault is quickly detected and classified as a bias fault using the static gpv in

Fig. 7.11, so the dynamic gpv implementation is chosen for isolation. Given that

sensor and actuator 5 satisfy equation (3.15), the isolation is made based on the

logic in equation (3.19). As a result, A5 is clearly isolated almost immediately in

Fig. 7.11, since the gpv lies not only in the S5 reference hyperplane but also in the

A5 actuator reference direction as seen in Fig. 7.10. For this case the conditions

in equations (7.1) and (7.3) are satisfied almost immediately after the fault was

detected since the corresponding gpv angles reach steady state rapidly. However,

the final isolation statement is not made until the condition in equation (7.2) is

satisfied 2τmax = 46.88 sec. after the fault is detected. For this particular scenario

the final isolation statement could have been done faster by choosing a smaller value

for the parameter m in equation (7.2). However, it was already shown in the previous
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example that a value of m = 2 is required to avoid a wrong final isolation statement

for that scenario. Therefore, a conservative value of m = 2 was necessary to provide

a good tradeoff between reliability and speed to make the final isolation statement

for all possible scenarios for the ten different faults.
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Chapter 8

Fault Accommodation

8.1 Introduction

In real world processes, such as oil and gas facilities, continuous production is re-

quired to achieve productivity and profitability requirements. As a result, stopping a

production line suddenly in the middle of a process, to fix or replace a faulty sensor,

may result in significant economic losses. To avoid these unexpected interruptions

in the plant operation, sensor accommodation must be integrated as part of the

fault management strategy. This provides a temporary solution to maintain normal

operation in the system, while maintenance can be scheduled without significantly

disturbing the process.

So far, the gpv technique has been successfully tested for fdi using a second-order

aircraft engine model [13], a third-order nonlinear model for a jacketed continuously

stirred tank reactor (jcstr) [5], [35], [37] and the fifth-order identified state-space

model for the gravity three-phase separation process illustrated previously in Fig

5.3 [36]. In this chapter a new fault size estimation and sensor accommodation

method is proposed and evaluated using the most challenging separation process.

This allows us to introduce a complete fault detection, isolation and accommodation
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(fdia) technique using only input-output data as available information.

8.2 Fitting calculation block

The fitting calculation block illustrated in Fig. 8.1 is part of the initialization section

described previously in section 4.6. The fitting calculation block is executed after

the model is identified, the corresponding reference directions and hyperplanes are

calculated, and a suitable transformation matrix is computed. At this point, we have

all the information required to implement a linear simulator for the plant based on

the identified model.

Using the linear simulator, three different fault sizes are applied to each sensor,

i=1,2,...n for the bias and ramp cases. To generalize the logic in Fig. 8.1, the

number of fault sizes is denoted by the variable Nsize; since the relation between

the gpv signature presented in section 7.2 and the fault size (Fsize) was usually

linear or at most quadratic, three Fsize values were considered, enough to obtain an

adequate fit in this study. The purpose of these linear simulations is to characterize

the |GPV | signature (|GPV |sig) for different fault sizes and types, so a curve fitting

equation for Fsize estimation can be computed for each case.

For the bias case, the gpv magnitude signature is given by the delta of static gpv

magnitude peak (∆|GPV |peak). Conversely, for the ramp case, Fsize is determined by

the static gpv magnitude slope (|GPV |slope) at the time that the fault is detected.

In either case the corresponding ∆|GPV |peak vs. Fsize or |GPV |slope vs. Fsize pairs

are obtained based on the linear simulator results. Using these sets of data, the

best fitting is calculated for each case, providing an equation for Fsize as a function

of |GPV |sig, i.e., ∆|GPV |peak or |GPV |slope, depending on the declared fault type

(Ftype). The curve fitting computation starts assuming a linear approximation, as

illustrated in Fig. 8.1. However, if the error % in the fitting results is not small
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enough, the polynomial degree N is increased until the error % is acceptable. The

curve fitting results were obtained using the polyfit function in matlabr. This

function finds the coefficients pi of a polynomial of degree N that fits the data best

in a least-squares sense and it also provides the error estimates for predictions.

The total computation time for the fitting calculation block using the separator

model was 4.2 minutes using a Pentium 4 PC. This execution time can be considered

fast enough to make it viable for on-line implementation in most real industrial

processes, since this block is performed only infrequently, when the identified model

changes. Tables 8.1 and 8.2 summarize the fitting results obtained for the 5th order

identified model in Fig. 5.3 during the on-line initialization process. It should be

noticed that the degree N in tables 8.1 and 8.2 refers to the degree of the polynomial

that describes how the gpv signature changes for different fault sizes; it is not related

to the order of the identified process model.

Fault Coefficients pi Degree N Fitting error

S1 [0.47 0] 1 0.21×10−13

S2 [0.14 0] 1 0

S3 [2.90 0] 1 0.04×10−13

S4 [1.43 0] 1 0.10×10−13

S5 [0.03 0.15 0] 2 0.01×10−13

Table 8.1: Curve fitting results for bias faults

The polynomial for fault size estimation computed by the fitting calculation block

is defined as follows:

Fsize = p1 × |GPV |Nsig + p2 × |GPV |N−1
sig + ... + pN × |GPV |sig + pN+1 (8.1)
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Fault Coefficients pi Degree N Fitting error

S1 [0.27 31.10 0] 2 0.002×10−13

S2 [2.37 26.71 0] 2 0.02×10−13

S3 [94.39 293.77 0] 2 0.02×10−13

S4 [424.88 318.40 0] 2 0.01×10−13

S5 [33966.85 1969.74 0] 2 0.001×10−13

Table 8.2: Curve fitting results for ramp faults

where the coefficients pi for each type of fault are given in the corresponding table in

descending powers. It is observed that the maximum fitting degree N = 2 provided

a fitting error less than 1 × 10−13 overall. The small values for the fitting error

using low-degree polynomials were expected, since the change in the |GPV |sig with

respect to the fault size was usually linear or quadratic at the most.

8.3 Fault-size estimation

After the fitting calculation block is executed, the curve fitting equations for each

bias or ramp sensor fault are available to estimate Fsize. The fault size is computed

by evaluating equation (8.1) with the corresponding gpv magnitude signature. The

gpv magnitude signature is given by ∆|GPV |peak or |GPV |slope, depending on the

Ftype diagnosis made by the decision-maker block.

While for the bias case the fault-size estimation and classification problem may

seem trivial, due to the ability to acquire and manipulate simulation data, that is

not the case when we are dealing with an actual process. In a real plant, there are

limitations on how small the sampling time can be, and also on the amount of data

that the icam system supervisor can send to the fdia agent without overloading the

network. For our specific application, the paws project, a wireless sensor network

agent manages real-time communications between the control room and the offshore
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oil facility as presented previously in sections 4.2 and 4.4. For further information

on the paws project see [47]. Therefore, the frequency of the data set received in

the control room is also restricted by the wireless network specifications.
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Figure 8.2: Treator time histories

Figures 8.2 and 8.3 show the simulation results using the identified separator model

described in Fig. 5.3 for a +15% bias fault applied to the treator vapor pressure

sensor (S5). We observe in Fig. 8.3 that the gpv angle corresponding to fault 5

is the smallest, giving a clear isolation. To illustrate the infeasibility of using the

faulty sensor measurement for fault size estimation and classification, we set the fault

to happen at t=100 seconds, which is between two sampling intervals. Since the
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Figure 8.3: Static |GPV | and ∠GPV , S5 faulty

sampling period in this simulation is 0.75 seconds, the last pressure reading available

before the fault occurs is at t=99.75 sec. In Fig. 8.2, it is observed that the pressure

measurements change rapidly during the first 0.9 sec. after the fault happened.

