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ABSTRACT

Fault detection and isolation (fdi) has been an important field of research in the

control engineering community for the last two decades. Its significance is based on

enhancements in terms of safety, reliability and operating costs of the plant.

This research focuses on solving the failure detection and isolation (fdi) problem

by developing a model-based approach using a parity equation implementation of

directional residuals. This new approach is an extension of the generalized parity

vector (gpv) technique based on the stable factorization. The present research has

improved the approach in Viswanadham, Taylor and Luce [21] in three important

aspects. First, a novel transformation matrix computation is presented that enhances

the isolation properties of the fdi algorithm, i.e., increases the maximum number of

faults that can be isolated and the number of disturbances that can be decoupled

above the number of outputs of the system [7]. Second, disturbance decoupling is

implemented in the stable factorization framework to make the residuals immune to

measurable disturbance effects. Third, an adaptive threshold logic was developed and

implemented to take into account modeling errors.

The efficacy and robustness of this technique is demonstrated by applying this

fdi scheme to a jacketed continuously stirred tank reactor (jcstr).
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ũ(t) Extended input vector

xiii



x(t) State vector

yd(s) Actual plant output

y(s) Sensor output

Zi ith transformed reference direction

∆a Differential actuator angle threshold

∆s Differential sensor angle threshold

∆T Temperature setpoint variation

∆V Volume setpoint variation

Θi Angle between the gpv and the ith sensor reference plane

Θj Angle between the gpv and the jth actuator reference direction

σ Stabilizing pole shift

Abbreviations

Cond Condition number

fdi Fault detection and isolation

gpv Generalized parity vector

jcstr Jacketed continuously stirred tank reactor

xiv



Chapter 1

Introduction

The continuous and growing advances in process control have resulted in large and

complex plants, increasing the need of high performance fault monitoring systems.

As a result, fault detection and isolation has become a critical issue for safe and

reliable plant operation and reduction of economic losses. Several techniques using

quantitative model-based methods [18], qualitative model-based methods [17] and

history-based methods [19] have been developed. They have attempted to achieve

faster detection times with lower false alarm and misdetection rates during the fault

isolation process, in the presence of noise and disturbances [9]. The suitability of each

technique depends on the plant characteristics and model availability. The general

description of a fault detection and isolation system is illustrated in Fig.1.1

This thesis focuses on the development of a model-based approach using a parity

equation implementation of directional residuals for solving the fdi problem. The

stages of model-based fdi using the gpv technique are illustrated in Fig. 1.2. The

research on the fault detection and isolation problem using model-based approaches

dates back to the 1970’s, when the aerospace fault detection community introduced

1
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Figure 1.1: Description of an FDI system

the concept of analytical redundancy. The basic idea of the analytical redundancy

approach is to compare the actual behavior of the plant with that predicted by the

mathematical plant model [2], [5], [4], [22]. The resulting inconsistency is called the

residual, which should be close to zero when no fault occurs. However, it shows a

significant change when abnormal plant behavior is detected [6].

In 1976, dynamic parity relations were introduced by Willsky [22], yielding a sys-

tematic development of analytical redundancy provided by the mathematical model

of the plant. Later on, Chow and Willsky [2] proposed a procedure to generate par-

ity equations from the state-space representation of a dynamic system. Gertler and

Singer [8] extended it to statistical isolability under noisy conditions and generalized

the isolability criteria by simultaneously minimizing the sensitivity of residuals to

small drifts in cases having only additive plant faults.

2
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Figure 1.2: Stages of model-based fdi

While previous approaches were able to detect the faults of a system, there was

a need to generate enhanced residuals, which were not only fault sensitive but also

fault selective. For the purpose of isolation, Viswanadham, Taylor and Luce [21]

introduced the generation of directional residuals using the gpv technique for fdi.

The idea of this approach is that each failure will result in activity of the parity vector

along certain directions or in certain subspaces [7], [10], [14] and [21]. Therefore, the

fault isolation amounts to determining which predefined direction the parity vector

is most nearly aligned with.

As another strategy for solving the isolation issue, a structural residual approach

was proposed by Gertler and Singer [8]. It was designed in such a way that each

residual responds to a subset of faults selectively allowing the formation of binary

fault signatures.

3



Several authors have done further research during the past years regarding the

stability and realizability of the residual generator, as well as its robustness. This has

allowed the model-based approaches to be reliable for fdi despite the difficulty and

errors involved in the modeling of complex plants. The present work solves the fdi

problem using an extension of the generalized parity vector (gpv) technique based

on the stable factorization approach which ensures a stable residual generator [21].

In chapter 2 a general overview of stable factorization is first given, followed by its

application to implement the generalized parity vector technique. In chapter 3, fdi

using directional residuals for sensor and actuator faults is presented, together with

the implementation of disturbance decoupling in the stable factorization framework.

In chapter 4 a novel calculation of the transformation matrix is proposed to enhance

the fdi properties. In chapter 5, four different techniques are presented to implement

the decision maker block. Finally, chapters 6 and 7, present the results for fdi

robustness and overall performance, respectively, based on application to a jacketed

continuously stirred tank reactor (jcstr).

4



Chapter 2

Residual Generation Using the
Generalized Parity Vector
Technique

2.1 Introduction

Quantitative model-based failure detection and isolation (fdi) methods rely on the

comparison of a system’s available measurements, with a priori information rep-

resented by the system’s mathematical model. There are two main trends of this

approach: analytical redundancy or residual generation methods and parameter esti-

mation [14]. In the present work, the fdi methodology is developed based on residual

generation.

Since quantitative model-based methods for fdi are developed based on some

fundamental understanding of the physics of the process, fdi using analytical redun-

dancy methods is a viable implementation for systems where a priori knowledge is

available in terms of mathematical functional relationships between the inputs and

outputs of the system [18].

5



While there are several methods for residual generation, this work is focused on

residual generation using the generalized parity vector (gpv) technique, which is

developed in the stable factorization framework. Before introducing the gpv concept,

some of the fundamental mathematics of stable factorization are outlined.

2.2 Stable factorization

The significance of using the stable coprime factorization approach is that the par-

ity relations obtained involve stable, proper and rational transfer functions even for

unstable plants. Therefore the realizability and stability of the residual generator is

guaranteed. Given any n ×m proper rational transfer function matrix P(s), it can

be defined in terms of its right and left coprime factors as follows [1]:

P (s) = N(s)D(s)−1 (2.1)

P (s) = D̃(s)−1Ñ(s) (2.2)

where N(s) and D(s) are said to be right coprime factors, and Ñ(s) and D̃(s) are

called the left coprime factors. All factors belong to the set of stable transfer function

matrices. For both cases, this implies that the matrix extension of the Bezout identity

holds:

X(s)N(s) + Y (s)D(s) = I (2.3)

X̃(s)Ñ(s) + Ỹ (s)D̃(s) = I (2.4)

where X(s), Y(s), X̃(s) and Ỹ (s) are also in the set of stable transfer function ma-

trices. Equating the left and right descriptions of P(s) given in equations (2.1) and

(2.2), the following identity holds:

6



D̃N − ÑD = 0 (2.5)

Combining the identities in equations (2.3), (2.4) and (2.5), the double coprime fac-

torization of P(s) is defined as follows:

[
Y (s) X(s)

−Ñ(s) D̃(s)

][
D(s) −X̃(s)

N(s) Ỹ (s)

]
=

[
I 0

0 I

]
(2.6)

The two block matrices in the left-hand side of (2.6) are unimodular, and each one is

the inverse of the other. A unimodular matrix is a real square matrix with determinant

equal to one. More generally, a matrix with elements in the polynomial domain F (s)

is called unimodular if it has an inverse whose elements are also in F (s). A matrix

is therefore unimodular iff its determinant is a unit of F (s). As a result, the matrix

inverse of a unimodular real matrix is another unimodular matrix [12]. Equation (2.6)

is called the generalized Bezout identity [21].

2.2.1 Stable factors from state-space representations

The gpv technique is based on the stable factorization of the system transfer function

matrix in terms of its state-space representation. Let the system be described by the

set of equations:

ẋ(t) = Ax(t) + Bu(t) + Gd(t) (2.7)

y(t) = Cx(t) + Eu(t) (2.8)

where x, u, d, and y represent the state variables, inputs, disturbances and outputs

of the system, respectively and A, B, G, C, E are matrices of compatible dimensions.

