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Abstract

Due to the increasing complexity and necessity of safety and economy in industrial

processes, efficient diagnosis systems are becoming more and more important. A wide

variety of different approaches have already been proposed in the literature. The

signed directed graph (SDG) approach has been a widely studied diagnostic strategy,

mainly because of its resemblance to a human way of reasoning, its in-depth analysis

of abnormal situation, and its ability to present a complete picture of all possible

fault hypotheses. However the SDG diagnosis approach focuses on qualitative infor-

mation of the process, so unavoidable diagnosis restrictions and difficulties to achieve

resolution exist. In this thesis, an intelligent fault diagnosis algorithm based on an

SDG qualitative model approach is presented. The algorithm combines quantita-

tive process information into an SDG propagation model and uses additional process

knowledge to improve performence. Both initial and ultimate response fault patterns

are used to isolate the root fault, improving diagnosis resolution, and facilitating the

early detection and diagnosis of process faults.
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Chapter 1

Introduction

1.1 Motivation and Scope

With the advent of computer control, the scope of process control has made signif-

icant changes in the last three decades. Regulatory control, the lower level control,

such as opening and closing valves, which used to be performed by operators, is now

done by automated control with the aid of computers with considerable success, so

it is not now a focus of advanced control. Upper level control, intelligent supervisory

control, is becoming the new focus of industrial and academic researchers. An intel-

ligent supervisory control system is a system that makes the best use of conventional

control approaches and artificial intelligence to optimally manage the plant process,

evaluating local controllers’ performance, diagnosing causes for abnormal situations,

planning actions and executing the planned actions. Typical goals of a supervisory

control system are safe operation, highest product quality and most economic oper-

ation, thus making fault detection and diagnosis (FDD) a critical control task.

Abnormal situations happen in chemical and industrial processes when processes

deviate significantly from their normal operation ranges, usually due to sensor drifts,
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equipment failures, changes in process parameters or operator errors; these events

are also called faults or failures in the literature. If these abnormal situations are

ignored, there are serious consequences and even accidents, such as fires or explosions

may occurs. Even when no such emergencies occur, they do cause low product quality,

equipment damage, and other significant costs.

Responding to abnormal situations in process plant mainly depends on manual ac-

tivity, and is performed by on site operators. When an abnormal situation occurs,

the operator is warned by flashing or buzzing devices, each of which corresponds to

one point or element of the plant, and the operator should quickly make a correct

judgment about the root cause and take actions responding to the failure events to

return the system to its normal operation. However, due to the size and complexity of

industrial plants, the variety of faults, and operators’ limited knowledge, experience

and ability to handle stress, human operators may make erroneous decisions and take

actions that make the fault even worse. The complete reliance on human operators is

not suitable for modern process plants. Therefore, development of effective computer-

aided on-line fault diagnosis techniques in order to keep the system performance as

close as possible to the optimal condition has become an important issue for plant

operation.

1.2 Fault Detection and Diagnosis

First of all, we must define the terms of fault and fault diagnosis in the context of the

process industry. The words fault and malfunction are used in relation to equipment

as synonyms to designate the departure of an observed variable or calculated para-

meter from an acceptable range [1]. Thus a fault may be a process abnormality or

symptom, such as high pressure in a reactor or low voltage in a power system. Fault
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detection is used to identify whether or not the process (measured) variables, indi-

vidually or collectively, are within their normal range. Hence, the notion of normal

operation region is an important concept in fault detection. Fault diagnosis refers to

the determination (after detection of a fault occurrence) of the equipment, or portion

of it that is causing the fault(s) [1]. That is, diagnosis is the determination of the

fault origin (the root cause of a fault).

In general, faults can be classified in three categories:

• external disturbances from the environment,

• equipment failures (stuck valves, leaking pipes), and

• malfunctioning sensors and actuators.

1.2.1 Brief Review of Diagnosis Techniques

Developing automated fault detection and diagnosis using intelligent control ap-

proaches has been studied by researchers, and various computer aided approaches

have been developed over the years. These methods can be divided into three classifi-

cations: quantitative model based methods (parameter estimation), qualitative model

based methods (digraphs, fault trees), and process history based methods (Quality

Trend Analysis, QTA; Principle Component Analysis, PCA) [2].

Quantitative model based methods (such as observers, extended Kalman filters) are

residual based methods, the residual representing the difference between various func-

tions of the outputs and the expected values of the functions under normal conditions.

They heavily depend on accurate mathematical relations between variables, and the

models are built from first principles, such as mass, energy and momentum balances,

or model identification approaches. The theory for linear models is well developed,
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however for a general nonlinear model, the linear approximation is used but the ef-

fectiveness of these methods could be reduced.

Qualitative model based methods (such as digraphs, fault trees) use causal models

representing the cause-effect relationship between system variables, so system behav-

ior can be predicted by the model. Forward or backward reasoning is used to find all

possible fault candidates, similar to the way a human solves problems, and explana-

tion generation is relatively straightforward, making them more interactive. They do

not need as extensive information as quantitative model based methods do. However,

poor resolution due to the nature of qualitative models has been addressed by many

researchers.

Process history based methods (expert systems, neural networks) only need large

amounts of historical process data, which can be transformed and presented as a pri-

ori knowledge to the diagnostic system. This knowledge can be either qualitatively

or quantitatively extracted. They can be model based or may not need a model.

Since process history approaches are easy to implement and require little modeling

and a priori knowledge, they are widely applied in process industries. The limita-

tion of process history based methods is in the availability of measurements and the

application is mainly restricted to sensor faults.

Venkatasubramanian and coworkers present a more comprehensive review of the var-

ious faults diagnosis methods. Interested readers please see references [2, 3, 4].

1.2.2 Desired Attributes of a Fault Diagnosis System

There are different criteria to judge a diagnosis system, but they mainly include

isolability, early detection and diagnosis, and robustness. These quality properties of

failure isolation system strongly influence the usefulness of such system.
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Isolability is the ability of a diagnosis system to distinguish or isolate certain specific

faults from each other, given that the fault size is large enough. Isolability is a tradeoff

problem between completeness and high resolution. Whenever a fault happens, a

diagnosis system produces hypotheses for the abnormal event, the true fault should

be a subset of the hypotheses to meet the requirement for completeness, but for high

resolution, the subset should be as minimal as possible.

Early detection and diagnosis is an important desirable attribute of a diagnosis sys-

tem. It is closely related to sensitivity, which characterizes the size of faults that can

be isolated under certain conditions. It should be realized that there exists a conflict

between quick response to faults and the tolerance of performance variation of the

system during normal operating conditions.

Robustness is the most critical requirement by FDD systems. A robust diagnosis

system should not fail totally and abruptly when faced with various noise or uncer-

tainties during operation, instead it should degrade gracefully. For example, in ideal

operation, the FDD thresholds may set be close to zero, but in the presence of noise,

these thresholds must be chosen more conservatively, to avoid robustness problems.

Other important characteristics of a fault diagnosis system also include novelty identi-

fiability, i.e., the ability to recognize the occurrence of novel faults and not misclassify

them as one of the other known faults or normal operation; and adaptability, e.g.,

the diagnostic system should be adaptable to changes in external inputs or structural

changes. An explanation facility, to explain how the fault originated and propagated

to the current situation is also helpful. Modeling requirements, i.e., the amount of

modeling required for the development of a diagnostic system, or real-time diagnostic

classifier is a major issue: The modeling effort should be as minimal as possible, as

should storage and computational requirements; there is a tradeoff between compu-

tational complexity of the diagnostic methodology and storage requirements. Finally,
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multiple fault identifiability, the ability to identify multiple faults is an important but

difficult requirement.

Usually there is no single diagnostic technique or method that can meet all the above

characteristics. Each method has its own advantages and disadvantages depending

on its usage, and no one is superior to others in general. Recently, with the growing

maturity of many kinds of techniques, hybrid methods, which combine different ap-

proaches have attracted some researchers. It is believed that several approaches can

complement one another, and a hybrid FDD method can overcome the limitations of

individual strategies.

1.3 Objective and Thesis Organization

1.3.1 Objective

Developing an effective and intelligent computer-aided on-line fault diagnosis tech-

nique is the objective of this thesis.

Fault detection and isolation (FDI) is very important in achieving high industry prod-

uct quality, preventing damage to production facilities, and protecting the personal

safety of the operators. When a fault appears, it should be detected as early as

possible and the fault should be determined correctly as well. The purpose of this

thesis is to develop an intelligent algorithm that can fulfill the requirement of early

detection and accurate diagnosis of process faults. An intelligent system combining

a Signed Digraph (SDG) based approach with process knowledge is proposed. This

FDI algorithm will be used in several intelligent control projects currently supervised

by Dr. Taylor.

This thesis is focused on the SDG approach, which is a qualitative technique. Two
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other team members are using quantitative and data history based methods respec-

tively. The final goal of our research team is to develop a hybrid diagnosis strategy

for process industry, by combining each optimized individual approach.

1.3.2 Thesis Organization

In Chapter 2, a brief literature survey of existing research and various methods for

SDG based fault diagnosis and analysis is presented. The benefits and drawbacks of

the SDG based FDD approach are discussed. Based on a study of the literature, an

algorithm is proposed in chapter 3. This algorithm takes advantage of the benefits of

SDG, and overcomes its shortcomings, to provide an efficient on-line fault diagnostic

approach. Chapter 4 presents simulation tests for the proposed algorithm. The

simulation model is a nonlinear Jacketed Continuously Stirred Tank Reactor (JCSTR)

model. The robustness of the approach is discussed in chapter 5. The thesis concludes

with a discussion of the approach, and gives some suggestions for future work, which

composes chapter 6.
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Chapter 2

Literature Review

2.1 Introduction to SDG

In the recent past, SDG-based approaches have been proposed by various researchers

for fault diagnosis of chemical process systems, and they have shown promise. A

Signed Directed Graph or Signed Digraph (SDG), as a qualitative model, effectively

and graphically represents a process system. Nodes in a digraph correspond to state

variables, failure origins and alarm conditions; and directed arcs between the nodes

show the cause-effect relationship between these variables. Each node can take a

value of (0), (+), and (-), representing that the corresponding variable is at its normal

steady state value, above or below the nominal steady state value, respectively. Arcs

take values (+), or (-), indicating that the cause and effect change is in the same

direction or the opposite direction. An SDG model shows the pathways of causality

for fault propagation.

Unlike quantitative approaches, which require a rigorous process model and exten-

sive measurements to collect process data for parameter estimation, an SDG-based

approach requires only a minimum of process data to perform a quick diagnosis. It
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is able to deal with uncertainty, incomplete information and noise. Since the process

system is expressed causally as a digraph model, an SDG also facilitates reasoning,

and fault explanation. However, since SDG approaches only use qualitative informa-

tion, the low of diagnostic resolution is a common drawback.

2.2 SDG Approach Development

Using signed digraphs (SDGs) for fault diagnosis was first proposed by Iri et al. in

1979 [5]. An attempt was made to apply graph theory to diagnose system failures.