This behaviour was expected, due to the fast dynamic nature of the pressure and

the appropriate controller compensatory action. From previous simulation results

it was established that it is possible to accurately estimate the fault size using the

sensor measurement only for a sampling time of Ts=0.3 sec. or less. For this sampling

period the first reading after the fault occurs is 230 psi at t=100.2 seconds, giving
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the correct fault size of +15%. More realistically, if the sampling period is 0.75

seconds, the first pressure reading available after the fault was applied is 202.8 psi

at t=100.5 sec. as illustrated in Fig. 8.2, giving a wrong fault size of +1.4% which

has a 90.67% estimation error. Similarly the sampling time would also affect the

fault classification if it was made based on the sensor measurement and not the gpv

signature proposed in section 7.3.2. If Ftype is defined from the sensor measurement,

the slope change might not be large enough to declare a bias fault, depending on

the sampling period.

Let us assume that the same sampling time of 0.75 sec. is used to estimate the fault

size and type using the |GPV | signature method proposed previously. From Fig.

8.3 it is observed that the |GPV | at t=100.5 sec. is still 994.6 times larger than the

fault free |GPV |ff at t=99.75 sec. This abrupt change allows the classification of

this fault as bias type as proposed in section 7.3.2. This makes it possible to use

the |GPV | value at t=100.5 sec. to calculate ∆|GPV |peak for Fsize = 15% during

the on-line curve fitting procedure to obtain the function in equation 8.1 [35]. After

the fault type and size are defined, the accommodation block is implemented as

described in section 8.4.

8.4 Sensor accommodation

To avoid significant economic losses due to sudden interruptions in the plant opera-

tion, sensor accommodation is integrated as part of the fault management strategy.

This increases system reliability and safety, extends useful life, minimizes main-

tenance and maximizes performance. In general, sensor accommodation can be

accomplished using system reconfiguration or by modifying or replacing the faulty

signal.

For the first method, several techniques have been proposed during the past decades
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for fault tolerant control (ftc) systems design to reduce the effect of faults and per-

turbations simultaneously in the closed loop system [24], [25], [26], [27]. The aim is

to find the appropriate control law that preserves stability, where “appropriate” is

meant with respect to given objectives, which depend on the application. Although

these ftc techniques are very important in many applications, their significance is

reduced for scenarios where faults are rapidly rejected. As was discussed previously

in section 7.3.2, faults in sensor 4 are quickly rejected by the controller, making

them untraceable, while the sensor is still faulty and the actual oil volume in the

treator is significantly higher, as illustrated in Figs. A.23 and A.24. This situation

is even worse for the ramp fault cases in Figs. A.15 and A.16, where the oil volume

keeps increasing while the control loops seem to have returned the system to normal

operation. For the separator process described in section 4.3, the quick fault rejec-

tion is also present in sensors 3 and 5, which makes this issue one of our challenges

to solve with the proposed fdia technique. For the second method, different ap-

proaches using observers and neural networks have been used to exploit analytical

redundancy and replace the faulty measurements with synthetic ones [28], [29], [30].

However, their performance is highly dependent on model accuracy.

To overcome the limitations of these methods, we have developed two new ap-

proaches for fault accommodation using the fault size estimation results obtained

in section 8.3. Sensor fault accommodation is implemented after the fault-size esti-

mation block is executed, as depicted in Fig. 4.2. It should be noticed that for the

actuator fault case, there is no purpose in calculating Fsize, since it is not possible to

perform accommodation. If a valve is stuck, it cannot be compensated and must be

repaired as soon as possible to avoid further damage in the plant. Depending on the

controls systems hardware and software configuration, the following two methods

can be implemented to compensate for a sensor fault.
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8.4.1 Method 1: Sensor reading correction

The sensor reading correction method can be implemented on any plant with soft-

ware controllers and some with hardware ones, if the sensor outputs can be ma-

nipulated before they are sent to the controller. Although it takes some time to

estimate the fault type and size before starting the accommodation, this method

is still capable of driving the system back to normal operation. The advantage of

this method is that once the accommodation starts, it directly corrects the faulty

measurement before it is sent to the controller, providing a faster accommodation

than method 2.

The basic idea is to correct the measured variable (Ymeas) at every time sample (tk)

by the relative fault size estimated for the bias case Fsize.bias and/or the estimated

relative rate for the ramp case, Fsize.ramp, using the corresponding mathematical

relations given in (8.2). The fault sign, denoted as ± in equation (8.2), is obtained

from the faulty measurement slope change around its setpoint, right after the fault

is detected. The corrected measurement is then given by:

Ymeas.corr =





Ymeas
±Fsize.bias(%)

100
+1
× u(tk − tf1), Ftype = bias

Ymeas
±Fsize.ramp(%/min)

100
× tk−tf2

60
+1
× u(tk − tf2), Ftype = ramp

(8.2)

where u(t) is the unit step function and tf1 and tf2 are the times at which faults 1

(bias) and 2 (ramp) were detected.

8.4.2 Method 2: Setpoint manipulation

Sensor accommodation using setpoint manipulation is proposed as an alternative

for those installations where the sensor outputs are directly wired to a physical con-

troller. Given that the sensor output cannot be accessed for correction, the fault is

accommodated by manipulating the original variable’s setpoint (Ysp.orig). At every
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tk, a relative delta setpoint ∆Ysp is calculated with the fault size estimated for the

bias case Fsize.bias and/or estimated for the ramp case Fsize.ramp, using the math-

ematical relation in (8.3). The accommodated setpoint value Ysp.acc is calculated

using equation (8.4),

∆Ysp =





Fsize.bias(%)

100
× u(tk − tf1), Ftype = bias

Fsize.ramp(%/min)

100
× tk−tf2

60
× u(tk − tf2), Ftype = ramp

(8.3)

Ysp.acc = (1 + ∆Ysp)× Ysp.orig (8.4)

It should be noticed that accommodation has been proposed to provide a temporary

solution to maintain normal operation in the system, while maintenance can be

scheduled without significantly disturbing the process. However, the plant is not

supposed to run indefinitely under faulty circumstances because accommodation is

not 100% accurate and it is also limited by sensor and actuator saturations. In

particular, for the ramp case, a given setpoint can only be increased or decreased

for a period of time while it reaches the maximum or minimum values specified

for the corresponding variable. As a result, appropriate ramp fault accommodation

using method 2 can only be provided for a limited period of time. Nevertheless, this

period where accommodation can be performed provides valuable time to arrange

maintenance and replace the faulty sensor.

Since this accommodation technique manipulates the setpoint, its performance de-

pends on how fast the system responds to apparent setpoint change. Thus, for

variables with slow dynamics, the accommodation process using this method takes

longer to completely accommodate the fault due to the large settling time. Con-

versely, accommodation using method 1 is faster because the faulty measurement

is directly corrected before it is sent to the controller. Although for the scenario

considered in method 2 the sensor output cannot be manipulated before it is sent
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to the controller, it is still possible to correct this measurement for gpv calculation

purposes, using equation (8.2). By using Ymeas.corr instead of y to generate the resid-

ual using equation (2.25), the gpv is also compensated. Thus, when the system is

completely accommodated, the |GPV | returns to its fault free value, showing the

“fault free” and the corresponding faulty element options in the operator display.

Extensive simulations results have shown excellent Fsize estimation and accommo-

dation results, although our identified model for the separator does not have very

high % of fitting for sensors 4 and 5 due to the complexity of the process. Only for

these variables whose % of fitting was less than 85%, the Fsize estimation accuracy

was lower for some fault scenarios. While the accommodation was not perfect for

these cases, it still improved the performance of the faulty system significantly.