7



The transfer matrix of this system (assuming no disturbances acting on the plant) is:

P (s) = C(sI − A)−1B + E (2.9)

The objective is to derive a doubly coprime factorization of P, as it is given in Theorem

(2.2.1) below [20]:

Theorem 2.2.1. Given the system (2.7)-(2.8), suppose the pairs (A, B) and (A, C)

are stabilizable and detectable, respectively. Select constant matrices K and F, such

that the matrices Ao : A− BK, Ão : A− FC are both Hurwitz. Then P = NpD
−1
p =

D̃−1
p Ñp and 


Y X

−Ñp D̃p







Dp −X̃

Np Ỹ


 =




I 0

0 I


 (2.10)

where the various matrices are defined as follows:

Ñp = C(sI − Ão)
−1(B − FE) + E (2.11)

D̃p = I − C(sI − Ão)
−1F (2.12)

Np = (C − EK)(sI − Ao)
−1B + E (2.13)

Dp = I −K(sI − Ao)
−1B (2.14)

X = K(sI − Ão)
−1F (2.15)

Y = I + K(sI − Ão)
−1(B − FE) (2.16)

X̃ = K(sI − Ao)
−1F (2.17)

Ỹ = I + (C − EK)(sI − Ao)
−1F (2.18)

¥

Using the definition given in equations (2.11) and (2.12), the left coprime factors

Ñp and D̃p are renamed for simplicity hereafter as Ñ and D̃ and rewritten as follows:

Ñ = C(sI − Ão)
−1(B − FE) + E (2.19)

D̃ = I − C(sI − Ão)
−1F (2.20)
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2.3 Generalized parity vector technique

Consider the linear time invariant plant depicted in Fig.2.1, which is described by the

p ×m transfer function matrix P(s). Let ud be the desired or correct control input

and u be the actual plant input (output of the actuator). The relation between u

and ud is given by equation (2.21):

� ����� � � � �

� �	�
	��

����

�
����

����

���	���
��
�


�	� � �	�

��	�

Figure 2.1: LTI system with disturbances, sensor and actuator failure models

u(t) = ud(t) + a(t) (2.21)

where a(t) is a time-varying vector with elements ai(t) representing various failure

modes of the ith actuator. Similarly, let yd be the actual output of the plant (desired

or correct sensor output) and y to be the actual output of the sensor. The relation

between these variables is expressed in equation (2.22):

y(t) = yd(t) + s(t) (2.22)

where s(t) is a time-varying vector with elements si(t) representing sensor failures.

The variables ud, y and d are “external” or available for fdi, while u and yd are

“internal” or unaccessible. The relationship among these signals is depicted in Fig.

2.1.
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Based on the system in Fig.2.1, the definition of the transfer function matrix P(s)

given in equation (2.2) and taking the relationship among the desired control input,

ud, and the actual output of the sensors, y, the following relations are obtained:

P (s) = D̃(s)−1Ñ(s) =
y(s)

ud(s)
(2.23)

D̃(s)y(s)− Ñ(s)ud(s) = 0 (2.24)

Under ideal conditions, when the plant is linear, noise and fault free, equation (2.24)

holds. However, when a fault happens, this relation is violated showing the incon-

sistency between the actuator inputs and sensor outputs with respect to the unfailed

model. Using this fact, the generalized parity vector, p(s), is defined as:

p(s) = Tr(s)[D̃(s)y(s)− Ñ(s)ud(s)] (2.25)

The gpv is a time varying function of small magnitude under normal operating con-

ditions, due to the presence of noise and modeling errors arising from linearization

and order reduction. However, it exhibits a significant magnitude change when a fault

occurs. Each distinct failure produces a parity vector with different characteristics,

allowing the use of the gpv for isolation purposes.

A transformation matrix Tr(s) is introduced in equation (2.25) to improve fault

isolability. The present work is focused on fault diagnosis using the direction of

the parity vector under various failure conditions. We assume hereafter that Tr is

constant, and that F in equations (2.19) and (2.20) is chosen such that Ão = −σI

(which can always be done if (A, C) is observable); this simplifies our discussion of

gpv behavior [21].
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Chapter 3

Fault Detection and Isolation
Using Directional Residuals

3.1 Introduction

The basic idea of fdi using failure directions is that each failure will result in activity

of the parity vector along certain axes or in certain subspaces. These reference axes or

subspaces are determined by the state space matrices. This information can be used to

isolate the fault with fewer parity variables than required using voting based on parity

variables magnitude alone; therefore, in many cases this approach is much simpler to

implement than a voting scheme. Depending on the dynamics of the system, some

of these reference directions may be close or identical, making the isolation for some

faults difficult or unachievable. To overcome the angle separation problem between

the reference directions, the calculation of an optimal transformation matrix Tr is

introduced in chapter 4.
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3.2 Actuator faults

In order to analyze actuator fdi, an additive fault aj(t) of the form described in

equation (2.21) is assumed in the jth actuator. Substituting equation (2.21) into

(2.25) and noting that D̃y − Ñud = 0, the following relation is obtained:

pa,j(s) = −(TrÑ)jaj(t) (3.1)

Equation (3.1) shows that pa,j(s) is restricted to exhibit activity along the direction

defined by the jth column of TrÑ . For a system with y=x, or state space matrices

C = In×n and E = 0n×m, as in the jcstr model, equation (2.19) can be rewritten

more simply as:

Ñ = (sI − Ão)
−1B = [diag(s + σ)]−1B (3.2)

Using equation (3.2), equation (3.1) can be rewritten as follows:

pa,j(s) , TrB
j aj(s)

s + σ
(3.3)

Comparing equations (3.1) and (3.3), the jth actuator reference direction, Bj
n, is

defined as Bj
n = Bj. Therefore equation (3.3) can be written in terms of the the jth

actuator reference direction as:

pa,j(s) , TrB
j
n

aj(s)

s + σ
(3.4)

Assuming a step or bias failure in the jth actuator, and since Ñ(s) and D̃(s) are stable

matrices, the steady-state parity vector, pss, can be computed using the final value

theorem [21] according to equation (3.5).

lim
s→0

sp(s) = lim
t→∞

p(t) = p ss (3.5)

Thus, for a constant bias of magnitude bj on the jth actuator, the pss
a,j is given by:

12



lim
s→0

{
− TrB

j
n

[
bj/s

s + σ

]
s

}
= lim

t→∞
p(t) (3.6)

p ss
a,j = −TrB

j
n

bj

σ
(3.7)

The actuator fault isolation is based on the angle Θj between the gpv and Bj
n as

illustrated in Fig. 3.1. If the jth actuator is faulty, this angle should be zero in the

ideal case or less than a small threshold value, Th, to account for model uncertainty.

jΘ

j
nB

2x

3x

1x
GPV

Figure 3.1: Actuator FDI

3.3 Sensor faults

Similarly, to explain sensor fdi an additive fault si(t), of the form described in

equation (2.22) is applied to the ith sensor. Based on this assumption, the parity

vector in equation (2.3) reduces to:

ps,i(s) = (TrD̃)isi(t) (3.8)

Assuming the same state space representation used in section 3.2, C = I and (sI −

Ão) = [diag(s + σ)], equation (2.20) can be simplified as:

D̃ = I − (sI − Ão)
−1F = I − [diag(s + σ)−1]F (3.9)

13



Recalling that Ão = A − FC = [diag (−σ)] = −σI and substituting C = I yields

F = A + σI, so equation (3.9) can be rewritten as follows:

D̃ = I − [diag(s + σ)−1][A + σI] (3.10)

To simplify equation (3.10) the vectors Ed and Bd are defined as:

Bd = (−A− σI) , Ed = I (3.11)

Using the previous definitions, equation (3.8) can be rewritten in terms of the vectors

which define the sensor reference plane as:

ps,i(s) = Tr

[
Ei

d +
Bi

d

s + σ

]
si(s) (3.12)

Thus, for the sensor failure case, it is not possible to confine ps,i(s) to lie along a fixed

axis. Only for fortuitous cases, depending on the dynamics of the system, can this be

achieved. However, for any system, the gpv always lies in a plane of the generalized

parity space, defined by the column vectors Ei
d and Bi

d.

As in actuator fdi, assuming a step or bias failure in the ith sensor, the steady-

state parity vector, pss, can be computed using the final value theorem [21] according

to equation (3.5). For a constant bias of magnitude ci on the ith sensor, the p ss
s,i is

given by:

lim
s→0

sTr

[
Ei

d +
Bi

d

s + σ

]
ci

s
= lim

t→∞
p(t) = p ss

s,i (3.13)

p ss
s,i = TrB

i
s

ci

σ
(3.14)

where
Bi

s = σEi
d + Bi

d (3.15)
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The sensor fault isolation is based on the angle Θi, between the gpv and the ith

sensor reference plane, SP i, as illustrated in Fig. 3.2. If the ith sensor is faulty, this

angle should be zero or less than Th.

iΘ

�B
i

d

i
spN

i
dE

iSP

1x

2x

3x
GPV

�B i
s

Figure 3.2: Sensor FDI

3.4 Special case for sensor-actuator faults

We consider a special case in terms of the actuator direction Bj
n and the SP i normal,

N i
sp shown in Fig.3.2 and defined by N i

sp = Ei
d ⊗Bi

d as:

Bj
n ·N i

sp = 0 (3.16)

If the dot product of Bj
n and the normal to the ith sensor reference plane is zero

then the jth actuator axis lies on the ith sensor reference plane [11] as is illustrated

in Fig. 3.3. This condition would be a result of the system state space structure.

For this case it is not possible to calculate a transformation matrix Tr such as the

actuator reference direction can be taken out of the sensor reference plane. This can

be demonstrated mathematically by proving equation (3.17) for arbitrary Tr, which

was done by symbolic manipulation in matlabr. From this proof it is concluded
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j
nB
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3x

Figure 3.3: Special case for Sensor-Actuator FDI

that equation (3.17) holds for any transformation matrix Tr, which means that the

jth actuator reference direction will always lie on the ith sensor reference plane.

TrB
j
n · (TrE

i
d ⊗ TrB

i
d) = 0 (3.17)

Under this circumstance we may still be able to distinguish between these faults by

taking a more detailed look at the parity vector relation in equation (3.12): Let us

assume that si(s) = ci/s (a bias fault) [21]; we can apply the initial value theorem to

show that the initial gpv activity is in the direction TrE
i
d, as follows:

lim
s→∞

sTr

[
Ei

d +
Bi

d

s + σ

]
ci

s
= lim

t→0
p(t) = p o

s,i (3.18)

p o
s,i = TrE

i
d ci (3.19)

and invoke the results obtained in equations (3.13), (3.14) and (3.15) using the final

value theorem, to demonstrate that the steady-state gpv activity is in the direc-

tion Tr

[
Ei

d +
Bi

d

σ

]
, TrB

i
s. Thus p ss

s,i and p o
s,i define a sector in the plane SP i that

encompasses the dynamic behavior of ps,i.