The influences of system elements are represented by a signed digraph model and

the notion of patterns (composed of the node values) on the model is introduced

to represent symptoms of the system under abnormal situation. The origin of the

system failure can be located at the maximal strongly connected component in the

cause-effect graph. In the following year, Umeda et al. developed a method for cause

and effect analysis of a processing system based on SDGs [6]. Variations on the

SDG involving multiple time stages and delay time have been addressed. Methods

for obtaining an SDG from differential equations and algebraic equations were also

presented in the same article. A diagnostic algorithm presented later by Kokowa et al.

[7] incorporated delays, gains, and fault propagation probability into the digraph, but

the method only applied to processes without feedback. Shiozaki and his coworkers [8]

also extended the idea of SDG into five range patterns (0, +, +?, -, and -?) instead of

three range pattern (0, +, -), where ‘+?’ and ‘-?’ are used to denote gray zones where

it is not clear whether values of state variables are normal or not, so the accuracy

and speed of search could be improved.

The SDG approach usually utilizes the qualitative influence between process variables,

and depth-first search was mainly used online to determine the fault propagation path
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and possible fault origin candidates. The online search proceeds from the effected

nodes back to the cause nodes, which makes the diagnosis time become longer when

the system becomes bigger. Instead of backward fault diagnosis, Kramer and Palwitch

introduced a rule-based method using SDGs for fault diagnosis [9]. The problems

of poor diagnosis resolution and sensitivity to alarm thresholds were discussed in

[9]. Using a rule based approach, the processing time was notably reduced. In

fact, the processing time for the same test problem formulated by Shiozaki in 1985,

containing 99 nodes and 207 arcs, was solved in a few seconds instead of 5 minutes.

However, the method has problems in dealing with noisy data and with variables with

a compensatory response (CR, meaning they return to its original values) or inverse

response (IR, meaning their final qualitative values are opposite to the initial ones).

CR/IR occurs when a node under consideration exhibits conflicting behavior due

to multiple feed-forward paths from the root node or when a node is in a negative

feedback (control or noncontrol) loop. The corresponding variables are called compen-

satory variables (CVs) and inverse variables (IVs). Whenever a CR/IR is exhibited,

earlier methods failed to characterize the ultimate steady state response. To overcome

these problems, Oyeleye and Kramer introduced steady-state qualitative simulation

[10]. The main goal was to improve diagnosis resolution without loss of completeness.

Additional arcs are drawn and an extended SDG (ESDG) is developed to propagate

the effect across IVs and CVs. The use of non-causal and causal redundant equations

to eliminate spurious solutions was also first proposed in [10].

Chang and Yu proposed another algorithm to overcome several problems associated

with SDGs [11]. SDG models were simplified based on process ”common sense”, and

a systematic procedure for rule development based on the SDG have been studied

in this work. The continuous system response is divided into several states, and

different conditions (truth tables) are used for each state. For multiple propagation
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paths, the dominant way is decided based on steady state gains. A special feature of

this algorithm is the way it deals with control loops. The variables associated with

the integrators are expressed in velocity form. The proposed methodology showed

better results on a CSTR model simulation.

In 1994, Wilcox and Himmelblau developed an enhanced SDG approach, called the

possible cause and effect graph (PCEG) methodology [12, 13]. PCEG inherits a num-

ber of properties from SDGs, such as easy construction, completeness, dealing with

cycle systems (systems with loops). Moreover, it overcomes some of the drawbacks

of the original SDG methodology. PCEG successfully reduces the search space by

providing more accurate information. Other researchers took advantage of PCEGs

and approached the fault diagnosis problem using a dynamic probabilistic model, and

the time delay problem was also managed [14].

2.3 Attempts to Add Quantitative Information

Due to the qualitative nature of pure SDG models, their low diagnosis resolution

restricts their usage. Since the 1990’s, the use of fuzzy logic and fuzzy set theory to

improve the diagnosis resolution in SDG model-based approaches have been discussed

by some researchers. Quantitative information has also been added to the SDG,

for better understanding of the dynamic system and spurious fault candidates were

reduced dramatically.

The use of fuzzy set theory to help address the problem of alarm threshold sensitivity

was discussed by Han et al. [15]. In their approach, after the strongly connected

components which are the possible fault origins are located, fuzzy logic is introduced.

Based on their membership degree, variables are sequentially arranged and the most

probable fault origins are located. This approach was shown to improve the accuracy
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of diagnosis resolution. Shih and Lee [16, 17] discussed the removal of spurious

solutions using fuzzy logic principles with SDGs, and the Fuzzy Cause-Effect Digraph

was proposed. The spurious interpretations attributed to system CR and IR from

backward loops and forward paths in the process have been eliminated. Furthermore,

this method also can estimate the state of the unmeasured variables, to explain fault

propagation paths and to ascertain origins.

The combined use of SDGs and fuzzy reasoning for fault diagnosis was also discussed

by Tarifa and Scenna [18]. An SDG is used to model the process to be supervised,

and an IF-THEN rule base is compiled, one rule for each potential fault. Fuzzy

logic is used in the evaluation to overcome the problems caused by noisy data, CR,

IR, and model limitations. The fault whose rule has the highest value of certainty

should be the first one considered by the operator. Application to a multi-stage flash

desalination plant has been performed using this approach [19].

The literature on combining fuzzy logic and qualitative models looks at improving

the representational scope of qualitative models by increasing the granularity through

the use of fuzzy representations of real-valued functions. For that reason, Venkata-

subramanian et al. believe that these hybrid approaches seem to hold promise [2].

2.4 Recent Activity

SDG based diagnosis approaches have been thoroughly studied by Professor Venkata-

subramanian of Purdue University, USA and some of his students. More systematical

theory and more comprehensive applications have been developed. The scope ranges

from SDG-based fault diagnosis, sensor location determination, operator training, to

hazard and operability (HAZOP) analysis, and from single SDG-based methods to

hybrid methods. Single fault diagnosis has been studied as well as multiple fault di-

12



agnosis. In recent years, Maurya et al. have also presented several significant papers

regarding fault diagnosis using SDGs.

From their view, SDG-based analysis is based on shallow knowledge (gained from ex-

perience) and intuition. Maurya et al., based on earlier contributions of Mylaraswamy

et al. [20], have proposed a comprehensive and systematic framework for the devel-

opment and analysis of SDG-based models and proved feasibility and correctness

[21, 22]. Attention also has been paid to the conceptual relationship between the

analysis of graph models and the underlying mathematical description of the process

[21]. Control loops and flowsheet analysis were, for the first time, discussed thor-

oughly [22, 23]. The elimination of spurious solutions was achieved by using causal

and noncausal redundant equations. Analysis of inverse and compensatory response

was also thoroughly discussed. The application of fault diagnosis was proved for

small examples as well as a flow-sheet size chemical process in this serial work, and

the results are quite promising.

These papers are important contributions to the literature. Some aspects are touched

for the first time, for example, a systematic and proven analysis methodology of SDG

model is given, and control loops within the SDG framework have been comprehen-

sively addressed. Though the approach proposed is systematical, comprehensive and

more objective (all the analysis is based on the manipulation of mathematical equa-

tions), the requirements for development is complicated for complex processes. It

requires more detailed and precise mathematical equations, which are not easy to get

in practice, and the algebraic manipulation for redundant equations is difficult.

After more than 25 years of development, SDG-based approaches are becoming more

and more mature. Different approaches have been proposed to deal with different

problems, or combined with other approaches to fulfill different requirements. They

all showed promise for the various problems solved.
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Chapter 3

Development of the Diagnostic

System

An efficient diagnosis method based on the Signed Directed Graph (SDG) approach is

presented in this thesis, to identify possible causes of process disturbances and faults.

It is based on compiling an expert system rule base, using all the known process

knowledge to increase the diagnostic resolution.

Figure 3-1 shows the overall scheme of the fault detection and diagnosis system. This

method includes two stages, the first one is done off-line to form the rule base expert

system, while the second one, fault diagnosis, is carried out in on-line mode. In the

off-line stage, an SDG model is used to model the process to be monitored. For

each potential fault, possible fault patterns are propagated from this graphic model,

and system simulation and process knowledge are combined to determine all possible

qualitative patterns for each potential fault, and compiled into IF-THEN rules, one

rule for each potential fault. The problems caused by CR and IR are solved by

dividing the patterns into initial response and ultimate response. For faults with the

same pattern, quantitative data is used to distinguish them from each other. All of
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Figure 3-1: Architecture for the Fault Diagnostic System
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these compose the rule-based expert system, which is used for online diagnosis.

The online stage is operated in parallel with the monitored process. The FDI system

runs all the time during operation, and operation state (such as start up, shut down,

or operation point changes) is also an input to the FDI system. In online diagno-

sis, measurements, after being filtered, are transformed into qualitative patterns by

comparing them with the variables’ nominal values. The patterns and some needed

quantitative data are input into expert system, and matched faults are displayed as

fault diagnosis results.

In this algorithm, explicitly calculated variable qualitative values are used for the first

time as possible patterns to form the rule base, which increases diagnosis resolution

significantly from former works. Explicitly predicted patterns became possible based

on the premise that initial responses can be propagated from shortest paths in the

SDG and on the use of process knowledge. For each fault, the corresponding rule

is composed by initial response patterns and ultimate response patterns, which are

both calculated precisely by the help of process knowledge. Initial response patterns

make earlier fault detection and diagnosis possible, and ultimate response patterns

overcome the problems related to CR and IR, and ensure the correctness of diagno-

sis results. Because quantitative information and process knowledge are combined,

distinguishing faults with the same patterns also becomes possible, and the diagnosis

resolution is increased even further.

3.1 Introduction to SDG-based Fault Diagnosis

An SDG is a qualitative model for process diagnosis. The SDG model represents

pathways of causality for fault propagation. The nodes of the SDG correspond to

state variables, alarm conditions, equipment, or failure origins, and the directed arcs
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represent the causal influences between the nodes. Nodes in the SDG assume values

of (0), (+) and (-) representing the nominal steady-state value, and higher and lower

than the nominal steady-state value, respectively. Arc signs (called arc values) of

(+) and (-) indicate whether the cause and effect change is in the same direction

or opposite direction. The causal relationships can be constructed from the system

topology. Some additional SDG related terms are listed in Appendix A.

The first step of the qualitative approach is to transform the quantitatively precise

process measurements into qualitative states of high (+), normal (0), and low (-) [11].

For a variable x, with measured value xm and normal value xn, we define

d =
xm − xn

∆h
(3-1)

where ∆h is the threshold of the variable. The quantitative variable x is transformed

into a qualitative state based on the above equation (3-1). It takes a value of (+),

(0), or (-) for d ≥ 1, 1 > d > −1, or d ≤ −1, respectively. For the purpose of this

thesis, these three states, when they appear in the pattern, will be represented by

(+1), (0), and (-1), respectively.