The main contribution of our method over the traditional measurement replacement

using observers is that it is less sensitive to modeling errors. This is due to the

fact that Fsize is estimated using ∆|GPV |peak or |GPV |slope instead of absolute

|GPV | values, which reduces significantly the impact of modeling errors in the Fsize

estimation. In other words, using deltas compensates for the fact that the |GPVff |
obtained using the linear model during the curve fitting calculation would be zero,

while the |GPVff | using the actual plant is not, so the inherent plant nonlinear

behaviour is retained. Since the two methods presented above are implemented

based on the computed Fsize, the effect of modeling errors in sensor accommodation

is reduced. Conversely, if the identified model is used to implement an observer

to replace the faulty sensor measurement, the computed sensor output would be

directly affected by the model’s quality and there would not be a way to compensate

for it.
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8.5 FDIA Simulation results

This section presents various simulation results to show the capabilities of the com-

plete fdia technique using the methods described in section 8.4 for sensor accommo-

dation. For all the scenarios, the gpv is implemented using the 5th order identified

model illustrated in Fig. 5.3. The results are obtained using the initialization section

proposed in section 4.6, so the fdia logic is implemented using just input-output

measurements as the only available information for fdia design. In fact, although

we have the separator nonlinear model, it is not possible to derive the linearized state

space representation analytically due to the complexity of the process [47]; this is

generally the case in real industrial applications. Therefore, the only practical way

to implement the gpv technique is by using an identified model, as described in

chapter 5.

8.5.1 FDIA results using method 1

In this section two fault scenarios are simulated to evaluate the fdia performance

using method 1. The first scenario is described as follows: a -7% bias fault is

applied to the treator water volume sensor (S3) at t=60 sec. After this fault has

been completely accommodated, a +1%/min ramp fault is applied to the separator

liquid volume sensor (S1) at t=500 sec. The first fault affects only the treator

inputs and outputs (Fig. 8.5), and the second fault primarily affects the separator

variables (Fig. 8.4). From Fig. 8.6 it is observed that the static |GPV | increases

significantly right after the fault is applied, giving a fast detection time of 0.15 sec.

Also, the |GPV | change is very abrupt, so the fault is classified as a bias and the

dynamic gpv is calculated to implement the isolation block. Figure 8.7 shows that

the corresponding gpv angle S3 moves towards zero rapidly, providing a quick and

clear isolation in the operator display in Fig. 8.8. At t=108 sec. the decision-making
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Figure 8.4: +1%/min ramp S1 applied at t=500 sec. - Nominal Operating Point
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Figure 8.5: -7% bias S3 applied at t=60 sec. - Nominal Operating Point
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logic gives the final isolation statement for S3 that Fsize.bias = −6.98%, thus sensor

fault accommodation starts at that time. The estimated Fsize provided by the fdia

software is shown at the top of the operator display in Fig. 8.8.

In Fig. 8.5 it is seen that when the faulty measurement is replaced at t=108 seconds,

the actual water volume in the treator is quickly driven back to its setpoint value

and the static |GPV | returns to its |GPV |ff . There is a short transient when the

accommodation starts, while the controller is driving the compensated measurement

back to its setpoint value. This transient is also shown as a temporary |GPV |
increase at t=108 sec. in Figs. 8.6 and 8.7. As a result, the operator display in

Fig. 8.8 shows the “Fault Free” and “Faulty S3” options, which means that the

fault has been successfully accommodated, but S3 is still faulty and maintenance

should be scheduled. It should be noticed that once the final isolation statement

has been made and the accommodation has started, the gpv angles are not taken

into account anymore since the |GPV | is returning to its |GPV |ff value. After

the sensor accommodation starts, the decision-making logic switches back to the

static |GPV | to check the accommodation status. This decision is due to the faster

response of the dynamic gpv implementation as it was discussed in detail in section

7.3.

Later at t=500.25 seconds, the static |GPV | in Fig. 8.6 increases, detecting a second

fault. For this case the |GPV | change at the time that the fault is detected (tfault)

is not abrupt, thus the fault is classified as a ramp type. It is observed in Fig. 8.6

that the |GPV | signature at the time that the faults were applied, t=60 sec. and

t=500 seconds, is significantly different for the bias and ramp fault cases. It should

also be noticed that if a very small bias fault is applied, i.e. ±1%, most likely the

fdi algorithm will not be able to detect the fault because its effect in the system

variables is very small, thus the static |GPV | increase will not be enough to exceed

the magnitude threshold for detection. However, a ramp fault, even if it is a very
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Figure 8.6: Static |GPV | and ∠GPV , S3 and S1 faulty
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Figure 8.7: Dynamic |GPV | and ∠GPV , S3 and S1 faulty
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slow one, will cause a continuous increase in the static |GPV | which will make it

eventually exceed the detection threshold and show a |GPV | signature with a very

slow slope. Based on the decision-making logic presented in section 7.3 for the ramp

case, fault isolation is performed using the static gpv angles, so the calculation

of the dynamic gpv is stopped to decrease the computation time (Fig. 8.7). The

minimum gpv angle in Fig. 8.6 corresponds to S1, showing a correct isolation result

in the operator display. The few samples showing the “Isolating fault” and “Faulty

A1” options in Fig. 8.8 happen only during the first 6 seconds after the fault was

detected, while the gpv reaches its steady state direction.

At t=553 sec. the decision-making logics reaches the final isolation statement for S1,

i.e., Fsize.ramp = 0.99% and the accommodation process starts. Figure 8.4 shows that

once the accommodation starts, the actual liquid volume in the separator increases
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towards its setpoint value. For the second fault the static |GPV | does not reach its

fault free value during the simulation time, so that is why the fault free option is not

displayed. However, the operator panel is still showing the “Faulty S3” option in

gray, given that the icam system supervisor has not acknowledged that the sensor is

fixed. The estimated fault sizes using the method described in section 8.3 are -6.98%

and 0.99%/min, giving an estimation error of only 0.29% and 1% respectively.

The second simulation scenario is intended to show the fdia robustness with respect

to modeling errors; it is described as follows: a +15% bias treator oil volume sensor

(S4) fault applied at t=250 sec. for an initial setpoint variation (∆SP ) of 5% for all

the variables. In other words, all process setpoints were changed by 5% and process

variables were settled to their corresponding steady state values at t=250 sec. Thus

the nominal operating point around which the linear model was identified does not

correspond to the current setpoint. All process variables are depicted in Figs. 8.9

and 8.10.

It is observed in Fig. 8.11 that the static |GPV | increases abruptly at t=250.15

sec. Thus, the fault is quickly detected and classified as a bias type, 0.15 sec. after

it happens, for a sampling period of 0.15 sec. As a result, the isolation is made

based on the dynamic gpv shown in Fig. 8.12. Sensor 4 is clearly isolated in the

operator display in Fig. 8.13 since its gpv angle in Fig. 8.12 is almost zero after the

fault is detected. The time window criteria discussed in section 7.3.3 is satisfied at

t=300 seconds, so the decision-maker logic makes the final isolation statement and

accommodation starts then. Figure 8.10 shows that the actual treator oil volume is

rapidly compensated and its setpoint is almost reached. Also, the static |GPV | in

Fig. 8.11 moves back towards its fault free value, showing that the fault has been

successfully accommodated by displaying both the “Fault Free” and “Faulty S4”

options in the operator display in Fig. 8.13.
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Figure 8.9: +15% bias S4 applied at t=250 sec. - ∆SP=5%
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Figure 8.10: +15% bias S4 applied at t=250 sec. - ∆SP=5%
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Figure 8.11: Static |GPV | and ∠GPV , S4 faulty
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Figure 8.12: Dynamic |GPV | and ∠GPV , S4 faulty
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Figure 8.13: Operator display, S4 faulty