This was demonstrated for the jcstr example by applying volume and temper-

ature sensor faults at t=0.5 hours. Figures 3.4 and 3.5 show that after the fault is
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applied, the angle between the gpv and Bs approaches zero, while the angle between

the gpv and Ed moves apart. Thus the gpv swinging from Ed to Bs for the faulty

case is shown. However, this is only valid for the pure linear case.

Nevertheless, we can still clearly isolate the ith sensor fault from the jth actuator

fault unambiguously as long as Bj
n is not in or near the cone angle (sector) between

Ei
d and Bi

s [13], using the following logic:

if ](GPV, SP i) ≤ Th then

if ](GPV, Bj
n) ≤ Th then f j

a

else f i
s





(3.20)

where f i
s and f j

a denote the ith sensor and jth actuator faults respectively. Based on

equation (3.20) a sensor fault is declared if just the angle between the gpv and SP i

is smaller than a threshold value. Conversely, an actuator fault is announced if both

the angles between the gpv and SP i and the gpv and Bj
n are smaller than Th.

For some cases when Bj
n is inside the cone sector, depending on the dynamics of

the system, a sensor fault may produce a gpv aligned with the jth actuator reference

direction. This condition makes the sensor fault isolation incorrect, since the jth

actuator will be the one declared faulty, according with the logic in equation (3.20).

Although it was already proved in equation (3.17) that the the actuator reference

direction can not be taken out of sensor reference plane, it is still possible to ensure

that the jth actuator reference direction is not aligned with the sensor fault steady-

state gpv. This is achieved by adding an optimization constraint during the Tr

calculation, as presented in section 4.3.
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3.5 Disturbance decoupling

In real world processes there are many disturbances acting on the plant. However,

the objective is that the fdi technique presented should be unaffected by such dis-

turbances. Since many disturbances in real plants are accessible, these measured

disturbances can be used to decouple their effect from the fdi. This is implemented

by introducing them as extra inputs to the fdi technique, by extending the B matrix,

the inputs and the left coprime factor Ñ accordingly.

Disturbances are considered to be measurable extra inputs acting on the plant,

assuming no particular temporal behavior [6]. The distinction between a disturbance

and certain additive faults is indeed subjective. Faults are modelled as additive

inputs at particular sensors and actuators, and may specify temporal behavior (e.g.,

bias faults); any other extra inputs are categorized as disturbances. It is desirable

that the fdi approach not be affected by such extra inputs.

In order to demonstrate that residual directionality can be unaffected by extra

inputs whose measurements are available, equation (2.7) is rewritten as follows:

ẋ(t) = Ax(t) + B̃ũ(t) (3.21)

where B̃ = [ B G ] , ũ = [ u d ]T , and G and d represent the disturbance allocation

matrix and inputs respectively. Using equation (3.21), the coprime factorization

definition given by equation (2.19) can be rephrased as:

Ñ = C(sI − Ão)
−1(B̃ − FE) + E (3.22)
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Using the modified definition of Ñ given by equation (3.22) and the extended

input ũ, disturbance decoupling is implemented in the stable factorization framework

to make the gpv immune to disturbance effects.

20



Chapter 4

Transformation Matrix
Optimization

4.1 Introduction

Fault detection and isolation based on the stable coprime factorization approach

assures that the parity relations obtained involve stable, proper and rational transfer

functions even for unstable plants. Therefore the realizability and stability of the

residual generator is guaranteed. However, fdi based on the gpv approach using

directional residuals is highly dependent on the dynamics of the system. This means

that for some cases, the reference directions may be close or identical, making the

isolation for some faults difficult or unachievable. To overcome this situation, the

calculation of an optimal transformation matrix Tr is presented in this chapter.

4.2 Problem definition

The transformation matrix Tr in equation (2.25) is an important factor in fdi using

directional residuals. Its significance is based on its ability to change the original set of
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reference directions to a new one, with better features to improve fdi robustness. The

calculated Tr should be able to transform the original system in such a way, that the

gpv magnitude (|GPV |) after a fault exhibits a significant magnitude change. This

requirement assures a clear fault detection. Furthermore, Tr should provide enough

separation between the reference directions and planes, guaranteeing an unambiguous

fault isolation despite nonlinear effects and modelling uncertainty.

In most cases it is required to compute a transformation matrix (Tr 6= In×n). This

need is evidenced in the following results obtained for the jcstr model. First, a -50%

bias heating fluid inflow valve fault is applied at t=5 hours for a temperature setpoint

variation of +3% and a volume setpoint variation of +7% at t=0, as shown in the

figures below.
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Figure 4.1: Time histories for a -50% bias heating fluid inflow valve fault
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Figure 4.1(a) shows the volume sensor and the mix outflow time histories. Since

the volume only depends on the fluid inflow and outflow valve actions, this is not

affected by the heating fluid inflow valve failure. In Fig. 4.1(b) is observed the effect

that this fault has in the heating fluid inflow and the temperature behavior. In Fig.

4.2(a) we observe a significant increment in the gpv magnitude, allowing us to detect

the failure right away. However, isolation is difficult since the angles between the

gpv and the volume sensor reference plane, and the gpv and the outflow and heating

inflow valves reference directions, are all close to zero as shown in Fig.4.2(b).
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Figure 4.2: GPV behaviour for a -50% bias heating fluid inflow valve fault

The isolation problem is due to the dynamics of the system which does not provide

a well separated set of reference planes and directions. This fact is better demon-

strated in table 4.1 which includes the angles between the different actuator reference

directions and sensor reference planes. In this table is shown that the angle between
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] ( ◦) B ov
n B hv

n

B ov
n - 90

B hv
n 90 -

SP v 0 2.86

SP t 90 0

Table 4.1: Untransformed reference directions angles

B ov
n and SP v is zero, which means that the outflow valve reference direction lies

on the volume sensor reference plane. The same condition is presented between the

heating fluid inflow valve and the temperature sensor. This situation corresponds

to the special case for actuator fdi illustrated previously in Fig. 3.3 and defined by

equation (3.16), and is treated as described. It is also observed that the angle be-

tween SP v and B hv
n is equal to 2.86◦. Since this separation angle is very small, the

isolation is difficult because the gpv will be close to or lie on more than one reference

plane or direction. This situation can be solved by transforming the original system

using a suitable Tr that improves its fdi capabilities. The transformation matrix

computation is presented in the following section.

4.3 Transformation matrix computation

It is desirable to choose Tr to increase the separation angle between the original set

of reference directions as much as possible, to enhance robustness and maximize the

number of faults that can be isolated and the number of disturbances that can be

decoupled, beyond the number of outputs of the system [7].
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This can be formulated as a constrained optimization problem, whose objective

is to maximize the angles between the transformed reference directions, to the ex-

tent possible. The optimization routine maximizes the minimum of Fi, j (Tr), where

Fi, j (Tr) is the objective function containing the angles between the reference direc-

tions that are separable [13]. This is implemented by minimizing −Fi, j (Tr), using

the fminimax function in the matlabr optimization toolbox, which uses a sequential

quadratic programming (SQP) method. This method solves the constrained optimiza-

tion problem in a similar way as Newton’s method for unconstrained optimization.

An approximation of the Hessian of the Lagrangian function is made at each major

iteration, using a quasi-Newton updating method. This result is used to generate a

QP subproblem whose solution is used to form a search direction for a line search

procedure.

In this context, the term “separable” refers to those directions which do not satisfy

equation (3.17). The angle between those actuator reference directions which are lying

on one of the sensor reference planes, should be excluded from the Fi, j (Tr) function,

since it was already proven that it is not possible to calculate a Tr to separate them.

By determining this special case, the optimization performance is improved. The

mathematical formulation is given by:

Fi, j (Tr) = ](Zi , Zj) (4.1)

max
Tr

min
{Fi, j}

{Fi, j (Tr)} (4.2)

such that c (Tr) ≤ 0 , ceq(Tr) = 0

where c(Tr) ≤ 0 , ceq(Tr) = 0 represent nonlinear inequality and equality constraints,

respectively; and Zi and Zj are transformed reference directions. These directions
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are given by transforming Bj
n, Bi

d and Ei
d.

4.3.1 Nonlinear optimization constraints

The Tr calculation approach proposed using optimization is highly flexible. It allows

adding different nonlinear constraints to take into account the dynamics of the system.

In order to refine the optimization problem the following three nonlinear constraints

of the form c(Tr) and ceq(Tr) are implemented.

1. A compulsory constraint is imposed on Cond(Tr), the condition number of Tr;

Cond(Tr) ≤ Cmax improves the stability and robustness of the fdi response.

Cmax depends on the application and should be the smallest possible that allows

the optimization routine to converge to a solution. Specifically, by constraining

Cond(Tr), one obtains smoother behavior of the gpv angles and smaller fault-

free |GPV | during transients. These features are highly desired to enhance the

fdi performance. If the transformation matrix is calculated without using this

constraint, it most probably results in an ill-conditioned Tr which yields poor

results for the optimization routine.