A small example is given in Figure 3-2 for understanding the concept of an SDG

model. This model has five nodes (the node name is the same as the variable name),

D

E

B CA

 positive arc

negative arc

Figure 3-2: Example of SDG Model

and several arcs connecting them; the solid line means that the arc value is (+),

and the dashed line mean the arc value is (-). Node A represents an exogenous or
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independent input variable. This style will be used for all the SDG models used in

this thesis.

In a fault free scenario, all nodes take the value of zero. When a fault happens, the

fault node first changes sign, then it will propagate along directed arcs throughout

the whole SDG, so some or all system variables will deviate from the normal steady

state and the corresponding nodes will change values from 0 to +1 or from 0 to -1.

The deviations of the process variables caused by this fault are the fault symptoms,

and the set of all the symptoms caused by this fault (a combination of node signs)

is the pattern of the fault [5]. For example, in the SDG model in Figure 3-2, if fault

node A is (+), then a possible pattern of the fault is [A(+), B(+), C(−), D(+), E(+)],

or more concisely P = [+, +,−, +, +], where the node names are understood.

For fault diagnosis, the procedure involves locating all possible root nodes, given a

fault pattern, by propagating backward along consistent branches, from the effect

nodes to cause nodes. The fault origin is then located at the maximum strongly

connected component (MSCC) in the cause-effect graph. An MSCC could be an

strongly connected component (SCC) or a node; for example, node A in Figure 3-2 is

an MSCC. For fault simulation, the potential fault origin node first deviates from its

normal value, then the fault propagates forward along the pathways. Each directed

tree (interpretation), branching from a given root node, forms a pattern for this fault.

The procedure goal is to find all possible patterns for the potential fault.

As mentioned by Kramer and Palowitch, the diagnosis problem is the inverse or dual

of fault modeling [9]. The process of finding a fault origin from the measurement

is basically a form of backward reasoning; on the other hand, the process of fault

modeling, or fault simulation, involves forward reasoning, which is more often adopted

by most process expert systems. In this thesis the concept of forward reasoning is

adopted. As compared with diagnosis, fault modeling is relatively simple. Another
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reason for discarding backward reasoning is that for an SDG approach backward

online searching is time consuming and less efficient.

Most SDG-based methods assume that there is only a single fault that affects a

single node (root node) in the SDG, which is the source of all disturbances. It is also

assumed that the fault does not change other causal pathways in the digraph. These

two assumptions are also adopted in this thesis.

For a complex chemical process, there are unavoidable cycles and feedback or feed

forward loops, either negative or positive. The corresponding digraph is no longer a

simple tree, and the propagation path is also complicated. For a simple example, if

some nodes in an SDG model are affected by two opposite effects, without sufficient

quantitative information, it cannot be determined which is the dominant pathway,

so both of them must be considered. For a given digraph and a given fault origin,

there may be many interpretations of the fault propagation. Multiple pathways and

loops make the propagation more ambiguous. Because of the ambiguity in deciding

the qualitative state of a variable, the corresponding resolution of the fault diagnosis

algorithm is poor. However, only one or a small set of these interpretations reflects

the real behavior of the plant. So how to minimize the interpretation set is the main

problem that inhibits increasing diagnosis resolution.

3.2 Building the SDG Model of the System

An SDG model is extracted from the system topology, and characterizes the system

behavior in the form of a digraph. SDGs can be obtained either from: (1) plant opera-

tion data and/or operator experience, or (2) a mathematical model of the process [5].

In chemical engineering, most process knowledge is well structured and the process

mathematical model generally can be written based on material balance and energy
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balance. Therefore, it is desirable to construct the SDG from the underlying math-

ematical model, especially when the operation data and the experience of operators

are not sufficient to obtain a consistent representation of the process.

It is believed by some researchers that the process of developing these models is prone

to human error and thus unreliable [21, 24]. Therefore systematical methods such as

given by [21] and [24] are useful for building an SDG model from the structure of the

underlying mathematical description of the system. The method proposed depends

heavily on the correctness of the mathematical model, and the nodes are all system

variables which appear in the mathematical models. Actually, a complete SDG model

also contains some nodes, like equipment, fault origins, etc. which are not systems

variables, and could not be included without operator experience or operation data.

Therefore, an SDG model can be constructed based on both types of knowledge, to

make it more correct and complete.

Constructing an SDG model is not a central part of the thesis. Here just a general

idea of SDG model building from the underlying mathematical model is presented. In

general, a system can be described by a set of differential equations (DEs) or algebraic

equations (AEs), or a combination of DEs and AEs, called a DAE system, written in

the following form:

dxi/dt = fi(x1, x2, . . . , xn) (3-2)

xi =
n∑

j=1,j 6=i

aijxj (3-3)

All the variables x in the equations are nodes in the digraph. Directed arcs are drawn

from all of the variables on the right hand side to the system variables on the left

hand side in the equations. For arcs from ordinary differential equations, the arc
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values are determined by:

sign(xj → xi) = sign(∂fi/∂xj) (3-4)

if ∂fi/∂xj 6= 0, or if it is zero, then it should be replaced by ∂mfi/∂xm
j if m is odd,

and by ∂mfi/∂xm
j [dxj], if m is even, where m is the order of the first non zero partial

derivative [10]. For algebraic equations, the arc values are determined by:

sign(xj → xi) = sign(aij) (3-5)

Maurya et al. [21] presented a comprehensive and systematic framework for the devel-

opment and analysis of SDG-based models and proved the feasibility and correctness

of this approach for SDG model building and analysis for system equations in DE,

AE, and DAE form. Note that for systems described by DEs, there is explicit causal-

ity from the variables on the right hand side to the variable on the left hand side,

but for systems described by AEs , there is no causality, the system only captures

instantaneous behavior.

All the variables in the mathematical model are shown in the SDG model, including

measured and unmeasured variables. For measured variables, the working sensor

is lumped with its corresponding variable node. Thus a sensor will not be shown

explicitly in the SDG model, except for the sensor of a controlled variable which is

a potential root node, for which a separate node is given. The sensor being lumped

with its corresponding variable is based on the assumption that the measurement is

instantaneous, so it cannot generate spurious or erroneous interpretations.

Alarm conditions (maximum or minimum value), sensors or actuators in control loops

(if they are potential fault nodes), and other possible fault origins also can be shown in

the SDG model according to the need for fault analysis and determining fault sources.
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These nodes and arcs can be drawn based on process knowledge and experience. For

example, sensor and actuator nodes in a control loop can be drawn as shown in Figure

3-3: The variable B is the controlled variable, the sensor node variable is denoted by

D

Bs

B CA

V

Figure 3-3: SDG for a Control Loop

the subscript ‘s’, and the valve node is enclosed in a rectangle instead of a circle.

As shown in the figure, it is easy to determine arc directions and arc values between

these nodes according to experience.

3.3 Form of the Diagnosis Knowledge Base

The development of this thesis is based on the fundamental structure of Maurya at al.

[21]. The algorithm proposed here is also based on the single fault origin assumption,

which means there is only one cause of any specific fault. From the view point of

engineering, this is reasonable since multiple faults seldom appear at the same time

[25].

Using a rule-based approach for fault diagnosis was first proposed by Kramer and

Palowitch [9]. They remarked that qualitative simulation is a combinatorial explo-

sive problem, and to avoid the explosion, they proposed using a rule to explicitly

represent the combined set of interpretations of each fault instead of enumerating

each interpretation. The same concept was used by Chang [11]. For each fault, a

logical statement (rule) is derived from the process digraph. All possible behaviors of

the real system are included, through the interpretations related to discrete choices
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of the dominant causal pathways. Logical truth tables are used to generate the rules,

which combine all the simulation trees (interpretations) on the order of events and

the direction of deviation of each node connected to the fault origin.

Rule-based methods improved the efficiency of fault diagnosis. However, in the work

of Kramer and Palowitch [9], the assumption of single state transitions was made,

which is a severe limitation in the real system, and special cases arise when the un-

measured nodes are removed. Compensatory responses (CRs) and inverse responses

(IR) were also not considered. An ESDG approach was proposed by Oyeleye and

Kramer [10] to solve this problem, but this requires that new artificial arcs must be

added. Chang et al. [11] proposed a way to represent a continuous process response

into several discrete states, and imposed different conditions (truth tables) to derive

the rules. The improvement is made at the expense of memory size. Moreover, the

rules composed by them do not clearly reveal the fault pattern, and the interpreta-

tion’s structure is lost. In this work, all interpretations are obtained and expressed

as patterns composed by all the measured variables. The risk of combinatorial ex-

plosions is reduced here by finding the dominant pathways and dividing the analysis

into transient response and final response.

It was pointed out by Kramer and Palowich [9] that the SDG model derived from

process equations has certain limitations. The most significant one is that the cor-

rect diagnosis can be guaranteed only if each variable undergoes no more than one

transition between qualitative states during fault propagation. They also made the

assumption of single state transition in deriving the rule base format. That method

excludes the ultimate response in cases where variables exhibit inverse responses (IR)

and compensatory responses (CR), since IR and CR may cause qualitative changes

more than once during the propagation of the fault. The approach in this thesis

overcomes this limitation.
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For qualitative simulation, there are only three qualitative states, normal (0), high

(+1), and low (-1). It is assumed that the system process is at steady state before fault

initiation, so all nodes initially have the value 0. When a fault appears, the deviation

of the root node causes all variables accessible from the root node to change sign.

The first sign change (0 to +1 or 0 to -1) is the initial response of the variable. Due

to multiple feed forward paths and negative feedback paths, the qualitative state

of the variable may change again during the propagation of the fault. However, the

possible final or ultimate response of the node can only fall into three cases (oscillatory

behavior is not considered in this thesis): it may keep the same sign, be compensated

to zero (CR), or change to the opposite sign (IR). So, if the initial response of all

the system variables can be determined, then the final response can be determined,

based on the identification of IVs and CVs.

Between initial response and final response, there is usually an intermediate transient

period. The response corresponding to this period is sometimes complex, and may

not provide any insight. However, unlike quantitative analysis, in which the precise

measurements keep changing for every sample during the transient period, the quali-

tative states of system variables will keep the initial sign change for a time before they

possibly change sign again. That means the initial response patterns would remain

for a while. This observation has been used to advantage in the algorithm proposed

in this thesis. The significant benefit is that information about time delays and time

constants need not be considered.

The whole rule base has three parts, corresponding to the normal state before a

fault appears, the initial response and the ultimate response after the fault occurs,

respectively. Each potential fault has a corresponding rule for both responses. Each

rule consists of qualitative patterns propagated from the SDG model and quantitative

rules extracted from quantitative information, which will be discussed later.
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Each pattern is a combination of the qualitative state of all the measurements at the

same sample time. For example, for a system with 5 measured variables, the pattern

P = [0, 0, 0, 0, 0] is the Normal Pattern at nominal steady state; when there is a

fault the possible patterns may be P = [1, 1, −1, −1, −1] in initial response and

P = [0, 1, 0, −1, −1] in ultimate response.

An example rule can be written as:

IF P = [0, 0, 0, 0, 0] THEN the system is normal, or

IF P = [1, 1, −1, −1, −1] or

IF P = [0, 1, 0, −1, −1] THEN A is high.