The estimated fault size is 15.73%, which has an estimation error of 4.87%. This

% of error is acceptable, taking into account that the sid % of fitting for output 4

was not very high (76.98%) and the fact that the fault was applied for ∆SP =5% so

the modeling errors became significant. These two facts made this fdia scenario

very challenging. Despite the 4.87% error in the fault size estimation, it is observed

from Fig. 8.10 that the accommodation significantly reduced the measurement error

in the treator oil volume sensor (S4). After the accommodation started at t=300

seconds, there is a short transient while the controller compensates the corrected

measurement. However, the controller rapidly drives the oil volume sensor mea-

surement to its setpoint value. It is also seen in Fig. 8.10 that after the fault is

accommodated at t=300 seconds, the oil volume sensor measurement (solid line)

and its actual value (dash-dot line) become very similar, reducing significantly the

error in the produced oil volume estimation. Thus method 1 for fault accommoda-
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tion preserves closed-loop stability and also drives the actual volume level for the

faulty sensor very close to its desired value. These results also show that the fault

size estimation and accommodation methods proposed in sections 8.3 and 8.4.1 do

not require unrealistic accuracy in the linear model to provide satisfactory results.

8.5.2 FDIA results using method 2

This section presents fdia results for two case studies where the accommodation

was performed using method 2, i.e., we modify the setpoint instead of correcting

the faulty measurement. The first scenario illustrates a +10% bias treator vapor

pressure sensor S5 applied at t=60 seconds, followed by a -5%/min ramp separator

liquid volume sensor S1 fault applied at t=400 seconds, after the first fault was

completely accommodated. All process variables are plotted in Figs. 8.14 and 8.15.

At t=60.15 seconds, the static |GPV | in Fig. 8.16 increases significantly and exhibits

a sharp magnitude change, thus a bias fault is rapidly detected. Since a bias fault

is detected, the isolation is performed using the dynamic gpv. Fig. 8.17 shows that

A5 gpv angle is initially small but starts moving away from zero while, S5 remains

very small. As a result, the operator display in Fig. 8.18 shows the “Isolating fault”

and “Faulty A5” options for a few samples, while the gpv is swinging to reach its

steady state direction. At t=125 sec. the time window condition defined in section

7.3.3 is satisfied, allowing the decision-making logic to provide the final isolation

statement for sensor 5.

Figure 8.15 illustrates how sensor accommodation is performed using method 2, by

manipulating the setpoint of the corresponding faulty loop. When the accommoda-

tion starts at t=125 seconds, the setpoint and the sensor measurement for output 5

change according to the estimated fault size. Although the sensor reading is showing

that the pressure is 220 psi, the actual value inside the treator is around 200 psi
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Figure 8.14: -5%/min ramp S1 applied at t=400 sec. - Nominal Operating Point
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Figure 8.15: +10% bias S5 applied at t=60 sec. - Nominal Operating Point

131



0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

 GPV magnitude

0 100 200 300 400 500 600 700 800 900
0

50

100

de
gr

ee
s

 Sensor Failure Angles 

 

 
S1
S2
S3
S4
S5

0 100 200 300 400 500 600 700 800 900
0

50

100

Time (sec)

de
gr

ee
s

 Actuator Failure Angles 

 

 
A1
A2
A3
A4
A5

Figure 8.16: Static |GPV | and ∠GPV , S1 and S5 faulty
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Figure 8.17: Dynamic |GPV | and ∠GPV , S1 and S5 faulty
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(due to the fault in sensor 5) which corresponds to the actual desired value. It is also

observed that although the beginning of the accommodation slightly disturbs loop

4, it rapidly stabilizes within the next 30 sec. Since the accommodation successfully

compensates the actual treator pressure value, the |GPV | returns to its fault free

value and the “Fault Free” and “Faulty S5” options are displayed in the operator

panel in Fig. 8.18.
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Figure 8.18: Operator display, S1 and S5 faulty

After S5 is completely accommodated, the |GPV | increases significantly again, de-

tecting a second fault at t=400.2 sec. For this case the |GPV |slope change at tfault

is not very large, so the fault is classified as ramp and the isolation is made based

on the static gpv. It is observed in Fig. 8.16 that S1 moves speedily towards zero,

providing a clear isolation in the operator display in Fig. 8.18, 6 sec. after the

fault happens. There are a few samples showing the “Isolating fault” and “Faulty
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A1” options while the gpv reaches its steady state direction. At t=453 seconds, the

decision-maker logic makes a final isolation statement for S1 and the accommodation

starts.

The successful accommodation is clearly shown in Fig. 8.14, where the setpoint and

the sensor measurement in loop 1 decrease due to the accommodation but the actual

separator liquid volume returns to its desired value. Although the beginning of the

accommodation process slightly perturbs the other loops, they stabilize rapidly and

the complete system is soon back to the fault free operation conditions. At the

end of the simulation the operator panel displays the “Fault Free”, “Faulty S1”

and “Faulty ”S5” options, which means that sensors 1 and 5 are both successfully

accommodated, but they are still faulty and maintenance should be scheduled. The

estimated fault sizes are 9.9997% and -4.99%/min giving an estimation error of

0.003% and 0.2% respectively. These small % of error confirms that even for cases

where the % of sid fitting is not very high, as it is the case for sensor 5, (84.44%),

the Fsize estimation method using the |GPV | signature provides excellent results.

The aim of this third final case study is to evaluate the fdia performance using

accommodation method 2 with respect to modeling errors. In this scenario a -

5%/min ramp separator vapor pressure sensor (S2) fault is applied at t=150 sec.

for a setpoint variation, ∆SP =5%. In this case, all process variables are settled to

steady state at t=0 seconds; they are depicted in Figs. 8.19 and 8.20.

Figure 8.21 shows that the |GPV | increases significantly at t=150.15 seconds, giving

a fast detection time of 0.15 sec. Also, the fault is classified as a ramp given the

small |GPV |slope change at tfault, so the static gpv is used for isolation. During the

first 16 seconds, actuator 2 is declared faulty in the operator panel while the gpv is

swinging to reach its steady state direction. This isolation time is acceptable, given

that sensor and actuator 2 belong to the special case for sensor-actuator fdi, as
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Figure 8.19: -5%/min ramp S2 applied at t=150 sec. - ∆SP=5%
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Figure 8.20: -5%/min ramp S2 applied at t=150 sec. - ∆SP=5%
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Figure 8.21: Static |GPV | and ∠GPV , S2 faulty
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Figure 8.22: Operator display, S2 faulty
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discussed in section 6.2. After t=166.4 seconds, sensor 2 is correctly isolated in Fig.

8.22 and a final isolation decision is reached by the decision-making logic at t=214

sec.

The resulting accommodation is shown in Fig. 8.19 where the setpoint and sensor

measurement for output 2 decrease with time, according to the calculated ramp Fsize.

The estimated fault size is -5.1%, which gives an isolation error of 2.03%. This % of

error is very satisfactory, given that the fault was applied for a 5% setpoint variation.

However, it is observed from Figs. 8.19 and 8.20 that although the beginning of the

accommodation slightly disrupted the other loops, they start to stabilize as the time

progresses and the overall performance of the system is significantly improved.

From the case studies presented in this section it is established that the proposed

fdia strategy provides fast detection and isolation times even when the sid % of

fitting is not very high and the fault scenario is applied at a different operating

point. Also, the fault size estimation and accommodation methods proved to per-

form very well on faults that are quickly rejected and using an identified model with

a reasonable % of fitting.