2. An optional constraint normalizing Tr is applied; |Tr| = 1 normalizes the trans-

formed parity vector.

3. A case dependent constraint on the ](GPV i
ss , Zj) may be required if the system

dynamics lead to the special case defined by equation (3.16). The actuator fdi

issue is overcome by implementing the logic presented in equation (3.20), which
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is only effective if the jth actuator direction vector which lies on the plane SP i is

outside the cone defined by vectors Bi
s and Ei

d. Figures 4.3 and 4.4 illustrate how

these sensor fault sectors are defined for the jcstr model and their relations

with Bj
n.
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Figure 4.3: Volume sensor fault sector

In Fig. 4.3 it is observed that the outflow valve reference direction Bov
n lies on

the boundary of the volume sensor fault sector, making isolation difficult. Ideally,

isolation based on the steady-state gpv activity along Bv
s should still be feasible.

However, this is only true for the pure linear case and when there is not a high
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Figure 4.4: Temperature sensor fault sector

27



interaction between the variables. Conversely, in Fig. 4.4 the heating inflow valve

reference direction Bhv
n is well outside of the temperature sensor fault sector, which is

desirable for the sensor fault isolation. For the case shown in Fig.4.4 we may want to

maximize the angular separation between Bhv
n and the cone, in the situation depicted

in Fig.4.3 we can maximize the angle between Bov
n and Bv

s if the steady state strategy

is used.

To overcome the fdi ambiguity arising from the sensor-actuator special case de-

fined in section 3.4 when Bj
n is inside the cone sector, an additional constraint is

required. This assures a minimum separation angle between the steady-state gpv for

the ith sensor and the jth actuator reference direction to be large enough to provide

an unambiguous isolation. This can be expressed mathematically as:

](GPV i
ss , Zj) ≥ Θmin (4.3)

where Θmin should be the largest angle possible that allows the optimization rou-

tine to converge to a solution. If this constraint is omitted during the optimization

routine, there is no guarantee that the resulting Tr will provide enough separation

to distinguish the ith sensor fault from the jth actuator fault, for systems satisfying

equation (3.16).
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Chapter 5

Decision Maker

5.1 Introduction

Once the residuals are generated, a decision maker block is implemented to interpret

the magnitude and angle changes to make an fdi diagnosis. These results are sent to

the supervisory system, which displays the corresponding fault alarms through the

human interface. In most real world processes the operating point is continuously

changing, and this becomes an issue for model-based fdi techniques [16], applied

to nonlinear plants. This topic is analyzed in detail in section 6.1. To overcome

this situation, the modeling errors must be taken into account by implementing an

adaptive decision maker block [3].

The decision maker is composed of both the detection and isolation blocks, as

shown in Fig. 5.1. After the residual generator block executes, the gpv magnitude

(|GPV |) and the different gpv angles (∠GPVk) are available to perform the detection

and isolation, respectively. If the |GPV | exceeds the magnitude threshold, a fault is

detected and the isolation block is executed. Otherwise, the fdi algorithm declares
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normal operation. These blocks are described in detail in the following sections.
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Figure 5.1: Decision maker block diagram

5.2 Detection block

It is assumed that the process is under closed-loop control, and the control system in-

puts are output setpoints, ysp. The detection block is implemented using an adaptive

|GPV | threshold logic. This threshold logic uses ysp as input and provides a thresh-

old value depending on the setpoint variations. Since the detection using the gpv

technique is based on the magnitude increment with respect to the fault free gpv

magnitude, |GPV |ff , the threshold was calculated based on the |GPV |ff at each

operating point. If a good estimate of the |GPV |ff is available, the threshold value
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can be defined as K × |GPV |ff , where K > 1 depends on the system. The value of

K regulates the tradeoff between detection speed and the occurrence of false alarms.

If K is too small, it may generate false alarms due to the |GPV |ff estimation errors.

Conversely, if K is very large, the detection may be too slow or impossible for small

or even medium size faults. For the jcstr study, a value of K=2.5 provided a good

tradeoff, yielding low false alarm and misdetection rates along the controller envelope

defined in section 6.1. However, this application required knowledge of |GPV |ff at

different operating points, ysp.

Four different techniques were used to estimate the |GPV |ff for each setpoint

variation inside the operating envelope. First an empirical threshold scheduled logic

was attempted, followed by piece-wise linear, quadratic and cubic threshold function

fitting. Each of the techniques’ strengths and weaknesses are illustrated in section

7.4.

5.2.1 Empirical threshold scheduled logic

A fixed threshold was not a viable implementation for the jcstr because of non-

linearity, as analyzed in chapter 6. The first attempt to overcome this issue was to

implement an empirical scheduled threshold logic. For this method, the |GPV |ff

values were determined by simulations for different setpoint variations ∆V and ∆T

within the controller envelope. Using these values, different threshold regions were de-

fined for those setpoint variations for which the |GPV |ff did not change significantly.

For each region, the |GPV |ff average was calculated and stored as a single fault free

|GPV | for the whole area. When a setpoint variation is applied, the threshold region
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to which it belongs is identified and its corresponding |GPV |ff average is used to set

up the threshold value as Th = K × |GPV |ff .

The advantage of this method is its ability to take into account highly nonlinear

|GPV |ff variations. However, this may only be effective if many threshold regions

are defined, which is impractical and time consuming, due to the large data base

required to store the average |GPV |ff for each region.

5.2.2 Piece-wise linear threshold logic

In order to overcome the limitations presented in the previous method, a piece-wise

linear threshold logic was developed. To implement this method the |GPV |ff and

the |GPV | for a -20% fault was determined for a few ∆V and ∆T values inside the

controller envelope. A fault size of -20% was chosen for this study for having small

|GPV |faulty, which makes the detection more challenging. As the fault size increases,

the |GPV |faulty increases, which is desirable for detection. Therefore, if the threshold

logic is able to detect -20% size faults, it guarantees correct detection for fault sizes

with larger |GPV |faulty. These results together with their estimated threshold are

displayed in Fig.5.2 and 5.3.

The estimated thresholds are functions only of ∆V or ∆T, since in each figure we

are considering the variation of only one setpoint at a time. These estimated thresh-

olds were calculated as 0.5 × (|GPV |ff + |GPV |min) to guarantee an unambiguous

isolation in the worst case. In this equation, |GPV |min corresponds to the smallest

|GPV | in Fig.5.2 and 5.3. Using the estimated threshold for ∆V=0 and ∆T=0, the
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3D piece-wise linear threshold is given by:

Th = T 0
h + KV ∆V + KT ∆T (5.1)

where T 0
h is the threshold value at the nominal operating point in Fig. 5.2 and 5.3.
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Figure 5.2: Average |GPV | for ∆T=0

The volume and temperature slopes, KV and KT , are calculated from the estimated

threshold plotted in figures 5.2 and 5.3 respectively, considering three regions: ∆<-

5%, -5%<∆<0% and ∆>0%. According with the region where ∆V and ∆T lie, the

slopes are selected and the threshold value is calculated using equation (5.1). Fig.5.4

shows the 3D piece-wise linear obtained for the controller envelope.

The piece-wise linear threshold method is more efficient to implement and less

time consuming than the logic proposed in section 5.2.1. It is also more accurate

since it adapts the threshold at each operating point instead of scheduling a fixed
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one for a whole region. However, since the relation between the |GPV |ff and the

operating point is indeed nonlinear, this approximation fails for a few regions with

high nonlinear behavior.

5.2.3 Quadratic threshold logic

The quadratic logic was implemented to provide an adaptive threshold capable of

taking into account the nonlinear relation between the |GPV |ff and the operating

point. First the |GPV |ff was obtained for 361 different setpoint variations along the

controller envelope. Using these values a surface-fit was performed using a free trial

demo of TableCurv 3D V4.0 c©SYSTAT Software Inc. The obtained fitting has the

quadratic form z = a + bx + cy + dx2 + ey2 + fxy, that was rewritten in terms of the

variables to provide the following equation for the |GPV |ff :

|GPV |ff = a + b∆V + c∆T + d∆V 2 + e∆T 2 + f∆V ∆T (5.2)

Using equation 5.2 the adaptive threshold is defined as Th = K × |GPV |ff with

K=2.5. The polynomial coefficients and the different statistical parameters describing

equation 5.2 are attached in appendix B.1. Fig. 5.5 illustrates the surface-fit for the

controller envelope showing the nonlinear relation between the operating point and

the |GPV |ff .

The quadratic threshold logic is more efficient and accurate than the previous ones,

providing better |GPV |ff estimates even for the highly nonlinear regions. However,

since the coefficient of determination r2 is only 0.65, there will be still some highly

nonlinear regions for which the fitting may be inaccurate.
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5.2.4 Cubic threshold logic

A cubic threshold logic was implemented to increase the accuracy of the |GPV |ff

estimate. The same procedure used in the quadratic threshold was implemented

using TableCurv 3D, but the resulting fitting was a bivariate cubic polynomial of the

form z = a + bx + cy + dx2 + ey2 + fxy + gx3 + hy3 + ixy2 + jx2y. By rewriting this

equation in terms of the variables, the |GPV |ff is defined as:

|GPV |ff = a + b∆V + c∆T + d∆V 2 + e∆T 2 + f∆V ∆T +

g∆V 3 + h∆T 3 + i∆V ∆T 2 + j∆V 2∆T (5.3)

The polynomial coefficients and the different statistical parameters describing equa-

tion 5.3 are attached in appendix B.2. Figure5.6 illustrates the surface-fit for the
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controller envelope, described by equation (5.3).
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Figure 5.6: |GPV |ff Cubic fitting

The cubic threshold logic significantly improves the efficiency with respect to the

empirical scheduled and the piece-wise threshold logics. However, the enhancement

with respect to the quadratic approach is just slight, even though the coefficient of

determination r2 increases from 0.65 to 0.85. This improvement is only noticeable for

a few operating points, but it does not make a significant difference in most of the

highly nonlinear regions. This is discussed further in section 7.4 by comparing the

performance of the four different techniques in the jcstr application.
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5.3 Isolation block

The isolation block identifies which fault was detected using the logic depicted in Fig.