The fault is isolated as it is diagnosed. It should be noticed that at either the initial

or ultimate response stage, there may be more than one pattern appearing in the

rules. The rules compiled in this thesis are the enumerated interpretations, not just

logic expressions as shown in other works; the patterns explicitly show the qualitative

state of each node. The effects of IR and CR are shown in the final response patterns.

The rule base does not include any consideration of specific response time, just as

initial, transient and ultimate response. Generally, the initial sign change of a node

will be maintained for a few sample times during the transient period before it arrives

at another steady state. However, the time from initial pattern change to final pattern

is not explicitly calculated in the rule base. The proper sequence can be achieved by

firing the final response rule set several seconds or minutes (depending on the system

time constants) after the initial rule set has been fired, as shown in Figure 3-4. The

time counter is not easy to program on a PC , but it would not be a problem in

industry. In fact, because of control loops, some variables in the ultimate response

will return to zero instead of maintaining the deviations seen in initial response, and

the difference is obvious, so in the next chapter on implementation, the pattern change
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time is not considered.
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Figure 3-4: Implementation of the Algorithm

3.4 Deriving Patterns from an SDG

Given an SDG model, in a fault free situation, all nodes take value of zero. If any

node has a nonzero value, the system is in a failure state. When a fault happens, the

deviation of the root node is the source of all subsequent changes, and the system

variables which lie on a directed path will deviate from the normal steady state,

changing from 0 to +1 or to -1. All measured variables are used to form the pattern.

It should be noticed that all process variables that are not accessible from the root

node must be normal (0) under the single fault assumption. So, if the pattern is
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composed of all the measured variables it is possible for some of them are zero in

the initial response pattern. Unmeasured variables are not removed from the SDG in

propagation (removing unmeasured variables may cause erroneous interpretations).

In section 3.3, it is pointed out that if the initial response of all the system variables

can be determined, then, the final response can be determined. Theoretically, the

initial response of a system variable xj due to changes in an exogenous variable el,

can be predicted by propagation through all of the shortest path(s) from el to xj

in the SDG, and the final response can be predicted by propagation through all of

the directed paths. However, if the initial response pattern of all the variables can

be determined precisely, and the nodes corresponding to IVs and CVs are identified,

then for the final response pattern, we only need to change the corresponding signs

of IVs and CVs. This approach is novel to this thesis.

3.4.1 Initial Response

Claim: The initial response of a system variable xj due to changes in an exogenous

variable el, can be predicted correctly by propagation through all of the shortest

path(s) from el to xj in the SDG for DE systems and DAE systems with only one

perfect matching, i.e., the corresponding SDG is unique [21]. Note that the arc lengths

in the SDG of a DAE system are determined as follows: The arcs in the DE part of

the SDG have length 1 and the arcs in the AE part of the SDG have arc length 0

because of the instantaneous response behavior [21].

The arc length of a control loop is not discussed in [21]. However, it is observed

that a PI controller effectively behaves as a P controller in the initial response of the

system, and an integrator does not play an immediate role. A P controller acts as

an AE system, so in this thesis, it is defined that the arc length from the variable
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measurement to the manipulated variable is 0 for initial response.

Spurious interpretations may be generated because of the ambiguity of the SDG in

predicting the fault propagation pathways. For a given digraph and a given fault

origin, among many interpretations of the fault propagation, only one or a small set

of these interpretations reflects the real behavior of the plant. This means that among

all the propagation pathways branching from the given fault node, there are dominant

ones which are the real interpretations of the fault. The dominant pathways can be

obtained by process knowledge and process simulation.

The simulations of different magnitudes of a fault can provide the information of sign

change directions of the measured variables and the order of events. This knowledge

also can be used to identify the dominant pathways in the digraph. Former researchers

have used this approach [9, 10, 11, 26]. It is believed that incomplete knowledge leads

to limited diagnosis capabilities, and SDG analysis would be incomplete without

process knowledge. Process knowledge includes information about the process, a

process model, history data, and heuristics [27].

Under the above claim [21] the initial response for the entire system will be much

less ambiguous than propagation through all of the directed paths. In some cases,

the initial response for all the variables is unambiguous. However, in some cases,

if there are more than one shortest path, spurious or erroneous interpretations will

be generated if the paths have the opposite sign. Under this condition, dominant

paths need to be determined by combining process knowledge and simulation analysis,

and the initial response can be determined by the dominant shortest path. All the

qualitative states are thus determined for the initial fault pattern.

28



3.4.2 Ultimate Response

Oyeleye and Kramer [10] have contributed important ideas on steady state analysis.

The necessary conditions to identify IV and CV (with respect to a local exogenous

variable), have been given in detail, with explanation and proof. Detailed conditions

for IV and RV are listed in Appendix B.

Generally, IV/CV should be located inside a SCC in a negative feedback loop (cycle)

[10]. In this thesis, each IV/CV is first identified by using the necessary conditions,

then system analysis and simulation will be combined for understanding the location

of IV/CV. After the identification of IVs and CVs with respect to local exogenous

variables, the final response fault pattern is obtained just by changing the correspond-

ing variable signs.

It should be pointed out that the CR of controlled variables in feedback control loops

is a special case of the more general behavior of CVs in negative feedback loops [10]. In

chemical process systems, the design purpose of a feedback control loop is to attempt

to maintain important variables within an acceptable range in the presence of most

expected faults and disturbances. Thus, in most cases, the controlled variables should

maintain zero deviation after all transients have died out and a new steady state is

reached. However, the control loops may be saturated because of the large size of a

fault, or the fault may occur inside the control loop; under both conditions, it would

not work properly and the system cannot return to its nominal state. Thus, in the

ultimate response pattern, the controlled variable will become zero if the control loop

works properly, otherwise variables will keep the same sign as initial response.
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3.5 Combining Quantitative Data

Since an SDG-based approach focuses on qualitative information of the process, di-

agnostic limitations are unavoidable and increasing resolution becomes difficult. The

IF-THEN rule for each fault is composed of several patterns corresponding to dif-

ferent possible states or interpretations. For multiple paths between variables, the

dominant path can be decided easily by using process knowledge and experience. Us-

ing a simulation model will help verify each fault pattern, and modification can be

made for each rule accordingly. So the rule for each fault has been minimized as far

as possible using qualitative data. However, there still may be rules with the same

pattern.

For those faults with the same patterns, further quantitative knowledge can be used

to form additional parts of rule base. If two faults have the same pattern, it implies

that these faults have affected the same variables in same directions. However, if

quantitative information is considered, differences may be seen. For different faults,

variables may deviate in the same direction, but that does not mean that they deviate

from their normal values in the same way.

Usually, faults with the same pattern are pairs of disturbances and sensor faults,

which affect the same variables inside a control loop. Sensor failures in control loops

can be distinguished from actual process malfunctions because of the different action

of control loops. The simulation results also demonstrate this observation.

The sensor faults considered in this thesis are step biases. Such a fault can be isolated

from other malfunctions if one more piece of process knowledge is used. Since all the

variable values are read from their respective sensors, so a step sensor fault means that

the sensors fault produces an instantaneous change in the corresponding variables,

but changes such as a disturbance do not, they produce a slower response, because
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the dynamic variables need time to respond.

So suppose a fault happens at time sample k, sensor values at points k + 1 and k + 2

are different for these two types of fault. For a sensor fault, there is an instantaneous

change, so the value will go directly up or down to a maximum value at the k + 1

point, and then go back to a new steady state. so if V is the variable value, for a

sensor fault the |V (k +1)| is greater than |V (k +2)|; but for a disturbance, |V (k +1)|
is less than |V (k + 2)|. So only using these two points we can readily isolate these

two faults.

For example, assume that sensor fault A(+) has the same pattern as disturbance

B(+), that node V is the direct descendant of both nodes, and V takes value (+).

Generally, the complete rule for fault A (shown previously in Section 3.3) can be

extracted as:

IF |V (k + 1)| > |V (k + 2)|, and P = [1, 1, −1, −1, −1] THEN A is high.

There is small chance of error for fast sampling, i.e., the interval between two sampling

points is too short, however, this can be solved by looking at V(k+2) and V(k+4).

Or, if we calculate the gradient between sampling points, the one close to rectangular

will be sensor fault. This provides another example of the importance of considering

process knowledge, even if it is case specific.

3.6 Online Fault Detection and Diagnosis

As shown in the architecture schematic (Figure 3-1) at the beginning of this chapter,

measurements, which may be data from a Distributed Control System (DCS), are first

processed, including noise filtering, then measurements are compared with nominal

steady state values, and finally the processed data is transformed into qualitative
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values, either (+), (0), or (-). For rules compiled from quantitative information,

corresponding data is also input to the expert system. This is the second step.

The third step is pattern matching and online diagnosis of the fault origin. When

a fault occurs, the corresponding system variables will change (from 0 to +1 or -1).

The pattern values are collected and compared with the knowledge base; the fault

for which the pattern matches one of the rules is the root fault, and the result will

be displayed. The fault pattern for the initial response fulfills the requirement for

a quick diagnosis, if it is unambiguous; otherwise the final response can be used to

ensure the diagnosis result correctness.

3.7 Fault Detection

Limit-value checking is used in this thesis for fault detection. The classical limit-

value checking for monitoring and fault detection is still widely used in most process

industries, mainly because of its simplicity and reliability. Within automatic process

control systems, measurable variables are monitored, checked with regard to tolerance,

and alarms are generated for operators when variables deviate significantly from the

nominal value. For a dangerous process state, the monitoring function automatically

initiates an appropriate response. At the same time as the alarm is raised, the fault

diagnosis system is triggered to perform FDD and the results are shown to operators

who can take the corresponding action in order to maintain operation and to avoid

damage or accidents.

When a fault happens, it should be detected as early as possible. This can be done

by detection of the fault symptoms. Using SDG-based fault diagnosis, in a fault free

scenario, all nodes take a value of zero. If any node has a nonzero sign, there is a

fault in the system. For the algorithm presented here, the fault detection is not a
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separate part, instead, it is integrated into fault diagnosis. The fault can be identified

almost at the same time as it is detected, if time delays and time constants are not

large. A limitation of limit-value detection is that it does not perform well during

transients or large fluctuations; additional fault detection approaches may be needed

at this time.

The qualitative state of each process variable can take the value normal (0), high (+),

or low (-), by comparing it with the nominal steady state value. Due to uncertainty

and noise in the data measurement, the qualitative states are obtained considering an

appropriate threshold of each variables. For example, if the measurement of a variable

is above the upper limit alarm value, then it takes +1; if it is lower than the lower

limit alarm value, then it takes -1. It is easy to transform variable measurements to

qualitative values via comparing with its threshold. On the other hand, the setting

of a threshold should also reflect the qualitative process knowledge. For example, for

measurements in the neighborhood of a threshold, a small change of the threshold

may change the qualitative value assigned to the measurements.