8.5.3 FDIA results during transients

The simulation results presented in this section are intended to evaluate the fdia

performance for an scenario where a fault is applied during a process transient, right

after a small setpoint variation. The case study is described as follows: +45% bias

separator liquid volume sensor (S1) fault happens at t=65 seconds, after a setpoint

change (∆SP ) of 3% is applied at t=60 sec. in all the loops. It is observed in

Fig. 8.25 that although the |GPV | abruptly increases at t=60.3 sec. due to the

setpoint variation, it starts to decrease immediately. The |GPV | change right after

the fault happens at t=65.25 seconds, is substantially larger. Thus, it is possible to
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Figure 8.23: +45% Bias S1 applied at t=65 sec. - ∆SP=3% at t=60 sec.
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Figure 8.24: +45% Bias S1 applied at t=65 sec. - ∆SP=3% at t=60 sec.
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Figure 8.25: Static |GPV | and ∠GPV , S1 faulty
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Figure 8.26: Dynamic |GPV | and ∠GPV , S1 faulty
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Figure 8.27: Operator display, S1 faulty

avoid a false fault alarm and still be able to detect the fault during the transient,

by properly increasing the value of the |GPV |ff multiplier n through this period,

using the magnitude threshold calculation proposed in section 7.3.1. By adapting

the magnitude threshold at the known times when setpoint changes are issued the

fault is correctly detected and classified as bias in Fig. 8.27, just 0.15 sec. after it

happens. As a result, the isolation is made based on the dynamic gpv angles in Fig.

8.26. In this figure the minimum gpv angle corresponds to S1, giving the correct

“Faulty S1” option in Fig. 8.27.

At t=114 sec. the time window conditions for isolation introduced in section 7.3.3 are

satisfied, thus the final isolation statement for S1 is made and the accommodation

starts. It is seen in Figs. 8.23 to 8.26 that the other loops and the |GPV | are

slightly perturbed by the beginning of the accommodation. However, all the outputs

move back to their setpoint values rapidly, showing a significant improvement in the
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system’s performance after the accommodation started. For this case study the fault

accommodation is performed using method 1. The estimated fault size is 42.05%

which has an estimation error of approximately 6.55%. This estimation error is

satisfactory, taking into account that the fault was applied during the transient

of a 3% setpoint variation, which makes the modeling errors more significant. At

the end of the simulation the operator panel displays the “Fault Free” and “Faulty

S1” options, to acknowledge that sensor 1 has been successfully accommodated

(according to the adapted magnitude threshold) but sensor 1 is still faulty and

maintenance should be scheduled.

It should be noticed that this case study is intended to evaluate the gpv technique

performance during transients due to small setpoint variations taking place after

the system has already reached steady state. If the setpoint variations are larger

than ±10% (approximately), the linearized model is not longer valid and will have

to be identified again. However, when the icam system supervisor orders the sid

agent to identify a new model, the system must be in steady state in order to

start the identification process [34]. Once the new model has been identified, the

on-line threshold computation block will have to be executed again to estimate

the magnitude threshold (MT ) at the new operating point, which also requires the

system to be in steady state as described previously in section 7.3.1. Therefore,

the only scenarios that can be considered for fdia during transients for the gpv

technique are those where the setpoint variations are inside the range of validity

of the previously identified linear model. This range is defined based upon the

qualitative degree of nonlinearities in the system, which is application dependent.

Thus, for this type of scenario, the simulations results using the gpv technique have

shown satisfactory fdia performance during transients if the magnitude threshold

is properly adapted and the modeling errors are not very large.
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Chapter 9

FDIA for Noisy Scenarios

9.1 Introduction

Ideally, an fdia technique should provide fast detection time with low false alarm

and misdetection rates while being robust to disturbances, modeling errors and

noise. In section 3.5 disturbance decoupling was proposed for the gpv technique

and its robustness was successfully tested using the jcstr model in appendix B.

Robustness with respect to modeling errors was shown in chapters 5 and 8, where

excellent fdia results were obtained using an identified model with a reasonable

percentage of fitting, even when the model is used at operating points different from

the nominal point used for model identification.

The simulation results presented in the previous chapters were obtained using noise-

free sensor measurements, based on the assumption that the Data Reconciliation

Agent was capable of reducing the noise to a negligible level. However, if the sensor

measurements are quite noisy, it is possible that the signals may contain a significant

amount of noise even after been preprocessed by the Data Reconciliation Agent. In

this chapter the fdia robustness with respect to noise is evaluated and modifications

are proposed to improve the tradeoff between detection time and sensitivity to high
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frequency influences.

9.2 Modifications to the FDIA methodolody

The diagnostic system should respond quickly in detecting and isolating faults. How-

ever, quick failure diagnosis and robustness to noise are two conflicting goals. An

fdia algorithm that is designed to detect a fault quickly, becomes more suscepti-

ble to high frequency influences. This makes the system sensitive to noise and can

lead to frequent false alarms during normal operation, which is certainly undesir-

able. Thus, robustness precludes deterministic isolability tests where the thresholds

are placed close to zero. In the presence of noise, these thresholds may have to

be chosen conservatively. Thus, robustness needs are to be balanced with those of

performance.

In order to improve the robustness with respect to noise, some modifications are

proposed to the fdia agent presented in chapter 4 and the decision-maker logic in

section 7.3. First, the plant’s input and output measurements are collected for a

moving time window of 10 samples to average out and reduce the effect of noise;

this process approximately mimics the reconciliation process.

Next, Fig. 7.3 is modified as highlighted in the fault classification block in Fig. 9.1

by hatching. This change means that the dynamic gpv will be the only one used

for isolation, for both cases, bias and ramp faults. For systems with negligible noise

levels as considered in section 7.3.3, we took advantage of the faster behaviour of the

static gpv to reduce the isolation time of slowly varying (ramp) faults. However, for

scenarios where measurement noise is significant, the dynamic gpv with a proper

choice of σ, as presented in section 3.6, becomes very powerful as it acts as a filter

during the residual computation. This results in a smoother behaviour of the parity

vector, and therefore a clearer and cleaner fault isolation. This is illustrated and
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Figure 9.1: Decision-maker block diagram for noisy scenarios
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discussed in more detail in section 9.3.

Also, the value of the constant n in the on-line threshold computation block in Fig.

9.1 was increased from 2 (noise-free case) to 4 (noisy case), to avoid false alarms

due to the effect of noise. Although these modifications increase the detection and

isolation times, as it will be observed in the following simulations results, they

provide a good tradeoff between fdia performance and robustness with respect to

noise. The other aspects of the fdia logic presented for the noise-free conditions in

previous chapters remain unmodified and are valid for the noisy case.

9.3 FDIA Simulation results for noisy scenarios

The following fdia results for the separator model were obtained applying the mod-

ifications described in section 9.2. For each scenario the sensor measurements were

contaminated by noise with a Gaussian amplitude distribution whose standard devi-

ation is specified as a percentage of the actual signal value. The noisy measurements

are preprocessed by a procedure that mimics data reconciliation to reduce the level

of noise 1.

The first scenario corresponds to a -20% bias fault applied to the separator liquid

volume sensor (S1) at t=150 sec. For this case all the sensor measurements are

corrupted by gaussian noise with a standard deviation of 5% their actual values.

Figures 9.2 and 9.3 illustrate the effect of the fault in the separator and treator

variables.