5.1. Since we are not considering concurrent faults (assuming they are unlikely to

happen), the isolation block is simplified using ∠GPVmin, which is defined in equation

(5.5). This avoids the issue of estimating an angle threshold to determine which angles

are close to zero.

∠GPVk(θ) = ](GPVss , Zk) (5.4)

∠GPVmin = min
θ

∠GPVk(θ) (5.5)

Once the detection block is executed, the angle between the gpv and each reference

direction and plane is calculated. Then, the differences between the smallest gpv

angle (∠GPVmin) and the rest are computed and compared with the sensor angle

threshold ∆s. If all the differences are larger than ∆s, a fault in the kth sensor is

identified, where k represents the sensor with the minimum angle. This logic ensures

that the separation between the minimum angle and the rest is large enough to isolate

the fault unambiguously.

In the jcstr model both actuators satisfy equation (3.16) and therefore their

isolation qualifies as the special case described in section 3.4. Based on this fact, it is

valid to state at the first stage that the fault corresponds specifically to a sensor case.

This is because for the actuator cases the gpv angle will lie not only in the corre-

sponding actuator reference direction, but also on a sensor reference plane. Therefore,

if the ∆s is exceeded, it means that the gpv was not exhibiting this situation. On
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the contrary, if ∆s is not exceeded, the difference between the ∠GPVmin and its cor-

responding actuator or sensor pair that satisfies equation (3.16) is calculated. If it

is less than the actuator angle threshold ∆a a fault in the corresponding actuator is

isolated. Otherwise, an unknown abnormal situation is declared. The unknown ab-

normal situation represents a case when the separation angle between the ∠GPVmin

and the others is not large enough and does not satisfy the actuator isolation logic.

Even though the fdi is ambiguous for this situation, the algorithm is still capable of

displaying an unknown abnormal situation, avoiding a missed alarm.
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Chapter 6

Robustness Analysis

6.1 Operating point variability

In most real world plants, the operating point is continuously changing in order

to satisfy production requirements. Although the large-signal behaviour of an actual

process is indeed nonlinear, most of them are controlled using a linear-based algorithm

designed for small deviations around a nominal operating point. Since large setpoint

variations will result in significant deviations from the nominal linearized model,

they may yield a poor approximation of the nonlinear model at this new operating

point and therefore poor controller performance. Since the Generalized Parity Vector

(gpv) technique is also a linear model-based approach, the modelling error becomes

a significant issue for fdi robustness as well.

In order to analyze the robustness with respect to modelling errors in a realistic

framework, we first determine the envelope where the controllers for both the linear

and nonlinear models work properly. The control objective was taken to be zero steady

state error, so the proportional plus integral (PI) algorithm was used. The inside of
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this envelope is defined to consist of those operating points where the system does

not show a steady state error. The crossed area shown in Fig.6.1 indicates the region

where the plant is properly controlled using both the linear and the nonlinear model.

Conversely, the dotted section is the area where either one or both controllers exhibit

steady state error due to the highly nonlinear behavior of the process. Hereinafter

the crossed area will be called the controller envelope and will be the operating region

of interest to test the fdi performance.
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Figure 6.1: Envelope for the linear and nonlinear controller

To estimate the fdi performance inside the controller envelope, a fault size of

-50% was applied for each sensor and actuator for 361 different setpoints variations.

For each ∆V and ∆T the fdi results were evaluated for each fault and plotted in the

corresponding figure, according with the plot symbols describe in table 6.1.
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PLOT SYMBOL FDI PERFORMANCE

o Fast and sure

4 Fast but short

+ Slow but sure

¤ Ambiguous

∗ Only detection

× FDI not possible

Table 6.1: FDI envelope plot symbols

6.1.1 Volume sensor FDI envelope

Figure 6.2 illustrates the fdi performance within the controller envelope for a -50%

volume sensor fault. It is observed that most of the time, the fdi algorithm yields

circle markers, which characterize the ideal case, where the fault is detected right

away and the isolation period is long. A small area defined by triangles represents

the region where the fault is detected right away as well, but the isolation period is

short. This situation is due to the nonlinear interaction that the volume has on the

temperature as stated in equation A.2, appendix A. Thus, when a volume sensor fault

is applied at some operating points, the temperature loop is significantly disturbed

after some minutes affecting the residual directionality. However, the performance

of the fdi is still acceptable since it provides a clear isolation period of around 15

minutes strengthened by a subsequent “unknown abnormal situation” alarm.

Finally, there are two small areas represented by squares, which represents an

ambiguous isolation. In this case, the volume sensor fault is detected for a short
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Figure 6.2: FDI Envelope for volume sensor fault

period of time, preceded or followed by an outflow valve fault alarm. This situation is

due to a special case for sensor-actuator faults described in section 3.4. To overcome

this situation, a constraint was added during the Tr calculation to ensure that the

outflow valve reference direction was not aligned with the sensor fault steady-state

gpv. However, its validity is limited to a region surrounded the nominal operating

point, due to the nonlinearities involved. This is evidenced in figure 6.2, since the

ambiguous fdi region starts for values of ∆V < -10%. Even though it is undesirable

for fdi, it is still within the expected limitations for this method since designs based

on linearized models are generally supposed to be valid for ±10% setpoint variations

around the nominal operating point.
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6.1.2 Temperature sensor FDI envelope

Figure 6.3 shows the fdi performance for the controller envelope when a -50% tem-

perature sensor fault is applied. It is observed that the gpv technique is able to

isolate the fault clearly for all setpoint variations inside the envelope. Even for large

setpoint variations, the detection was fast and the isolation period was extensive

and unambiguous, which is highly desirable for fdi. These features were enhanced

by transforming the original system using the Tr calculation method presented in

chapter 4.
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Figure 6.3: FDI Envelope for temperature sensor fault
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6.1.3 Outflow valve FDI envelope

Figure 6.4 illustrates the fdi performance along the controller envelope for a -50%

outflow valve fault. It can be observed that for this fault case, the fdi shows a variety

of performance regions. This is due to the fact that the outflow valve controls the

mixture volume and, as a result, it affects the temperature of the mixture as well.

This is evidenced in the dominant region defined by triangles, that characterizes a

fast but short fdi response. In this area the detection was fast, but the isolation

period was no more than 15 minutes, as a consequence of the nonlinear behavior of

the temperature. Nevertheless, the fdi performance is satisfactory since it provides a

clear isolation period of around 15 minutes, strengthened by a subsequent unknown

abnormal situation alarm.
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Figure 6.4: FDI Envelope for outflow valve fault
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The second largest region is defined by circles, which represents the ideal case

where the fault is detected immediately and the isolation period is long. This region

is characterized for large volume setpoint variations, which is advantageous because

those setpoint values are close to the saturation level (maximum capacity of the

tank). Hence, when the outflow valve fault is applied, the effect in the volume is not

significant and therefore the nonlinear effect on the temperature is not remarkable.

As a result of this, the gpv is not lying close to the temperature reference plane, even

a long time following the fault.

The third region is depicted by squares, which represents an ambiguous isolation.

In this region either the volume or temperature setpoint variations are large, which

accentuates modeling errors. Because of this, the residual directionality is affected

as the gpv points towards the outflow valve reference direction only for a very short

period of time (less than 5 minutes) and later it points towards the heating fluid inflow

valve reference direction. Since the clear isolation period is not long enough and it is

followed by a heating fluid inflow valve fault alarm, the fdi is declared ambiguous.

Although this is an undesirable situation for fdi it is not that critical since most

of the ambiguous cases are near the envelope boundary or presented for ∆V > 20%

which are outside the ±10% expected functioning range for the linearized model.

The small region symbolized by asterisks represents setpoint variations where only

detection is possible. For these setpoints, the nonlinear effect in the temperature be-

comes more remarkable and therefore the gpv directionality is significantly affected.

46



However, the fdi algorithm is still capable of providing a prolonged “unknown ab-

normal situation” signal, avoiding false alarms but detecting an irregular condition

in the system.

There are a few cases denoted by crosses where the fault is detected after a while,

but the isolation period is extended and clear. These cases are for some ∆V > 54%,

variations for which the setpoint values are very close to the saturation level. Hence,

if the outflow valve is stuck, the effect on the volume level is not significant because

it cannot increase beyond the maximum capacity of the tank. As a result, it will take

a longer time for the gpv to be significantly affected by this fault and this will delay

the detection, by as much as 20 minutes.

Finally, there were just 3 cases defined by x’s where the fdi did not work. These

cases were for some ∆V > 53% where the modeling errors became extreme, yielding

a large fault free gpv magnitude. Because of the large |GPV |ff , the magnitude

increment after the fault is not large enough to be detected by any of the detection

logics proposed in section 5.2. However, this situation is not a critical issue for the

jcstr fdi system, since it is present only for three setpoint values (over 361 tested)

and these were located on the corner of the envelope boundary. The plant is unlikely

to operate in this region.