Compromises have to be made setting thresholds, between detection sensitivity and

false alarms due to normal fluctuations. When an abnormal variable is in the neigh-

borhood of the designed threshold, SDGs have difficulty providing an accurate res-

olution. In principle, expert systems approaches are amenable to fuzzy logic, which

may help address the problem of alarm threshold sensitivity [9]. This is a topic for

future research. However, the diagnostic algorithm proposed here is based on a set

of logic rules, which can be combined with other rules pertaining to plant operations

in an expert system. In this sense, this thesis will be of significant benefit for future

implementations.
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3.8 Conclusion

In this chapter, an intelligent fault diagnosis algorithm has been proposed, along with

fault detection and process implementation. The fault diagnosis algorithm combines

process knowledge and quantitative information into the SDG approach, improving

diagnosis resolution, and facilitating the early detection and diagnosis of process

faults. Moreover, using IF-THEN rules to build the fault diagnosis knowledge base

makes the diagnosis and isolation process more efficient and allows it to be embedded

or combined with other expert systems in the process industries. This is illustrated

in a detailed example in the next chapter.
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Chapter 4

Implementation and Simulation

Results

4.1 System Model

4.1.1 JCSTR Dynamic Model

The test study has been done on a jacketed continuously-stirred tank reactor (JCSTR)

model, shown in Figure 4-1. The tank inlet stream is received from another process

unit. The objective is to control the temperature and volume in the tank at desired

values via the temperature control (TC) and level control (LC) loops, respectively.

A heat transfer fluid is circulated through a jacket to heat the fluid in the tank. The

volume is controlled by adjusting the tank outflow, and the temperature is controlled

by adjusting the heating fluid inflow valve. In this model, we assume that no change

of phase occurs in either the tank fluid or the jacket fluid. The jacket volume, density,

and heat capacity of liquids are assumed to be constant.

Under these assumptions, the closed loop system model is governed by equations 4-1
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Figure 4-1: JCSTR Model and Controller

to 4-8. Names and values of parameters related to the JCSTR and normal values of

variables are given in Table 4.1.

dV

dt
= f1(Fi, Fo) = Fi − Fo (4-1)

dT

dt
= f2(Fi, Ti, A, V, Tj) =

Fi(Ti − T )

V
+

UA(Tj − T )

V ρcp

(4-2)

dTj

dt
= f3(Fj, Tji, A, T ) =

Fj(Tji − Tj)

Vj

− UA(Tj − T )

Vjρjcpj

(4-3)

A =
π(Dr)

2

4
+

4V

Dr

(4-4)

eV = Vsp − V (4-5)

eT = Tsp − T (4-6)

Fo = Foss + KP1eV + KI1

∫
eV dt (4-7)

Fji = Fjiss + KP2eT + KI2

∫
eT dt (4-8)
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Parameters Meaning Value

Dr Diameter of the reactor (m) 5

cp,cpj Heat capacity (j/kg.K) 4.19 *1000

U Heat transfer coefficient (W/m2K) 852

rho,rhoj Density (kg/m3) 997.95

A Area for heat transfer (m2) 163.64

V Mixture volume (m3) 180

Vj Heating water volume (m3) 9

T Tank temperature (K) 33.6 + 273

Tj Jacket temperature (K) 104.3 + 273

Ti Temperature of the mixture feed (K) 10 + 273

Tji Temperature of the heating water feed (K) 120 + 273

Fi Mixture inflow (m3/s) 0.1

Fo Mixture outflow(m3/s) 0.1

Fji Heating water inflow(m3/s) 0.15

Fj Heating water outflow (m3/s) 0.15

Fjiss Heating water inflow steady state value(m3/s) 0.15

Foss Mix outflow steady state value(m3/s) 0.1

Vsp Volume set point (m3) 180

Tsp Temperature set point (K) 33.6 + 273

KP1 Volume proportional gain 0.0024

KI1 Volume integral gain 1.46e-6

KP2 Temperature proportional gain 0.033

KI2 Temperature integral gain 4.6e-5

Table 4.1: Parameters and Variables of JCSTR Model

4.1.2 JCSTR SDG Model

The corresponding SDG model built according to the DAE equations and control

principle is shown in Figure 4-2.

Directed arcs are drawn from all of the variables on the right hand side to the system

variables on the left hand side in the DAE equations. For arcs from ordinary differ-

ential equations, arc values are determined by Equation 3-2. Three DEs are given

in Equations 4-1 to 4-3. The calculation of arc values is given in Table 4.2. Signs

of most arcs can be fixed without using any numerical information, and only the arc
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Fi
Ti

V

Fo

Tji

TjA

Vs

Ts

Ov
Iv

positive arc

negative arc

T Fji

Figure 4-2: SDG Model for JCSTR Model

(V −→ T ) requires some numerical information.

For algebraic equations, the arc values are determined by Equation 3-3. Thus for arc

value of V −→ A by the AE equation 4-4 is a = 4
Dr

> 0.

In this SDG model, the tank temperature and volume control loops are connected by

adding sensor nodes and valve position nodes according to the control principle men-

tioned previously. Notice that the SDG constructed is rather robust, since changes

in the parameters generally will not affect the graph.

The notation is consistent with the last chapter, where the node variables are the

same as in the system model, sensor nodes are denoted by the subscript ‘s’, and the

valve nodes are enclosed in a rectangle. Iv is heating fluid inflow valve and Ov is

tank outflow valve. The solid line means that the arc value is (+), and the dashed

line means the arc value is (-). The arc notation will be the same throughout the
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Arc Arc value calculation

Fi −→ V ∂f1

∂Fi
= 1 > 0

Fo −→ V ∂f1

∂Fo
= −1 < 0

Fi −→ T ∂f2

∂Fi
= (Tis−Ts)

Vs
< 0

V −→ T ∂f2

∂V
= −Fi(Ti−T )

V 2 − UA(Tj−T )

V 2ρcp
> 0

Ti −→ T ∂f2

∂Ti
= Fis

Vs
> 0

A −→ T ∂f2

∂A
=

U(Tj−T )

V ρcp
> 0

Tj −→ T ∂f2

∂Tj
= UA

V ρcp
> 0

Fji −→ Tj
∂f3

∂Fj
=

Tji−Tj

Vj
> 0

Tji −→ Tj
∂f3

∂Tji
=

Fj

Vj
> 0

T −→ Tj
∂f3

∂T
= UA

Vjρjcpj
> 0

A −→ Tj
∂f3

∂A
= −U(Tj−T )

Vjρjcpj
< 0

Table 4.2: Arc Value Calculation for DE Equations

thesis, so the explanation will be omitted. The SDG model gives a clear picture of the

JCSTR system. The system behavior is visualized by the cause-effect relationships

between variables. Volume and temperature control loops shown in the SDG model

are also in cycle or loop path form; loop (V , Vs, Ov Fo, V ) and loop (T , Ts Iv, Fji,Tj,

T ). These two loops are coupled through the change of heat transfer area when the

volume changes.

4.2 Fault Analysis

A simulation model built by Atalla Sayda [28] is used. For this simulation model, po-

tential faults include disturbances caused by independent variable changes, and sensor

or actuator faults inside control loops. Totally 10 different faults and disturbances

have been selected and studied. These ten faults are listed in table 4.3.

There are five measured variables, as shown in Table 4.4, and all of them will be used
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Symbol Fault Origin

Fi(−) Low Mix Inflow

Fi(+) High Mix Inflow

Ti(−) Low Inlet Temp

Ti(+) High Inlet Temp

Tji(-) Low Heating Fluid Temp

Tji(+) High Heating Fluid Temp

Ts(−) Faulty Temp Sensor

Vs(−) Faulty Volume Sensor

Ov(−) Faulty Outflow Valve

Iv(−) Faulty Heating Fluid Inflow Valve

Table 4.3: Fault Origin List

to compose the patterns. The value is taken from the reading of its corresponding

sensor, so the values in the patterns are the values of sensor variables. In the SDG

model, because we suppose that the measurement is rapid, the sensors of Fo, Tj, and

Fji are lumped with their corresponding variable nodes, except the measurements of

the controlled variables V , and T , which are potential root nodes. In the following

reduced SDG models corresponding to each fault, if a sensor is not a root node, it

will also be lumped with its corresponding variable node.

Symbol Measurement

V or Vs Tank volume

Fo Tank outlet flow rate

T or Ts Tank temperature

Tj Jacket temperature

Fji Jacket inlet flow rate

Table 4.4: Measurements for On-line Diagnosis
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4.2.1 Disturbance Caused by Mix Inflow Rate Fi

The SDG model corresponding to a fault in Fi is reduced from the original SDG

model, as shown in Figure 4-3. Based on the single fault assumption, there can be

only one fault origin in each case, and the other fault origins are deleted in this SDG

model, along with their arcs to the system. Two different faults caused by origin

Fi are high inflow rate Fi(+) and low inflow rate Fi(−). The following analysis is

based on the fault high inflow rate Fi(+). For fault origin mix inflow low, Fi(−),

because only the fault origin changes its qualitative state, the propagation paths are

the same, so the corresponding fault pattern will be opposite to that of Fi(+). A

similar argument may be used for fault origins Ti and Tji.

Fi

V

Fo

TjA

T Fji

Figure 4-3: Reduced SDG Model for Mix Inflow Fault

The effect of a fault is propagated from the root node (disturbance/fault node) to the

nodes representing system variables in the SDG model. The value of each effected

node is equal to the product of the cause node value with the arc value, this is

consistent with the truth table in Appendix A (Table A-1). For example, fault Fi(+)

means the root node Fi = +1, the positive arc from Fi to V makes V = +1. The

purpose of propagation through the SDG model is to find the possible initial response

patterns and final response patterns corresponding to the fault Fi(+). The elements

of the pattern used in the fault diagnosis for this JCSTR model correspond to the

five measured variables [V, Fo, T, Tj, Fji]. So the initial response and final response
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of the system is found by determining the possible initial response and final response

of these five variables for each fault.

4.2.1.1 Initial Response Fault Patterns for Fi(+)

As claimed in Chapter 3, the initial response of a system variable xj due to changes in

an exogenous variable el, can be predicted by propagation through all of the shortest

path(s) from el to xj in the SDG; this is correct for DE systems and DAE systems

with only one perfect matching [21]. The JCSTR mathematical model only has one

algebraic equation, so it is a DAE system with only one perfect matching, and the

SDG model is unique. The arc lengths corresponding to the initial response of the

complete JCSTR system is shown in Figure 4-4.

Fi
Ti

V

Fo

Tji

TjA

Vs

Ts

Ov
Iv

T Fji

1

0

0
0

1 1

0

1

1 1

1

1
1

0

0

0

1

1

Figure 4-4: SDG Model with Arc Lengths

The initial response of the five variables [V, Fo, T, Tj, Fj], are propagated from the

origin node Fi, as follows:

• The shortest path from Fi to V is Fi −→ V with length 1, which makes V = +1.
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• The shortest path from Fi to Fo is Fi −→ V −→ Fo with length 1, which makes

Fo = +1.