In Fig. 9.4 it is seen that the static gpv preserves its signature even for noisy

conditions, allowing fault size estimation and classification using the logic proposed

in section 7.3. However, once the fault is detected, it is observed from Fig. 9.5 that

1It should be noticed that the data reconciliation agent was not fully developed at this point,
thus these results do not illustrate its complete capabilities.
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Figure 9.2: -20% bias S1 applied at t=150 sec. - Nominal Operating Point

0 100 200 300

65

70

75

80

85

90

Time (sec)

V
tre

at
−w

at
 (f

t3 )

 Treator water volume & its setpoint

0 100 200 300

14

16

18

20

22

Time (sec)

Fo
ut

tre
at

−w
at

 (m
ol

es
/s

ec
)

 Treator water outflow

0 100 200 300

40

45

50

55

Time (sec)

V
tre

at
−o

il (f
t3 )

 Treator oil volume & its setpoint

0 100 200 300

1.5

2

2.5

Time (sec)

Fo
ut

tre
at

−o
il (m

ol
es

/s
ec

)

 Treator oil outflow

0 100 200 300

170

180

190

200

210

220

230

240

Time (sec)

P
tre

at
−v

ap
 (P

S
I)

 Treator vapor pressure & its setpoint

0 100 200 300
0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

Fo
ut

tre
at

−v
ap

 (m
ol

es
/s

ec
)

 Treator vapor outflow

Figure 9.3: -20% bias S1 applied at t=150 sec. - Nominal Operating Point
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Figure 9.4: Static |GPV | and ∠GPV , S1 faulty
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Figure 9.5: Dynamic |GPV | and ∠GPV , S1 faulty
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the filter properties of the dynamic gpv provides a smoother set of angles for fault

isolation, clearly showing S1 as the angle closest to zero.

Figure 9.6 shows that the fault was detected 2.1 sec. after it was applied, which

is a very fast response for such a noisy scenario. The calculated fault size is -

15.71% which has an estimation error of 21.4%. Although the fault size estimation

accuracy has decreased due to the large amount of noise affecting the measurements,

it is clear from Fig. 9.2 that the actual value of the liquid inside the tank and the

corresponding sensor measurement became very similar after the accommodation

started, at t=202.7 sec. Also, the other process variables returned close to their

pre-fault values, which is reflected in a rapidly reduction of the |GPV |. Since the

threshold selection for the detection block has been more conservative in order to

achieve a good tradeoff between false alarms and misdetection rates, the decision-
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maker logic declares complete accommodation with a larger value of |GPV | than

the one required for the noise free case. This is illustrated in the operator panel in

Fig. 9.6 which shows that total accommodation has been achieved, approximately

104.9 sec. after the fault, by displaying the “Faulty S1” and “Fault Free” options

during the intervening time. It should be noticed in Fig. 9.4 that around 207.3

sec. the |GPV |st becomes very small due to the transient after the accommodation

started. A few values around this minimum are smaller than the detection threshold

resulting on a few “Fault Free” options in Fig. 9.6 around 207.3 sec. and 234.6 sec.

However, the isolation is not affected by the minimum on the |GPV |dyn around

t=236.9 sec. because once the final isolation statement is made (at t=202.7 sec.

when the accommodation started), the corresponding fault is continuously displayed

until the faulty element is fixed and the gpv angles are not longer used.

The second scenario illustrates the case when a -10% ramp fault is applied to the

separator vapor pressure sensor (S2) at t=150 sec. while the measurement readings

are affected by gaussian noise with a standard deviation of 1% their actual values.

Figure 9.7 shows a significant increase in the actual pressure (blue line) while the

corresponding sensor measurement is displaying an incorrect value close to the set-

point. In Fig. 9.9 it is observed that the |GPV | rapidly increases after the fault

was applied at t=150 sec. However, due to the conservative threshold choice made

to minimize false alarms and misdetection rates for noisy conditions, the fault is

not detected until t=160.95 seconds, as stated in Fig. 9.11. Considering the slowly

varying nature of this fault and the significant amount of measurement noise, a

detection time of 10.95 sec. is fairly satisfactory. The static and dynamic |GPV |
also show a different signature than the one exhibited for the bias case presented

previously, which allows the classification of this fault as ramp type.

It is observed in Fig. 9.10 that despite the noisy behaviour in the system, the filtering

nature of the dynamic gpv provides a smoother set of angles than the one provided
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Figure 9.7: -10% ramp S2 applied at t=150 sec. - Nominal Operating Point
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Figure 9.8: -10% ramp S2 applied at t=150 sec. - Nominal Operating Point
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Figure 9.9: Static |GPV | and ∠GPV , S2 faulty
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Figure 9.10: Dynamic |GPV | and ∠GPV , S2 faulty
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Figure 9.11: Operator display, S2 faulty

by the static gpv. Based on these results, the isolation logic for ramp faults was

changed to be based on the dynamic gpv angles as shown in Fig. 9.1. Although

this modification slightly increases the isolation time, it provides a clearer isolation

overall. During the first 27 sec. after the fault was detected, the fdi operator

display in Fig. 9.11 shows the options “Isolating fault” and “Faulty A2” due to the

gpv transient after the fault happens; this indicates that “Faulty A2” is uncertain.

However, the gpv rapidly swings to point towards the sensor 2 reference direction,

which is the faulty element, at t=188.1 sec. The fault size was accurately computed

to be -10.12% providing an estimation error of only 1.2%. Figure 9.7 shows that

after the accommodation started at t=235 sec. the corrected sensor measurement

and the actual pressure value are very similar and the different process variables are

driven close to their pre-fault values.
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The final scenario simulates a situation where the treator water outflow valve (A3)

is stuck at +4% of its nominal value after t=150 seconds, so the water level slowly

decreases. For this case the measurements are contaminated by gaussian noise with

a standard deviation of 3% their actual values. It is observed in Fig. 9.13 that when

the treator water outflow valve gets stuck, the desired control action attempts to

decrease the water outflow to try to keep the water level at its setpoint. However,

since the outflow rate is stuck at 18.33 moles/sec, the water volume keeps decreas-

ing from its setpoint value even though the desired controller action would be to

completely close the valve. It should be noticed that the oil volume and vapor pres-

sure inside the treator are decreasing slowly after the fault happens. However, this

behaviour is not very clear in the figure due to the axes scales and large amount of

noise affecting the variables.

Figures 9.14 and 9.15 show a significant gpv magnitude increase about 10-20 sec.

after the fault happens at t=150 sec. However, given the conservative threshold

choice made to improve robustness with respect to noise and the slow effect of this

fault in the other process variables, the fault is not detected until t=191.55 sec. as

shown in Fig. 9.16. The isolation at t=191.55 is performed using the dynamic gpv

angles in Fig. 9.15, which clearly show that the angle closest to zero corresponds to

actuator 3 (A3), immediately at the time of detection.

The previous simulation results have shown the fdia capabilities of the gpv tech-

nique for noisy scenarios. It has been demonstrated that for a reasonably large

signal-to-noise ratio (snr) the gpv methodology is able to detect and isolate differ-

ent faults within an acceptable period of time. Although the accuracy of the fault

size estimation varied depending on the snr, the simulation results showed that for

every scenario the behaviour of the process improved significantly overall after the

accommodation started.
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Figure 9.12: +4% A3 applied at t=150 sec. - Nominal Operating Point
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Figure 9.13: +4% A3 applied at t=150 sec. - Nominal Operating Point

154



0 50 100 150 200 250 300
0

10

20

30
 Static GPV magnitude

0 50 100 150 200 250 300
0

50

100

de
gr

ee
s

 Sensor Failure Angles 

 

 

S1
S2
S3
S4
S5

0 50 100 150 200 250 300
0

50

100

Time (sec)

de
gr

ee
s

 Actuator Failure Angles 

 

 

A1
A2
A3
A4
A5

Figure 9.14: Static |GPV | and ∠GPV , A3 faulty
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Figure 9.15: Dynamic |GPV | and ∠GPV , A3 faulty
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Figure 9.16: Operator display, A3 faulty
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Chapter 10

Contributions, Conclusions and

Future Work

In my master’s research the gpv technique was implemented and tested using a

third-order linearized state space model obtained analytically for a jacketed contin-

uously stirred tank reactor. Despite the relative simplicity of this model, it allowed

us to identify different issues of the gpv technique and validate the proposed ap-

proach. In that work a new off-line systematic approach for calculating an optimal

transformation matrix was developed to enhance the fdi performance and its scope

in terms of the number of faults that can be isolated and disturbances that can be

decoupled. Also, the special case for sensor-actuator fault isolation when an actua-

tor reference direction lies on a sensor reference plane was identified and solved by

extending the off-line transformation approach.