6.1.4 Heating fluid inflow valve FDI envelope

Figure 6.5 shows the fdi performance for the controller envelope when a -50% heating

fluid inflow valve fault is applied. It was verified that the fdi algorithm is capable of
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unambiguously isolating the fault for all the setpoint variations inside the envelope.

For significant setpoint variations, the detection was quick and the isolation period

was large and definite. The isolation features were improved by the proper calculation

of the transformation matrix, allowing it to increase the separation angle between the

volume sensor reference plane and the heating fluid inflow valve reference direction

from 2.86◦ to 56.94◦.
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Figure 6.5: FDI Envelope for heating fluid inflow valve fault

6.2 Fault size analysis

In order to test the robustness of the gpv technique with respect to the fault size,

different scenarios for each type of fault were simulated at the nominal operating
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point. The minimum fault size was set at ±10%, since we are not interested in

detecting smaller faults. For the actuator case, the fault size defines the % with

respect to the steady state value at which the valve is stuck. For the sensor case,

it determines the bias with respect to the actual value. The results for different

negative and positive fault sizes are tabulated in tables 6.3 and 6.4 respectively, using

the notation presented in table 6.2.

SYMBOL FDI PERFORMANCE

o Fast and sure

4 Fast but short

Table 6.2: Symbols for fault size analysis

It was verified from the simulations that the faulty gpv magnitude increases with

the fault size, as expected. This occurs because the difference between the analytically

computed and the sensory measurement values is more significant when the latter is

perturbed for larger faults. Although the value of the faulty gpv magnitude changes

considerably for each fault type and size, the gpv technique was able to detect and

isolate the fault properly for the scenarios symbolized by a o in tables 6.3 and 6.4.

This is a result of the implemented detection logic described in section 5.2.

Most of the volume sensor fault cases are labelled with a 4 which represents

fast detection with a short isolation period. This is because the volume control loop

is able to reject the fault quickly, driving the measured mixture level back to the

setpoint and the mix outflow to the nominal steady state. Since these are the only
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measurements affecting the volume parity equation, the gpv will point towards the

volume reference direction only for a short period of time while the fault has not been

rejected. However, since the actual mixture level inside the tank is different than the

measured one (due to the sensor fault), this will affect the measured temperature and

heating fluid inflow. As a consequence of this, the fdi algorithm is still able to detect

an unknown abnormal situation even after the fault is rejected. Conversely, when a

negative volume sensor fault ≥ 50% is applied, the volume loop is not able to reject

it and therefore the isolation period is extended.

These results demonstrate that the performance of the gpv technique is not re-

stricted by the fault size. On the contrary, as the fault size increases, its performance

improves showing a faster detection and more definite isolation, while being sensitive

enough to detect small size faults.
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Chapter 7

Simulation Results

7.1 Introduction

The fdi algorithm was implemented using matlabr and applied to a simulated

model of the jacketed continuously stirred tank reactor described in appendix A.

In order to test the performance in various circumstances presented in the previous

chapters, different sensor and actuator faults were applied. Both linear and nonlinear

models were used in this study, and time histories for both models are shown in all

plots even though they coincided in a number of cases. The conditions given are

all with reference to one of the two nominal setpoint specified in appendix A, i.e,

∆T = Tsp − To, ∆V = Vsp − Vo.

7.2 Transformation matrix results

In order to test the performance of the transformation matrix obtained using op-

timization, several scenarios were simulated to show its effect in the fdi for each

constraint separately and all of them together.
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To illustrate the effect of constraint 1 (condition number), a -50% bias outflow

valve fault is applied at t=5 hours for a temperature setpoint variation of +5% and

a volume setpoint variation of +5%. The corresponding time histories are attached

in appendix C, Figs.C.1 and C.2.

In figure 7.1, the original set of directions was transformed using a Tr obtained

by applying the procedure presented in section 4.3 but eliminating constraint 1. The

effect of excluding this constraint is shown in the gpv angle’s behavior. It is observed

that the outflow valve angle and the volume and temperature sensor angles are all

close to zero making the isolation unachievable.
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Figure 7.1: ∠GPV without using constraint 1

In contrast, in Fig. 7.2 it is observed that by adding constraint 1, the separation
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angle between the temperature sensor angle and the outflow valve and sensor angles

increases significantly, allowing a clear isolation by applying the logic given in equation

3.20.
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Figure 7.2: ∠GPV using constraint 1

To analyze the effect of constraint 3 (angle condition for the special case), a -50%

volume sensor fault is applied for a volume setpoint variation of 7% and a temperature

variation of 5%. The corresponding time histories are attached in appendix C, Figs.

C.3, C.4, C.5 and C.6. In Fig.7.3 it is observed that the gpv without constraint 3 is

not only lying on the volume sensor reference plane after the fault is applied, but also

almost in the outflow valve reference direction. This is evidenced in the fact that both

the sensor and outflow valve angles lie close to zero, making the isolation unattainable.

However, by adding constraint 3, the separation angle between the volume sensor and
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Figure 7.3: ∠GPV without using constraint 3
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Figure 7.4: ∠GPV using constraint 3
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the outflow valve increases significantly allowing a definite isolation as shown in figure

7.4. The corresponding |GPV | with and without using this constraint are are shown

in appendix C figures C.7 and C.8 respectively.

Finally, a -50% heating fluid inflow valve fault was applied for a volume setpoint

variation of 7% and a temperature variation of 3%. The time histories for this case

are illustrated in appendix C, figures C.9, C.10, C.11 and C.12. For this case the

system is transformed using a Tr obtained by combining all the previous constraints

during its calculation. By comparing figures 7.5(a) and 7.6(a) the effect of constraint

2 (|Tr| = 1) can be observed, which is optional since it only affects the |GPV | scale.

In figure 7.5(b) it can be seen that the isolation is not possible because the heating

fluid inflow valve, the temperature and volume sensor angles are all close to zero.

However, by looking at figure 7.6(b) it is observed that for the transformed system,

the volume sensor angle lies far enough from the heating fluid inflow valve angle,

making the actuator isolation possible by applying the logic in equation 3.20.

This is confirmed in table 7.1 where it is observed that this angle increases from

2.86◦ to 62.58◦, which is large enough to provide a clear isolation. At the same

time, the other angles remain close to 90◦, which is the ideal situation where the

separation angle is maximum. Therefore, it is established that the transformation

matrix obtained by optimization provides a good tradeoff between all the angles.

The previous examples have demonstrated the capability of the proposed trans-

formation matrix calculation using constraint optimization to overcome the special

case for sensor-actuator fdi defined in section 3.4 and the undesirable fdi features
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Figure 7.5: Untransformed GPV

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
 GPV magnitude

Time (hrs)
0 2 4 6 8 10

0

10

20

30

40

50

60

70

80

90

Time (hrs)

d
e
g
re

e
s

 Actuator and Sensor Failure Angles 

Outflow valve

Heating fluid inflow valve

Volume Sensor

Temperature Sensor

(a) (b)

Figure 7.6: Transformed GPV
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] ( ◦) B ov
n B hv

n

B ov
n - 89.99

B hv
n 89.99 -

SP v 0 62.58

SP t 89.99 0

Table 7.1: Transformed reference directions angles

due to the nonlinear dynamics of the system.

7.3 Disturbance decoupling results

To illustrate the effect of implementing disturbance decoupling in the fdi algorithm,

a -50% temperature sensor fault is applied at t=2.5 hours, followed by a 50% low inlet

flow disturbance, Fin, at t= 6 hours, for ∆V=40% and ∆T=10%. The corresponding

time histories are shown in Figs.7.7, 7.8 and 7.9.

In figure 7.10 (fdi without disturbance decoupling) it is observed that the |GPV |

is significantly decreased after the disturbance is applied. Since for small fault sizes

the magnitude increment after a fault is not very large, this reduction may be enough

to cause a misdetection. However, when disturbance decoupling is incorporated into

the fdi algorithm, this situation is overcome as illustrated in figure 7.11, where the

disturbance is rejected quickly, driving the |GPV |faulty back to its undisturbed value.
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Figure 7.7: Disturbance time-histories
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Figure 7.8: Time-histories for a -50% temperature sensor fault + 50% low inlet flow
disturbance
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Figure 7.11: |GPV | with disturbance decoupling

The effect of disturbances is even more significant in the ∠GPV behavior as il-

lustrated in figure 7.12. After the disturbance is applied, the temperature sensor

∠GPV increases substantially, becoming larger than the volume sensor and outflow

valve ∠GPV . As a result, the fdi algorithm detects a volume sensor fault instead,

yielding an incorrect isolation. To avoid these false alarms, disturbance decoupling is

implemented in the fdi algorithm to maintain the gpv directionality in the presence

of disturbances, as portrayed in Fig.7.13. It is observed that after the disturbance is

applied at t= 6 hours, the temperature ∠GPV is only slightly affected for a short pe-

riod of time while the disturbance is completely rejected. Similarly, the other ∠GPV

are just trivially perturbed and keep their undisturbed directionality, allowing a clear

isolation of the temperature sensor fault. Therefore, by incorporating disturbance
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Figure 7.12: ∠GPV without disturbance decoupling

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

Time (hrs)

de
gr

ee
s

 Actuator and Sensor Failure Angles 

Outflow valve
Heating fluid inflow valve
Volume Sensor
Temperature Sensor

Figure 7.13: ∠GPV with disturbance decoupling
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decoupling, the fdi algorithm becomes robust to disturbance effects.