• The shortest path from Fi to T is Fi −→ T with length 1, which makes T = −1.

• The shortest path from Fi to Fji is Fi −→ T −→ Fji with length 1, which makes

Fji = +1.

• The shortest paths from Fi to Tj are three: path Fi −→ T −→ Tj and path

Fi −→ V −→ A −→ Tj makes Tj = −1, but Fi −→ T −→ Fji −→ Tj, also with

length 2, makes Tj = +1.

The initial response of Tj corresponding to a disturbance of Fi cannot be determined

only by the SDG model. Based on the simulation result of fault Fi high, see Figure

4-5, it shows that the initial response of Tj is +1, which means the dominant pathway

is Fi −→ T −→ Fji −→ Tj. In this process, because of the large volume of tank,
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Figure 4-5: Tj Response when Fi High, t0fault = 1.5

the heat transfer area A change would be small; the nominal state value of T and Tj

are 33.6 and 104.3, and Tj also affects T at the same time, so the influence from T

to Tj is likely to be small. It also can be understood easily if we consider the role of

43



the temperature control loop: because T deviates opposite to the change of Fi, the

control loop must respond further to compensate this effect. So the weight of the

third path is heavier than the first two, and the initial response of Tj is +1. By either

approach, process knowledge resolves the ambiguity.

So, the initial response fault pattern P, which is composed by the five variables

[V, Fo, T, Tj, Fji], for disturbance Fi high is P = [+1, +1, −1, +1, +1].

4.2.1.2 Ultimate Response Fault Patterns for Fi(+)

At steady state or the ultimate response state, there are only three cases: the nodes

can be compensated back to the normal state (CVs) or change to an inverse state

(IVs), otherwise it has to stay in same as in the initial response.

There are two negative feedback control loops in the SDG model. One is the volume

control loop, in which tank volume V is the controlled variable, tank outflow rate Fo

is the manipulated variable. The other is the temperature control loop, in which tank

temperature T is the controlled variable, and jacket inflow rate Fji is the manipulated

variable. Process control loops are usually designed to achieve their intended function,

using PI control to attempt to maintain the controlled variables in the desired steady

state, in the presence of most expected disturbances. So in many situations zero

deviation of the controlled variables is maintained after all transients have died out.

As mentioned in last chapter, CR of controlled variables in feedback control loops

is a special case of the more general behavior of CV’s in negative feedback loops.

With respect to the disturbance Fi, it is easy to identify that V and T are CVs.

Thus, one of the possible ultimate response fault pattern for disturbance Fi high, is

P = [0, +1, 0, +1, +1], in which both controlled variables V and T return to zero

deviation. There are possible exceptions. If the disturbance magnitude is large enough
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to cause loop saturation, one or both of them will keep the initial response value, so

the other possible fault patterns at the final stage could be: P = [+1, +1, 0, +1, +1],

P = [0, +1, −1, +1, +1], and P = [+1, +1, −1, +1, +1], i.e., V is not a CV, T

is not a CV, or neither T nor V are CVs, respectively.

4.2.1.3 Fault Patterns for Fi(−)

The fault patterns of Fi(−) are opposite to the patterns of Fi(+). So, the initial

response fault pattern is: P = [−1, −1, +1, −1, −1], and the possible ultimate

response fault patterns are: P = [0, −1, 0, −1, −1], P = [−1, −1, 0, −1, −1],

P = [0, −1, +1, −1, −1], and P = [−1, −1, +1, −1, −1].

4.2.2 Fault Caused by Mix Inlet Temperature Ti

The corresponding SDG model for a disturbance caused by inlet temperature Ti is

reduced as shown in Figure 4-6. The nodes that cannot be accessed from Ti will stay

at their normal state, so measured variables V = 0 and Fo = 0 are omitted.

Ti

V

Fo

Tj

T

Fji

1

1

1
1

0

Figure 4-6: SDG Model for Fault Ti
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4.2.2.1 Fault Patterns for High Inlet Temperature Ti(+)

For disturbance Ti(+), the initial response of T , Tj,and Fji are propagated through

the shortest paths as following:

• Ti −→ T , makes T = +1,

• Ti −→ T −→ Fji, makes Fji = −1, and

• Ti −→ T −→ Fji −→ Tj, makes Tj = −1 (by simulation, the other shortest

path Ti −→ T −→ Tj is not dominant) .

The simulation result for Tj response to Ti high is shown in Figure 4-7, and the

process analysis is similar to that for a fault in Fi. One can also use process knowledge

(common sense) to reason that an increase in Ti will, by action of the temperature

control loop, cause Tj to decrease.
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Figure 4-7: Tj Response when Ti High, t0fault = 1.5

So the initial response fault pattern of Ti(+) is P = [0, 0, +1, −1, −1].

There only one CV in this SDG, T , so the possible patterns for ultimate response

are: P = [0, 0, 0, −1, −1], and P = [0, 0, +1, −1, −1]
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4.2.2.2 Fault Patterns for Low Inlet Temperature Ti(−)

For fault origin Ti(−), the initial response fault pattern is P = [0, 0, −1, +1, +1],

the possible patterns for ultimate response are: P = [0, 0, 0, +1, +1], and P =

[0, 0, −1, +1, +1].

4.2.3 Fault Caused by Heating Inlet Temperature Tji

The corresponding SDG model for a disturbance in Tji is reduced as shown in Figure

4-8. The nodes that cannot be accessed from Tji, measured variables V = 0 and

Fo = 0, will stay in their normal state.

V

Fo

Tj

T

Fji

1

1
1

0

Tji
1

Figure 4-8: SDG Model for Fault Tji

4.2.3.1 Fault Patterns for High Heating Inlet Temperature Tji(+)

For fault Tji(+), the initial response of T , Tj, and Fji are propagated through the

shortest paths as shown below:

• Tji −→ Tj −→ T , makes T = +1,

• Tji −→ Tj, makes Tj = +1, and
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Figure 4-9: Tj Response when Tji High, t0fault = 1.5

• Tji −→ Tj −→ T −→ Fji, makes Fji = −1.

So the initial response fault pattern of Tji(+) is P = [0, 0, +1, +1, −1].

There are two potential CVs in this SDG with respect to disturbance Tji, T and

Tj. The variable Tj meets the necessary conditions proposed in [10], see appendix B.

First it is located in a negative feedback loop (1). There is only one acyclic path from

disturbance Tji to Tj, subsystem (Tji −→ Tj), and the complementary subsystems

are (T , Fji) and ∅ (the null system). Subsystem (T , Fji) contains one integrator (4a),

and none of these subsystems contains a nonzero cycle (4b, 5). So, Tj is a possible

CV.

Again, this can be understood by qualitative physics. Because the temperature con-

trol loop (TC) is implemented by adjusting Tj (via the heating inflow valve) to control

T , if T returns to normal, Tj has to go back to normal. That means either T and

Tj are both CVs or neither are CVs. The simulation result of Tj corresponding to a

disturbance Tji is shown in Figure 4-9, and illustrates the analysis.

So the possible patterns for ultimate response are: P = [0, 0, 0, 0, −1], and P =

[0, 0, +1, +1, −1].
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For this process P = [0, 0, 0, +1, −1] will not happen when Tji(+). In addition,

from Figure 4-9, it also can predicted that two possible transient response patterns:

P = [0, 0, +1, −1, −1] and P = [0, 0, 0, −1, −1].

4.2.3.2 Fault Patterns for Low Heating Fluid Temperature Tji(−)

For fault origin Tji(−), the initial response fault pattern is P = [0, 0, −1, −1, +1],

the possible patterns for ultimate response are: P = [0, 0, 0, 0, +1], and P =

[0, 0, −1, −1, +1].

4.2.4 Volume Sensor Fault, Vs bias

The term sensor fault in this thesis refers to the existence of a sensor bias. The

sensor value will be proportional of the true value in some ratio not equal to unity.

For example, Vs = 0.8V , means that the sensor fault size is -20%. The fault in the

simulation model is denoted as Vs(−); to keep the example short the fault Vs(+) is

not considered. The reduced SDG model for Vs fault is given in Figure 4-10.
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Figure 4-10: SDG Model for Vs Fault
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4.2.4.1 Initial Response Fault Pattern for Vs(−)

When a negative volume sensor bias occurs, the volume control loop takes action

and opens the valve Ov to increase the volume until the sensor measurement shows

a return to the normal value. In this case, the SMCC (Vs, Ov, Fo, V ) is considered as

the fault origin, which is used for propagation outside the control loop. Inside the

control loop, the variable deviation is predicted by the shortest path from Vs.

• Vs = −1 is used in the patterns, since that is the measured value, even though

V = +1 is propagated from the path Vs −→ Fo −→ V ,

• Vs −→ Fo, makes Fo = −1,

• Vs −→ Fo −→ V −→ A −→ T , makes T = +1; Vs −→ Fo −→ V −→ T , also

makes T = +1

• Vs −→ Fo −→ V −→ A −→ Tj, makes Tj = −1, and

• Vs −→ Fo −→ V (−→ A) −→ T −→ Fji, makes Fji = −1.

So, the initial response fault pattern is thus P = [−1, −1, +1, −1, −1].

4.2.4.2 Ultimate Response Fault Pattern for Vs(−)

In the sensor bias case Vs(−), the controlled variable V cannot return to zero, how-

ever, the control loop will stop action when the sensor value returns to its normal

value. T would return to the normal state if the temperature control loop works

perfectly. The possible final response patterns are: P = [0, −1, 0, −1, −1],

P = [−1, −1, 0, −1, −1], and P = [−1, −1, +1, −1, −1]. For this process

P = [0, −1, +1, −1, −1] will not happen when Vs(−), based on the understanding

of the process.
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4.2.5 Mix Outflow Valve Fault, Ov Stuck

The valve fault is defined to be a stuck valve, so the flow rate through the valve

is fixed. For example, the valve fault size is -20% means that the the outflow rate

Fo = 0.8 ∗ Fo,normal. The fault set in the simulation model is Ov(−). The reduced

SDG model for Ov fault is given in Figure 4-11.
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Figure 4-11: SDG Model for Ov Fault

4.2.5.1 Initial Response Fault Pattern for Ov(−)

The shortest propagation paths yield the following initial response fault pattern:

• Ov −→ Fo −→ V , makes V = +1,

• Ov −→ Fo, makes Fo = −1,

• Ov −→ Fo −→ V −→ A −→ T , and Ov −→ Fo −→ V −→ T , make T = +1,

• Ov −→ Fo −→ V −→ A −→ Tj, makes Tj = −1, and

• Ov −→ Fo −→ V (−→ A) −→ T −→ Fji, makes Fji = −1.

The initial response fault pattern thus is P = [+1, −1, +1, −1, −1].
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4.2.5.2 Ultimate Response Fault Pattern for Ov(−)

In the mix outflow valve fault Ov, the controlled variable V cannot return to zero. So,

only T can possibly be compensated by the temperature control loop to a zero devia-

tion state. The possible ultimate response patterns are thus: P = [+1, −1, 0, −1, −1]

and P = [+1, −1, +1, −1, −1].