The fdi robustness was significantly improved by incorporating disturbance decou-

pling and different threshold logics. Although the results of that study were very

encouraging in terms of fdi robustness, they were obtained based on the assumption

that a perfect linearized model for the plant was available. It also required some

off-line initialization and, most importantly, did not provide sensor fault size esti-
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mation and accommodation. These were crucial limitations for the implementation

of the gpv technique in real industrial applications.

The focus of my Ph.D. research was to extend the previous work substantially,

to provide sensor accommodation and make the gpv approach viable for industrial

implementation despite the usual lack of model availability. Thus, the proposed fdia

software was significantly extended and developed, to permit on-line initialization

where the only available information is input-output data and the approximate

system time constants.

Its performance was tested using a three-phase separation process with much more

complex system dynamics that closely matches actual industrial applications. The

proposed methodology has overcome real industrial limitations, such as using iden-

tified models with limited percentage of fitting due to the complexity of the system.

A new approach for sensor accommodation has also been successfully developed,

and robustness has been significantly improved by implementing a smarter decision-

maker block. The gpv technique offers a systematic and flexible approach for fault

detection, isolation and accommodation since it can be implemented and modified

on-line for different identified models. The specific contributions of this research can

be summarized as follows:

1. An initialization section was developed and integrated, making the proposed

fdia technique viable for implementation in systems where new identified

models need to be computed on-line for different operating points.

2. Systematic guidelines have been established for on-line design of a system iden-

tification agent with fdia self-diagnosis based on the identified model’s quality

of fit. This module plays a critical role because it allows the implementation

of the gpv technique in the absence of an a-priori mathematical model, which
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is often the case in real industrial processes. This represents a significant ad-

vance in the scope of application of quantitative model-based approaches in

process industries. It also demonstrates that the identified state-space rep-

resentation does not require an unrealistic percentage of fitting and that the

actual system order and/or physical states do not need to be known in order

to provide excellent fdi results using the directional gpv implementation.

3. A new systematic approach to implement a recursive on-line transformation

matrix computation block using optimization has been effectively developed.

The calculation of this transformation matrix represents a major contribution

to the fdi field using directional residuals because it eliminates the restriction

on the number of faults that previous researches were able to isolate. It also

improves significantly fdi robustness and makes the proposed method a viable

implementation for systems where the identified model requires on-line changes

to accommodate nonlinear behaviour.

4. The special case for sensor-actuator faults and the hyperplane intersection

problem have been identified and solved by extending the objective function

during the optimization process to compute the transformation matrix. This

modification has significantly improved the isolation results by reducing the

ambiguous cases produced by these inevitable special geometrical situations

given by the system dynamics. This is a major contribution, because it identi-

fies and overcomes these critical limitations of fdi using directional residuals

that previous researchers were not aware of.

5. An on-line threshold computation block has been proposed to allow the gpv

technique implementation for new on-line identified models for different oper-

ating points. This block significantly reduces the false alarm and misdetection

rates, increasing the fdi robustness with respect to modeling errors and noise.

159



6. The effect of the gpv filter tuning parameter σ in the gpv performance has

been analyzed and guidelines to estimate an optimal value to achieve the best

isolation results has been established. The proper choice of σ significantly

improves the fdi results for faults that are quickly rejected by the control

system and minimizes the effect of noise in the gpv computation.

7. It has been established that the gpv technique is capable of identifying faults

during transients after small setpoint variations, if the magnitude threshold is

properly adapted and the modeling errors are not significant.

8. The decision-making logic has been significantly improved by combining the

complementary strengths of the static and dynamic gpv implementations, to

reduce the detection time and decrease the ambiguous isolation cases.

9. The static |GPV | signature concept proposed in this research is an impor-

tant contribution, because it allows the implementation of a novel fault-size

estimation and classification algorithm.

10. Two different approaches taking into account the software and hardware im-

plementations in the plant have been effectively developed for sensor-ramp and

sensor-bias fault accommodation. The proposed fault accommodation strate-

gies proved to work effectively, even for faults that were almost untraceable due

to quick rejection by the controller, providing not only closed-loop stability,

but also compensating the actual value of the variable affected by the faulty

sensor. The main contribution of our fault accommodation method over the

traditional measurement replacement using observers is that it is less sensitive

to modeling errors. Despite being a model-based approach, our technique for

fault-size estimation does not calculate Fsize or the correct sensor measure-

ment directly from the model. Instead, Fsize is computed based on the change

in the delta of static |GPV | signature, which is proportional to the size of the
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fault. In other words, using deltas compensates for the fact that the fault-free

residual using the linear model during the curve fitting calculation would be

zero, while the fault-free residual using the actual plant is not, so the inherent

plant nonlinear behaviour is retained.

11. An on-line fitting calculation block has been implemented to obtain the |GPV |
signatures for different identified models and compute the corresponding curve

fitting equations for fault size estimation. This block allows performing fault

size estimation and accommodation in systems where the identified model

requires on-line changes to accommodate nonlinear behaviour.

12. The fdia robustness with respect to noise has been successfully evaluated

for scenarios with reasonably large signal to noise ratio. The proposed fdia

algorithm was able to detect and isolate different faults within an acceptable

period of time, and it also improved significantly the system performance once

the accommodation started.

13. It has been demonstrated that the computation time required to perform fdi

using the gpv approach is significantly shorter than the required by the bank

of Kalman filters method. The shorter computation time makes the gpv tech-

nique a more viable option for real-time fdi implementation in fast industrial

processes.

14. A complete on-line fault detection, isolation and accommodation technique

has been successfully developed using input-output measurements from the

separation process as the only available information. The proposed fdia tech-

nique has achieved excellent isolation and accommodation results even for

ramp sensor faults slowly varying with time under noisy conditions. The fact

that this fdia technique can be fully designed on-line makes it easy to deploy

and adapt to changes in real industrial processes. Also, since the complexity
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of the separator closely simulates large-scale process, these results are very

promising for a future industrial implementation.

Future research will implement the proposed fdia technique using the actual data

originating from one of the pilot plant facilities involved in the Petroleum Appli-

cations of Wireless Systems (paws) project. This will allow the gpv technique

performance to be tested in an actual industrial process.
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Appendix A

Complementary Time Histories

This appendix shows the corresponding time histories for different scenarios pre-

sented through this thesis. For simplicity, the fault scenario is briefly described

in the figure’s caption. A more complete description is given in the corresponding

section where fdi was performed for each scenario.