7.4 Decision maker results

The performance of the decision maker block using the four techniques presented

in section 5.2 was evaluated applying 361 setpoint variations within the controller

envelope. At each operating point, false alarms and misdetections were evaluated

and counted for each threshold method, applying each fault with a magnitude of

− 50%. These results are displayed in a separate bar graph for each fault in appendix

D. The average threshold logic performance for all the faults is illustrated in figure

7.14.
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Figure 7.14: Average threshold logic performance
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Figure 7.14 shows a poor overall performance for the empirical threshold with

respect to false alarms and misdetections, since they were generated 23.75% of the

time (87 times out of 361 cases). In contrast, the piece-wise linear, quadratic and cubic

threshold logics provide substantially better performance in the controller envelope.

They produce false alarms or misdetection rates only for 10.04% 9.56% and 11.7% of

the setpoint variations applied, respectively. These percentages are satisfactory, since

the performance test was done for a extended region around the nominal operating

point with maximum variations of -35%<∆V <55% and -15%<∆T<20%.

Although the three analytic methods had similar performance in terms of false

alarms and misdetection rates, the cubic and quadratic threshold logics provided

faster detection rates for some fault scenarios. This is illustrated in figures 7.15,

7.16, 7.17 and 7.18, for a -30% heating fluid inflow valve fault applied at t=1.5 hours

with ∆V=9% and ∆T=5%. The figures for other sensor and actuator time-histories

are attached in appendix E. Figures 7.15-7.18 show the gpv fault display, a simple

operator display of the fdi output. In this case all the threshold methods isolate

the fault, but the detection time is significantly different. The empirical threshold

logic takes 34 minutes to detect the fault, which is ineffective in real processes. The

piece-wise linear threshold detects the fault after 24 minutes, which is still too long

to be viable in actual plants. The quadratic and cubic approaches are able to detect

the fault after 14 minutes, which is significantly better than the other two methods.

This detection time is probably acceptable, since the jcstr has large time constants.

Even though the quadratic and cubic logics provide the same detection time, the latter

yields a false temperature fault alarm during the first two minutes of the detection.
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Figure 7.15: FDI results using empirical threshold scheduled logic
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Figure 7.16: FDI results using piece-wise linear threshold logic
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Figure 7.17: FDI results using quadratic threshold logic
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Figure 7.18: FDI results using cubic threshold logic

66



Evaluating the strengthens and weakness of each detection method, the quadratic

threshold logic presents the best tradeoff between detection speed and false alarms

and misdetection rates.
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Chapter 8

Thesis Observations

8.1 Summary and conclusions

1. An extension of the generalized parity vector technique has been developed,

implemented and tested using a jcstr model.

2. A new systematic approach to calculate an optimal transformation matrix has

been effectively developed, enhancing the FDI performance and its scope in

terms of the number of faults that can be isolated and disturbances that can be

decoupled.

3. The special case when an actuator fault gpv direction lies on a sensor fault

plane has been clarified and isolation improved by extending the transformation

approach. Additional logic has been added to deal with this case for improved

actuator fault isolation.

4. A new approach for disturbance decoupling has been incorporated in the stable

factorization framework to improve the fdi robustness.
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5. Four novel threshold logics have been proposed to implement a robust decision

maker block. Each technique has been evaluated considering detection speed,

false alarms and misdetection rates, to select the one that provides the best

tradeoff.

6. Robustness analysis has been successfully performed throughout the controller

envelope, showing the fdi capability to handle the operating point and fault

size variability.

7. Extensive simulation analysis have been successfully performed showing the

validity of the different aspects analyzed in this research.

8.2 Future work

1. Even though the robustness has been significantly improved by incorporating an

optimal transformation matrix calculation, disturbance decoupling and adap-

tive threshold logics, there is still some sensitivity of the gpv technique with

respect to modelling errors. For future work, it is proposed to make the gpv

technique adaptive depending on the operating point by incorporating a model

identification module to handle variable dynamics. This improvement may also

necessitate the online calculation of the transformation matrix using optimiza-

tion to guarantee the best separation for the set of gpv angles at each operating

point; this too can be investigated.

2. So far a constant transformation matrix has been used. However, future work
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may be oriented to the calculation of a transfer function transformation matrix

Tr(s) to make the sensor fault directional and thus improve the fdi performance.

3. Although the results obtained using a simple 3D piece-wise linear threshold were

satisfactory, future research can improve the false alarm and misdetection rates

further, by obtaining it using a more sophisticated technique such as spline or

3D-interpolation.

4. Since in this research concurrent faults were not considered, the isolation block

was implemented using a fixed angle threshold. However, further research

should study the implementation of an adaptive isolation block which may

be able to extend this technique to detect simultaneous faults regardless the

nonlinearities involves.

5. Our future research will implement this fdi technique using the actual model

and data originating from one of the pilot plant facilities involved in the Petroleum

Applications of Wireless Systems (PAWS) project. This will allow the gpv tech-

nique performance to be tested for large scale processes.
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Appendix A

JCSTR Dynamic Model

In this jcstr, see figure A.1, the tank inlet stream is received from another process

unit and there is a heat transfer fluid circulating through the jacket to heat the fluid

in the tank. The objective is to control the temperature and the volume inside the

tank by varying the jacket inlet valve flow rate (the temperature control or TC loop)

and tank outlet valve flow rate (the level control or LC loop) respectively.
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Figure A.1: Jacketed continuously stirred tank reactor

In order to derive the dynamic modeling equations of the tank and jacket temper-

atures, the following assumptions were made:

• Liquids have constant density and heat capacity.
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• Mixing in both the tank and jacket are perfect.

• The tank inlet flow rate, jacket flow rate, tank inlet temperature and jacket

inlet temperature may change (these are the inputs).

• The rate of heat transfer from the jacket to the tank is governed by the equation

Q = U A(Tj − T ) , where U is the overall heat transfer coefficient and A is the

area for heat transfer and is given by equation A = πD2
r

4
+ 4V

Dr
.

The following equations describe the ODE model for the jcstr reactor [15] and

the notation used is listed below.

V̇ = Fin − Fout (A.1)

Ṫ =
Fin (Tin − T )

V
+

UA (Tj − T )

V ρ Cp

(A.2)

Ṫj =
FJin (TJin − Tj)

Vj

+
UA (Tj − T )

Vj ρCp

(A.3)

NOTATION

Subscripts

i Inlet

j Jacket

Jin Jacket inlet
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Variables

A Area for heat transfer

Dr Diameter of the reactor

Cp Heat capacity (energy/mass*temp)

F Volumetric flowrate (volume/time)

ρ Density (mass/vol)

T Temperature

Q Rate of heat transfer (energy/time)

U Heat transfer coefficient (energy/time*area*temp)

V Volume

Parameter values

Dr 5 m

Cp 4.1868*1000 (J/kg.K)

Fin 0.1 (m3/s)

ρ 997.95 (kg/m3)

Tin 283 oK

FJout 0.15 (m3/s)

Vj 9 m3

TJin 419 oK

U 851.74 (W/m2.K)

Operating point 1

Vo 180 m3

To 306.5824 oK

Tj 377.2784 oK
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Operating point 2

Vo 126 m3

To 306.6937 oK

Tj 403.2040 oK
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Appendix B

Statistical Parameters

B.1 Quadratic fitting

This section presents the parameters corresponding to the surface-fit performed in

section 5.2.3 using a free trial demo of TableCurv 3D V4.0 c©SYSTAT Software Inc.

The obtained fitting has the quadratic form z = a+bx+cy+dx2+ey2+fxy, that was

rewritten in terms of the variables to provide the following equation for the |GPV |ff :

|GPV |ff = a + b∆V + c∆T + d∆V 2 + e∆T 2 + f∆V ∆T (B.1)

The polynomial coefficients and the different statistical parameters describing

equation B.1 are attached below.
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B.2 Cubic fitting

This section presents the parameters corresponding to the surface-fit performed in

section 5.2.4. The resulting fitting was a bivariate cubic polynomial of the form

z = a+bx+cy+dx2 +ey2 +fxy+gx3 +hy3 + ixy2 +jx2y. By rewriting this equation

in terms of the variables, the |GPV |ff is defined as:

|GPV |ff = a + b∆V + c∆T + d∆V 2 + e∆T 2 + f∆V ∆T +

g∆V 3 + h∆T 3 + i∆V ∆T 2 + j∆V 2∆T (B.2)

The polynomial coefficients and the different statistical parameters describing

equation B.2 are attached below.
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Appendix C

Complementary Figures for
Section 7.2

Figures C.1 and C.2 illustrate the time histories for a -50% bias outflow valve fault

applied at t=5 hours for a temperature setpoint variation of +5% and a volume

setpoint variation of +5%.
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Figure C.1: Time histories for a -50% bias outflow valve fault
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Figure C.2: Time histories for a -50% bias outflow valve fault

Figures C.3, C.4, C.5 and C.6 correspond to the time histories for a -50% volume

sensor fault at t=5 hours with ∆V=7% and ∆T=5%. Figures C.7 and C.8, show the

|GPV | with and without using constraint 3 for this fault scenario.
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Figure C.3: Time-histories for a -50% volume sensor fault
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Figure C.4: Time-histories for a -50% volume sensor fault
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Figure C.5: Time-histories for a -50% volume sensor fault
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Figure C.6: Time-histories for a -50% volume sensor fault
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Figure C.7: |GPV | without using constraint 3
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Figure C.8: |GPV | using constraint 3