4.2.6 Temperature Sensor Fault, Ts Bias

Again, a sensor fault in this thesis means existence of a sensor bias. For example,

Ts = 0.8T means the sensor fault size is -20%. The fault in the simulation model is

set as Ts(−). The reduced SDG model for Ts fault is given in Figure 4-12.
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Figure 4-12: SDG Model for Ts Fault

4.2.6.1 Initial Response Fault Pattern for Ts(−)

The reduced SDG is an MSCC, but it is the temperature control loop, so variable

deviation still can be predicted from the shortest paths. The shortest propagation

paths yield the following initial response fault pattern:
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• The variables that cannot be accessed from Ts are given deviation values of

zero, so V = 0 and Fo = 0.

• Ts = −1 is used in the patterns, although T = +1, by propagation from path

Ts −→ Fji −→ Tj −→ T ,

• Ts −→ Fji, makes Fji = +1, and

• Ts −→ Fji −→ Tj, makes Tj = +1.

The initial response fault pattern is thus P = [0, 0, −1, +1, +1].

4.2.6.2 Ultimate Response Fault Pattern for Ts(−)

In the sensor bias case Ts, the controlled variable T cannot return to zero, however,

the control loop will stop taking action when the sensor value return to normal. So,

the final possible response pattern are: P = [0, 0, −1, +1, +1] (if the temperature

control loop saturates) and P = [0, 0, 0, +1, +1] (if the temperature control loop

is effective).

4.2.7 Heating Inflow Valve Fault, Iv stuck

The valve fault is defined to be a stuck valve, so the flow rate through the valve is

fixed. For example, the valve fault size is -20% means that the outflow rate Fji =

0.8 ∗ Fji,normal. The fault set in the simulation model is Iv(−). The reduced SDG

model for Iv fault is given in Figure 4-13.

4.2.7.1 Initial Response Fault Pattern for Iv(−)

The shortest propagation paths yield the following initial response fault pattern:
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Figure 4-13: SDG Model for Iv Fault

• The variables that cannot be accessed from Iv are given values of zero, so V = 0

and Fo = 0,

• Iv −→ Fji, makes Fo = −1,

• Iv −→ Fji −→ Tj, makes Tj = −1, and

• Iv −→ Fji −→ Tj −→ T , makes T = −1

The initial response fault pattern is thus P = [0, 0, −1, −1, −1].

4.2.7.2 Ultimate Response Fault Pattern for Iv(−)

In the valve fault Iv, the controlled variable T cannot return to normal. So, the final

possible response pattern is the same as the initial response: P = [0, 0, −1, −1, −1].

4.2.8 Summary of Fault Patterns

The fault patterns predicted above are possible patterns that might be exhibited by

the JCSTR model. Only some of them will appear at one time, according to the
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fault type, fault size and compensation capability. All of the prediction patterns

were tested by simulating the JCSTR with different fault sizes, the results show the

predictions are right. The patterns for each fault are compiled into the IF-THEN rule

base, which is used to diagnose the fault in real time. As summary, a pattern table is

composed for all the faults by propagation through the SDG, as shown in table 4.5.

Fi(-) Fi(+) Ti(-) Ti(+) Tji(-) Tji(+) Vs(-) Ts(-) Ov(-) Iv(-)

7 7 6 6 5 5 4 3 2 1

Vs - 0 + 0 0 0 0 0 - 0 0 + 0

Fo - + 0 0 0 0 - 0 - 0

Ts + 0 - 0 - 0 + 0 - 0 + 0 + 0 - 0 +0 -

Tj - + + - - 0 + 0 - + - -

Fji - + + - + - - + - -

Table 4.5: Possible Patterns Table for JCSTR Model

The first row in the table shows ten faults, including disturbances, valve and sensor

faults. The first column lists the five system variables whose qualitative states com-

pose the patterns. For possible compensatory variables, which may return to zero in

the final state due to controller action, both qualitative states have been listed, the

first sign change is the initial response or possible ultimate response for controller

saturation, and the second sign change is zero for perfect control. The number 1 to 7

is the fault representation number or index which will be shown in the fault diagnostic

result.

4.3 Simulation Results - Purely Qualitative FDI

The diagnostic system, composed of the IF-THEN rule base which was built by the

propagation patterns above, has been tested by introducing one of these ten faults

in a simulation, for different fault sizes. The thresholds for the five variables used in
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this study are set as 5% of normal values.

The simulation results for a fault size (±)20% are shown here. In fact, the diagnosis

results are the same for other fault sizes, such as fault size (±)50%. See Figure 4-

14, Figure 4-15, Figure 4-16, Figure 4-17, and Figure 4-18. For example, in Figure

4.14(a), the x axis is time, and the y axis is the fault diagnosis result. Level 0 is for

normal, and levels 1 to 7 stand for the different faults as shown in the pattern table

and in the notation Fi, Ti etc. on the y axis. The symbol ‘o’ stands for normal, ‘+’

and ‘4’ stands for high in initial and final state, ‘x’ and ‘∇’ stands for low in initial

and final state. Two symbols are used here to show the difference between initial

and final patterns during a fault for understanding the algorithm and the JCSTR

process. The fault is introduced at 1.5 hours. The points corresponding to level 0

mean the system is in a normal operating state. The points corresponding to levels

1 to 7 represent the fault as diagnosed. The result now is good, in the sense that the

fault can be isolated in the very beginning, and in the worst cases the list of possible

faults is limited to two.
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Figure 4-14: FDI Results for Fault Fi

When the abnormal variables are in the neighborhood of the designed threshold,
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Figure 4-15: FDI Results for Fault Ti
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Figure 4-16: FDI Results for Fault Tji
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(a) Vs(-) Fault
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Figure 4-17: FDI Results for Sensor Faults
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Figure 4-18: FDI Results for Valve Faults
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SDGs have difficulty providing accurate resolution. It can be seen in the figures

below. In some of the figures, just after the fault happened and before it has been

isolated, there are separate points corresponding to final fault patterns showing up,

this is because some abnormal variables’ deviation is not large enough to be detected,

so its quantitative value is still zero, and unfortunately that matches other patterns.

This can be solved by adjusting the thresholds, for example, making them smaller.

The pattern table 4.5 shows that Fi(−) has the same patterns as the Vs(−) sensor

fault, and Ti(−) has the same patterns as the Ts(−) sensor fault, so the FDI results

also show those faults with same patterns displayed at same time, see Figure 4.14(b)

and Figure 4.17(a) and Figure 4.15(b) and Figure 4.17(b). In those figures, the

diagnosis result has been limited to the two faults as mentioned; however, these pairs

also can be isolated from each other, if one more piece of process knowledge is used,

as demonstrated in the next section.

4.4 Hybrid FDI Simulation Results

The sensor faults set in this thesis are step sensor biases, which means that the

changes in Vs and Ts produce instantaneous changes in sensed V or T , but changes

in Fi or Ti do not, since V and T take time to respond to disturbance inputs based

on the underlying dynamics. We take Vs(−) and Fi low as an example, and inspect

the different behavior of V as shown in Figure 4-19:

Suppose the fault happens at time sample k, the responses for points k + 1 and k + 2

are different for these two faults. For the sensor fault, there is an instantaneous

change, so |V (k + 1)| is greater than |V (k + 2)|, but for the disturbance, |V (k + 1)|
is less than |V (k + 2)|. Thus only using this two points we can quickly isolate these

two faults.
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Figure 4-19: Different Behavior of V for Fault Fi low and Vs(−)

The diagnostic simulation results using quantitative information are shown in Figure

4-20 and Figure 4-21. The fault size is -20% for each fault. In this scenario, faults

with same patterns are correctly isolated. In on-line operation, sampling point (k+2)

is unknown at the time of point (k + 1), so at time of k + 1, it still shows another

fault if a pattern is matched, as shown in Figure 4.21(b).
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Figure 4-20: FDI Results with Hybrid FDD
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Figure 4-21: FDI Results with Hybrid FDD

4.5 Conclusion

In this chapter, the proposed FDD algorithm has been implemented and applied to

a JCSTR model, with a detailed explanation of the procedure and results for all

ten potential faults. The most important part of the algorithm development is the

propagation of the initial response fault patterns, which determines the operation of

the whole diagnostic system, and also affects the early fault diagnosis and isolation.

Process knowledge or simulation results were used here to clarify certain ambiguous

propagations. The ultimate response fault pattern is determined by the correct iden-

tification of CVs and IVs, and similar decisions have to be made for the analysis of

any real system. Quantitative data has been used to distinguish the faults with same

qualitative patterns to further increase the diagnostic resolution.

The simulation results for the JCSTR model show that the overall algorithm is ef-

ficient and promising. All ten potential faults can be isolated correctly and in a

very short time, fulfilling the requirement for early and correct fault diagnosis and

isolation.
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Chapter 5

Robustness of the Fault Diagnostic

System

The simulation results shown in the last chapter are based on ideal conditions, and

faults are introduced at times when the system is in steady state operation. In reality,

the operation is uncertain, and faults can happen at anytime, thus the problem of

robustness of the diagnostic algorithm arises. This issue is addressed in this chapter.

Robust fault diagnosis refers to the ability of fault diagnostic systems to make a

correct diagnosis in the presence of operation uncertainties and various perturbations.

A robust diagnostic system’s performance should degrade gracefully instead of failing

totally and abruptly.

In an SDG-based approach, three qualitative states, normal (0), high (+), and low

(-), are used to present a variable which is equal to, above, or below the steady state

value, respectively. In diagnosing the process, thresholds are used to calculate the

qualitative states. In the ideal conditions, thresholds are set close to zero, which bene-

fits sensitivity. The threshold sets the tolerance of a variable to noise and fluctuation.
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However, in setting the tolerance, compromises have to be made between detection

sensitivity and unnecessary alarms due to normal fluctuations. So thresholds and

steady state values are the factors that affect the result of qualitative analysis, and

they should come into consideration when regarding robustness.

In this chapter four aspects will be addressed regarding the robustness problem: (1)

different thresholds; (2) dealing with transients; (3) operation point variation; and

(4) operation fluctuation. In simulations for cases (2), (3) and (4), we suppose that

another fault detection approach is used, due to the limitation of limit value checking

for fault detection, so in those cases we suppose that we know the time that the fault

happened.

5.1 Different Thresholds

Table 5.1 gives two sets of thresholds for the five variables used in the JCSTR model.

The first set is the one used in last chapter, and the second set is much looser than

the first one and it is selected by guaranteeing that all the ten faults can be isolated

correctly in normal conditions. The JCSTR FDI system was designed using an ideal

model with no noise and no fluctuation, so the thresholds were previously set small.