It should be noticed that Fig.A.1 does not show any changes after the fault in the

treator water outflow valve is applied at t=160 sec. because there is no feedback

from the treator to the separator. Also, in Fig. A.2, the stuck actuator causes the

tank to drain, giving the appearance of instability.
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Figure A.1: +9% bias A3 applied at t=160 sec. - Nominal Operating Point
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Figure A.2: +9% bias A3 applied at t=160 sec. - Nominal Operating Point
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Figure A.3: +1% bias S4 applied at t=160 sec. - Nominal Operating Point
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Figure A.4: +1% bias S4 applied at t=160 sec. - Nominal Operating Point
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Figure A.5: +16.43%/min ramp S1 applied at t=300 sec. - Nominal Operating
Point
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Figure A.6: +16.43%/min ramp S1 applied at t=300 sec. - Nominal Operating
Point

173



0 20 40 60 80 100
146

146.5

147

147.5

Time (sec)

V
se

p−
liq

 (f
t3 )

 Separator liquid volume & its setpoint

0 20 40 60 80 100
20.3

20.35

20.4

20.45

Time (sec)

Fo
ut

se
p−

liq
 (m

ol
es

/s
ec

)  Separator liquid outflow

0 20 40 60 80 100
550

600

650

700

Time (sec)

P
se

p−
va

p (P
S

I)

 Separator vapor pressure & its setpoint

0 20 40 60 80 100
4.4

4.6

4.8

5

5.2

Time (sec)

Fo
ut

se
p−

va
p (m

ol
es

/s
ec

)  Separator vapor outflow

0 10 20 30 40 50 60 70 80 90 100
31.5

32

32.5

Time (sec)

S
G

se
p−

A
P

I (o  A
P

I)

 Separator liquid API gravity

__  Sensor measurement
− . − Actual value

Figure A.7: -10% bias S2 applied at t=60 sec. - Nominal Operating Point
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Figure A.8: -10% bias S2 applied at t=60 sec. - Nominal Operating Point
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Figure A.9: +10% bias A2 applied at t=60 sec. - Nominal Operating Point
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Figure A.10: +10% bias A2 applied at t=60 sec. - Nominal Operating Point
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Figure A.11: -5%/min ramp S3 applied at t=60 sec. - ∆SP=5%
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Figure A.12: -5%/min ramp S3 applied at t=60 sec. - ∆SP=5%
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Figure A.13: -3% bias S1 applied at t=60 sec. - Nominal Operating Point
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Figure A.14: -3% bias S1 applied at t=60 sec. - Nominal Operating Point
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Figure A.15: -10%/min ramp S4 applied at t=60 sec. - Nominal Operating Point
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Figure A.16: -10%/min ramp S4 applied at t=60 sec. - Nominal Operating Point
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Figure A.17: +1%/min ramp S3 applied at t=200 sec. - Nominal Operating Point
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Figure A.18: +1%/min ramp S3 applied at t=200 sec. - Nominal Operating Point
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Figure A.19: -25% bias S5 applied at t=60 sec. - Nominal Operating Point
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Figure A.20: -25% bias S5 applied at t=60 sec. - Nominal Operating Point
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Figure A.21: -25% bias A5 applied at t=60 sec. - Nominal Operating Point
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Figure A.22: -25% bias A5 applied at t=60 sec. - Nominal Operating Point
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Figure A.23: -15% bias S4 applied at t=60 sec. - Nominal Operating Point

0 50 100 150
77.4851

77.4851

77.4852

77.4852

77.4852

77.4852

77.4852

77.4853

Time (sec)

V
tre

at
−w

at
 (f

t3 )

 Treator water volume & its setpoint

0 50 100 150

17.626

17.626

17.626

17.626

17.626

17.626

17.626

Time (sec)

Fo
ut

tre
at

−w
at

 (m
ol

es
/s

ec
)

 Treator water outflow

0 50 100 150
35

40

45

50

55

60

Time (sec)

V
tre

at
−o

il (f
t3 )

 Treator oil volume & its setpoint

0 50 100 150

1.4

1.6

1.8

2

2.2

Time (sec)

Fo
ut

tre
at

−o
il (m

ol
es

/s
ec

)

 Treator oil outflow

0 50 100 150
199

200

201

202

203

Time (sec)

P
tre

at
−v

ap
 (P

S
I)

 Treator vapor pressure & its setpoint

0 50 100 150
0.66

0.68

0.7

0.72

0.74

0.76

Time (sec)

Fo
ut

tre
at

−v
ap

 (m
ol

es
/s

ec
)

 Treator vapor outflow

__  Sensor measurement
− . − Actual value

Figure A.24: -15% bias S4 applied at t=60 sec. - Nominal Operating Point
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Appendix B

JCSTR Dynamic Model

In this jcstr, see figure B.1, the tank inlet stream is received from another process

unit and there is a heat transfer fluid circulating through the jacket to heat the fluid

in the tank. The objective is to control the temperature and the volume inside the

tank by varying the jacket inlet valve flow rate (the temperature control or TC loop)

and tank outlet valve flow rate (the level control or LC loop) respectively.

T

V

TiFi

Tank inlet

Jacket outlet

Fj Tj Jacket 

Tank

Fji Tji

Fo To

LC

TC

Figure B.1: Jacketed continuously stirred tank reactor

In order to derive the dynamic modeling equations of the tank and jacket tempera-

tures, the following assumptions were made:

• Liquids have constant density and heat capacity.
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• Mixing in both the tank and jacket are perfect.

• The tank inlet flow rate, jacket flow rate, tank inlet temperature and jacket

inlet temperature may change (these are the inputs).

• The rate of heat transfer from the jacket to the tank is governed by the equation

Q = U A(Tj − T ) , where U is the overall heat transfer coefficient and A is

the area for heat transfer and is given by equation A = πD2
r

4
+ 4V

Dr
.

The following equations describe the ODE model for the jcstr reactor [61] and the

notation used is listed below.

V̇ = Fin − Fout (B.1)

Ṫ =
Fin (Tin − T )

V
+

UA (Tj − T )

V ρ Cp

(B.2)

Ṫj =
FJin (TJin − Tj)

Vj

+
UA (Tj − T )

Vj ρCp

(B.3)

NOTATION

Subscripts

i Inlet

j Jacket

Jin Jacket inlet
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Variables

A Area for heat transfer

Dr Diameter of the reactor

Cp Heat capacity (energy/mass*temp)

F Volumetric flowrate (volume/time)

ρ Density (mass/vol)

T Temperature

Q Rate of heat transfer (energy/time)

U Heat transfer coefficient (energy/time*area*temp)

V Volume
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Parameter values

Dr 5 m

Cp 4.1868*1000 (J/kg.K)

Fin 0.1 (m3/s)

ρ 997.95 (kg/m3)

Tin 283 oK

FJout 0.15 (m3/s)

Vj 9 m3

TJin 419 oK

U 851.74 (W/m2.K)

Operating point 1

Vo 180 m3

To 306.5824 oK

Tj 377.2784 oK

Operating point 2

Vo 126 m3

To 306.6937 oK

Tj 403.2040 oK
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Appendix C

Fault detection during transients

using the GPV technique

In this appendix the parity vector technique is implemented for an arbitrary second

order system G(s) given by equation (C.1), with left coprime factors Ñ and D̃ given

by equations (C.2) and (C.3).

G(s) =
s + 1

(s + 2)(s + 10)
(C.1)

Ñ(s) =
s + 1

(s + 3)2
(C.2)

D̃(s) =
(s + 2)(s + 10)

(s + 3)2
(C.3)

The purpose of this study is to clarify the |GPV | behaviour during the transient

following a small setpoint variation, for the ideal linear case. The fault scenario is

described as follows: A unit step input is applied at t=0 sec followed by a +1%

variation at t=10 sec. During its transient, a +10% bias sensor fault is applied at

t=11 sec. It is observed in Fig. C.1 that the |GPV | increases from its |GPV |ff

value of 4.918×−13 to 1.458×−6 at t=10.13 sec after the +1% input variation is
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Figure C.1: Dynamic |GPV | for a +10% sensor fault

applied. However, this |GPV | is still very small as expected for a fault free scenario.

Conversely, the gpv magnitude increment is more significant right after the fault

happens at t=11.13 sec.

It can be established from this ideal case study that the gpv magnitude threshold

can be easily selected within a wide range and still be able to correctly detect faults

during transients without having false fault alarms.
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