Figures C.9, C.10, C.11 and C.12 show the time histories for a -50% heating fluid

inflow valve fault at t=5 hours with ∆V=7% and ∆T=3%.
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Figure C.9: Time-histories for a -50% heating fluid inflow valve fault
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Figure C.10: Time-histories for a -50% heating fluid inflow valve fault

0 2 4 6 8 10
31

31.5

32

32.5

33

33.5

34

34.5

35
 Measured mix temperature and its setpoint

Time (hrs)

o C

setpoint

nonlinear case

linear case

Figure C.11: Time-histories for a -50% heating fluid inflow valve fault
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Figure C.12: Time-histories for a -50% heating fluid inflow valve fault
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Appendix D

Complementary Bar Graphs for
Section 7.4

The followings bar graphs show the performance comparison between the different

threshold logics along the controller envelope for each fault.
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Figure D.1: Threshold logic performance for volume sensor fault
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Empirical Piece−wise Quadratic Cubic
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Figure D.2: Threshold logic performance for temperature sensor fault
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Figure D.3: Threshold logic performance for outflow valve fault
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Figure D.4: Threshold logic performance for heating fluid inflow valve fault
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Appendix E

Complementary Time-Histories
Figures for Section 7.4

The following figures correspond to the time histories for a -30% heating fluid inflow

valve fault applied at t=1.5 hours with ∆V=9% and ∆T=5%.
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Figure E.1: Time histories for a -30% bias heating inflow valve fault
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Figure E.2: Time histories for a -30% bias heating inflow valve fault
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Figure E.3: Time histories for a -30% bias heating inflow valve fault
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Figure E.4: Time histories for a -30% bias heating inflow valve fault
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Appendix F

Optimization Routine Results

The transformation matrix optimization method presented in chapter 4 was tested

using different random initial values for To. The optimization results for ten dif-

ferent Toi are presented below, with its corresponding Tri and set of angles. These

angles are obtained by transforming the original set of reference directions with the

corresponding Tri.

From the results it is demonstrated that even though the solution for Tr is not

unique, it is always optimal and provides a set of angles with maximum separation.

By comparing the values in tables F.1, F.2, F.3, F.4, F.5, F.6, F.7, F.8, F.9 and F.10,

it is observed that the difference between each set of transformed reference directions

angles is ≤ 10−4. Since the angle range is between 0◦ and 90◦, a variation ≤ 10−4 is

neglectable.

Therefore, it is stated that the transformation matrix optimization method guar-

antees the same optimal set of angles, regardless the initial values of To and the results

obtained for Tr.
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T01 =




0.44470336435319 0.92181297074480 0.40570621306210

0.61543234810009 0.73820724581067 0.93546969910761

0.79193703742704 0.17626614449462 0.91690443991341


 (F.1)

Tr1 =



−0.05194676496515 0.94094391898361 0.00305224773755

−0.09998790168314 −0.5669016282185 −0.0362556743034

−0.14897393939406 0.05238696416200 0.02326963926715


 (F.2)

] ( ◦) B ov
n B hv

n

B ov
n 0 89.99996752797870

B hv
n 89.99996752797870 0

SP v 0 62.58939356852625

SP t 89.99996484981651 0

Table F.1: Transformed reference directions angles for Tr1

T02 =




0.41027020699095 0.35286813221700 0.13889088195695

0.89364953091353 0.81316649730376 0.20276521856027

0.05789130478427 0.00986130066092 0.19872174266149


 (F.3)

Tr2 =




0.11369096195394 −0.6458719019600 −0.0023668562260

0.03791607953446 0.60021879239988 0.03724041891269

0.11708564745205 0.43276987807864 −0.0097618493320


 (F.4)

] ( ◦) B ov
n B hv

n

B ov
n 0 89.99953964077456

B hv
n 89.99953964077456 0

SP v 0 62.58939117101704

SP t 89.99953951118647 0

Table F.2: Transformed reference directions angles for Tr2
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T03 =




0.50281288399625 0.30461736686939 0.68222322359138

0.70947139270339 0.18965374754717 0.30276440077661

0.42889236534100 0.19343115640522 0.54167385389809


 (F.5)

Tr3 =




0.00684355568779 0.51013273334789 0.03881700915275

−0.12470406007108 −0.5217548966185 0.00119043802266

0.10261674454854 −0.6680804869893 −0.0011420613477


 (F.6)

] ( ◦) B ov
n B hv

n

B ov
n 0 89.99999353612962

B hv
n 89.99999353612962 0

SP v 0 62.58939332482288

SP t 89.99993281175686 0

Table F.3: Transformed reference directions angles for Tr3

T04 =




0.15087297614976 0.86001160488682 0.49655244970310

0.69789848185986 0.85365513066277 0.89976917516961

0.37837300051267 0.59356291253968 0.82162916073534


 (F.7)

Tr4 =



−0.0064844137364 0.98904292454219 0.03191726247386

−0.1689847684377 −0.1753628891650 0.00967501653221

0.07597583750139 −0.3056289617605 0.02424317044179


 (F.8)

] ( ◦) B ov
n B hv

n

B ov
n 0 89.99999989160767

B hv
n 89.99999989160767 0

SP v 0 62.58939325525691

SP t 89.99995772311524 0

Table F.4: Transformed reference directions angles for Tr4
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T05 =




0.64491038419384 0.34197061827022 0.53407901762660

0.81797434083925 0.28972589585624 0.72711321692968

0.66022755644160 0.34119356941488 0.30929015979096


 (F.9)

Tr5 =



−0.08711218404002 −0.7414312365354 −0.0136640418577

−0.05532928153552 0.21096751562309 −0.0235362051771

−0.10383014918281 0.50963434159004 0.02400609919095


 (F.10)

] ( ◦) B ov
n B hv

n

B ov
n 0 89.99988127065217

B hv
n 89.99988127065217 0

SP v 0 62.58939326524080

SP t 89.99982806050119 0

Table F.5: Transformed reference directions angles for Tr5

T06 =




0.83849604493808 0.70273991324038 0.69456724042555

0.56807246100778 0.54657115182911 0.62131013079541

0.37041355663212 0.44488020467291 0.79482108020093


 (F.11)

Tr6 =



−0.03932720090354 0.38881383979846 −0.0232257774446

−0.10890457200911 0.71079334214074 0.02920610731514

0.14607122491273 0.63463971038040 0.01552341928696


 (F.12)

] ( ◦) B ov
n B hv

n

B ov
n 0 89.99809045563512

B hv
n 89.99809045563512 0

SP v 0 62.58939160815882

SP t 89.99808714477190 0

Table F.6: Transformed reference directions angles for Tr6
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T07 =




0.95684344844488 0.17295614127524 0.25232934687399

0.52259034908071 0.97974689678884 0.87574189981807

0.88014220741133 0.27144725864180 0.73730598846526


 (F.13)

Tr7 =



−0.00218712694053 −1.0256743530600 −0.0084723466339

−0.16360978196500 −0.1921181612975 −0.0227990669791

−0.10635512280000 0.31663055253980 0.03524684783400


 (F.14)

] ( ◦) B ov
n B hv

n

B ov
n 0 89.99998385683553

B hv
n 89.99998385683553 0

SP v 0 62.58939337276787

SP t 89.99986039038620 0

Table F.7: Transformed reference directions angles for Tr7

T08 =




0.98833493827763 0.51551175214076 0.22594986814445

0.58279168156123 0.33395147997176 0.57980687324960

0.42349625685105 0.43290659610673 0.76036500980434


 (F.15)

Tr8 =



−0.1739158147028 0.13006657126393 0.01418622398380

0.04761845289118 −0.3716369602068 0.02577756725531

0.03934227236902 1.02478805448115 0.03151098505494


 (F.16)

] ( ◦) B ov
n B hv

n

B ov
n 0 89.99994906776206

B hv
n 89.99994906776206 0

SP v 0 62.58939335020708

SP t 89.99992329329605 0

Table F.8: Transformed reference directions angles for Tr8
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T09 =




0.13377274847343 0.62988784884231 0.45142482676248

0.20713272964136 0.37047682605190 0.04389532534714

0.60719894453953 0.57514777904747 0.02718512299667


 (F.17)

Tr9 =




0.07856732434048 −0.8824952904922 −0.0182393536750

0.12288454071054 0.48269828596790 0.02280464466386

0.04930268524697 0.20328009171653 −0.0277736440901


 (F.18)

] ( ◦) B ov
n B hv

n

B ov
n 0 89.99994610040091

B hv
n 89.99994610040091 0

SP v 0 62.58939337372820

SP t 89.99870898922339 0

Table F.9: Transformed reference directions angles for Tr9

T010 =




0.01635493355000 0.05758108987829 0.71763442146570

0.19007458907973 0.36756803882634 0.69266939471779

0.58691847188467 0.63145116474444 0.08407906075044


 (F.19)

Tr10 =



−0.1453086088619 0.67871863188700 0.02325273901571

0.11481299077676 0.86527568720472 0.01071147122075

0.06178354206512 −0.0116743584305 0.03478273950457


 (F.20)

] ( ◦) B ov
n B hv

n

B ov
n 0 89.99995744208242

B hv
n 89.99995744208242 0

SP v 0 62.58939331090693

SP t 89.99995649941585 0

Table F.10: Transformed reference directions angles for Tr10
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