Variables Threshold (1) Threshold (2)

V 0.5%Vnormal 3%Vnormal

Fo 0.5%Fo,normal 3%Fo,normal

T 0.5 %Tnormal 2 %Tnormal

Tj 0.5 %Tj,normal 3 %Tj,normal

Fji 0.5%Fji,normal 3%Fji,normal

Table 5.1: Comparison Two Sets of Thresholds

The algorithm has been tested using both sets of thresholds. The disturbance Fi(+)

(high mix inflow) is used as an example fault, and it is introduced at 1.5 hours in the
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steady state operation period. The FDI results corresponding to two fault sizes 10%

and 20% are shown here, see Figures 5-1 and 5-2.
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Figure 5-1: FDI Result, Different Thresholds for Fault Size 10%
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Figure 5-2: FDI Result, Different Thresholds for Fault Size 20%

For both fault sizes, the fault is correctly isolated, although, for threshold set (1),

which is smaller, the time for isolation is earlier than for threshold set (2), which

is bigger. This demonstrates that increasing thresholds decreases the detection sen-

sitivity for FDI. This slow behavior is reduced if the fault size increases, however.
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For threshold set (2), the time of isolation for a 20% fault is earlier than for the

smaller 10% fault. It can be deduced that larger thresholds will affect fault detection

if the fault falls into the neighborhood of threshold, and isolation time is much more

affected for smaller faults.

Moreover, the sampling points which matched the initial response and ultimate re-

sponse patterns are different. For the smaller threshold set or bigger fault size, more

points corresponding to initial patterns are identified; for the bigger threshold set

or smaller fault size, fewer points correspond to initial patterns; there are no initial

pattern points in the case shown in Figure 5.1(b).

If the fault size is large enough to provide changes that exceed the thresholds, then

the FDI result is still correct; however, it raises the issue that the diagnostic algorithm

might have problems when the fault is small, which is the object of future research.

So although sometimes we need to increase thresholds, for example, if system noise

exists, compromises have to be made between the detection sensitivity (both fault

size and isolation time) and unnecessary alarms.

5.2 Dealing with Transients

The SDG-based approach uses steady state values of measured variables to calcu-

late their qualitative states, which compose patterns used in fault diagnosis. So a

diagnostic system needs to know the steady state value of the measured variables

at different operation points, for example, the steady state for tank volume at 100%

capacity is different with the one for volume at 80%. When there is a need to change

the operation point, the corresponding steady state values need also to be supplied

as an input to the diagnostic system for correct diagnostic results, as shown in Figure

3-1. We assume there is a look-up table corresponding to different operation points
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based on the changes of temperature and volume set points. Once the operation

point changes, the steady state values at the new operation point are used as nominal

values for FDI.

There is a transient period during operation changes. Since the steady state values of

the new operation point are used as nominal value for FDI, the variables’ qualitative

states may not be zero during the transient period, since the variables have not

arrived at steady state yet. However, since the diagnostic system keeps calculating

the patterns, even if there are no faults during the transient period there may be

alarms and faults declared, as shown in Figure 5-3, in which the operating point is

changed by increasing temperature setpoint by 5% and the volume setpoint by 10%

at time 0 hour, and it arrives at a new steady state at around 2 hours.
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(b) threshold set (2)

Figure 5-3: FDI Result, Different Thresholds for Normal Operation

The system is in a fault free condition, however, alarms or false faults are identified

during the transient period because variables have not arrived at new nominal values.

For the time intervals where “*” is displayed at level -1, this indicates that some

variables are not in normal conditions, so an alarm is raised. In this thesis, fault

patterns in the pattern set are not compared during transient periods, so any patterns
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that do not match with the normal pattern, P = [0, 0, 0, 0, 0], are shown as false

alarm. This is based on the assumption that we know that this interval is during an

operation point change.

An important difference is shown in these two figures before time 2.5 hours. The

difference in thresholds affects the displayed time when the system arrives at the new

steady state. When the variables’ quantitative values are in the neighborhood of their

thresholds, different threshold settings will produce different qualitative value, and

this affects the indication of steady state points (corresponding to value 0) shown in

the figures.

We normally suppose, as shown in the last chapter, that faults happen in periods

of steady operation, however, faults can happen during the transient period. If the

new steady state nominal value is used, the FDI algorithm still can isolate the ten

faults correctly, although the performance will not be as perfect. Here we use high

mix inflow as an example, see Figure 5-4; all other simulation results are given in

Appendix C.1, Figures C-1 to C-5. The faults are introduced during steady state at
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(b) Fault Happened in Transient Stage

Figure 5-4: FDI Result, Fault Happened in Transient Period

time 2.5 hours and during the transient period at time 0.5 hours, respectively, with
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fault size 20% and threshold set (1). As mentioned, we require another detection

method since the SDG algorithm only detects faults by watching for the pattern to

change from P = [0, 0, 0, 0, 0].

5.3 Operation Point Variation

Although the nominal values for the algorithm have to be set accurately, it is not

highly critical; the FDI algorithm with one set of nominal values works over a small

region of operation point variation.

Figure 5-5 shows the workable region around the nominal operation point, i.e., dVsp =

0 and dTsp = 0. The meanings of the symbols in the figure are: “o”, FDI result is
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Figure 5-5: FDI Work Region

correct and fast, less than one hour; “∇”, FDI result is correct but late, more than one

hour and less than two hours; “x”, FDI was not possible, or very late, or only several

points (less than 3) are shown. Two sample plots for understanding the symbols also

shown in Figure 5-6. These figures show the affect of high heating fluid temperature,
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fault size 20% and/or 10%, as an example, and the threshold set in this example is

threshold set (2) in Table 5.1. Compared with Figure 4.16(a), the results are quite

acceptable. Figure 5.6(a) corresponds to point dTsp = 1%, dVsp = 1% and Figure

5.6(b) corresponds to point dTsp = 10%, dVsp = −2%. It can be seen that there is
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(a) Sample Plot for “o”
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(b) Sample Plot for “∇”

Figure 5-6: Example FDI Results

a small area where the FDI system works for the nominal values. For other faults,

although the region areas with “∇” are different, they all have a small working region.

See Appendix C.2 for detail.

If the threshold setting is much bigger, the working region will be little bigger. But,

the threshold setting should be small enough to ensure that it works for the ten faults

in normal conditions.

5.4 Operation Fluctuation

The simulation results shown in the last chapter are based on the system without any

perturbation, and the operating condition is nominal. In reality, process operation

is accompanied by normal fluctuations and the system response is not as smooth as
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shown in simulation. The robustness test with operational fluctuation has been done

using the simulation model, with a sinusoidal signal added to one controller set point

at a time, to simulate slow fluctuations.

The simulated fluctuation should be set realistically. The JCSTR model used in this

thesis is a tank with volume of 180 m3, and heating jacket with volume of 9m3, so

it is reasonable to set the tank volume maximum changes at ±5%, the maximum

temperature changes at ±2%, and the change frequency is set low. In the robustness

test, two different frequencies were studied, with periods 10 hours and 5 hours, so if

the fault appears at 1.5 hours, we simulate two conditions: the fault is introduced

at the times of intermediate value and maximum value of the sinusoidal wave. Four

cases are studied, as shown in Table 5.2:

Case A dTsp = 0.02 sin( 2π
3600∗10

t) ∗ Tsp

dVsp = 0

Case B dTsp = 0

dVsp = 0.05 sin( 2π
3600∗10

t) ∗ Vsp

Case C dTsp = 0.02 sin( 2π
3600∗5t) ∗ Tsp

dVsp = 0

Case D dTsp = 0

dVsp = 0.05 sin( 2π
3600∗5t) ∗ Vsp

Table 5.2: Four Cases of Operation Fluctuation

The FDI results for the four cases are shown in table 5.3 and table 5.4. In these

tables, isolation “yes 1” means the corresponding fault is isolated correctly; “yes 2”

means there is a second false fault identified along with the real fault, while “late”

means the real fault is diagnosed only after one hour. A “yes” under “False alarm”

means that in normal operations (before 1.5 hours), a false fault has been declared,

though there was no fault.

Figure 5.7(a) and Figure 5.7(b) are samples of the FDI results and shown here to

illustrate the notations in the tables. The FDI results for all the faults in all the
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Fault
case A case B

Isolation False alarm Isolation False alarm

Fi(+) yes 1 yes yes 1 no

Fi(-) yes 1 yes yes 1 no

Ti(+) yes 2, late yes yes 1 no

Ti(-) yes 2 yes yes 2, late no

Tji(+) yes 1 yes yes 1 no

Tji(-) yes 1 yes yes 1 no

Vs yes 1, late yes yes 1 no

Ts yes 1 yes yes 1 no

Ov yes 1, late yes yes 1 no

Iv yes 2 yes yes 2, late no

Table 5.3: FDI Results for Robustness Test, 1
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(b) Example for False Alarm, Fault Fi(+)

Figure 5-7: Example FDI Results

cases are shown in Appendix C.3. In those simulations, the system is in normal state

since time 0, and the fault is introduced at 1.5 hours. All fault sizes are 20%. The

thresholds for the five variables used here are listed in Table 5.5.

The threshold used here are much looser than the ones used before, but they are not

set unreasonably large enough to cancel all the false alarm during normal condition.

If that was done, some faults would not be identifiable. All the false alarms shown
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Fault
case C case D

Isolation False alarm Isolation False alarm

Fi(+) yes 1 yes yes 1 yes

Fi(-) yes 1 yes yes 1 yes

Ti(+) yes 1 yes yes 2 yes

Ti(-) yes 2 yes yes 2, late yes

Tji(+) yes 1 yes yes 1 yes

Tji(-) yes 1 yes yes 1 yes

Vs yes 1 yes yes 1 yes

Ts yes 1 yes yes 1 yes

Ov yes 1 yes yes 1 yes

Iv yes 2 yes yes 2 yes

Table 5.4: FDI Results for Robustness Test, 2

Variables Threshold

V 6%Vnormal

Fo 6%Fo,normal

T 3 %Tnormal

Tj 4 %Tj,normal

Fji 16%Fji,normal

Table 5.5: Thresholds Used in Robustness Tests

here are caused by large variation in Fji, so if the operator is aware this, or if such

process knowledge is used in the FDI system, it would not be a problem.

From the FDI results shown in Appendix C.3, we see that all ten faults can be

diagnosed, although in a few of cases a false fault appears with the real fault; except

for six fault cases, all other faults can be diagnosed in early time.

5.5 Conclusion

In this chapter four problems related to robustness have been investigated. Based on

the discussion and results, it is shown that the algorithm still performs well without
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changing any of the rules compiled from the SDG model. If fluctuation is encountered

during system operation, the diagnostic algorithm degrades gracefully, instead of

suddenly. Also, we showed that helpful tradeoffs can be made in setting thresholds

to handle different robustness issues. The proposed diagnostic system is thus robust.
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Chapter 6

Conclusions and Suggestion for

Future Developments

6.1 Main Conclusions

The new ideas and studies reported in this thesis encapsulate the contribution to

creating an enhanced SDG qualitative model based approach for fault detection and

diagnosis. The thesis objective is to develop an effective computer-aided on-line fault

diagnosis technique in order to keep the system performance as close as possible

to the optimal. A systematic design procedure for constructing a rule based fault

diagnostic system using SDGs is proposed and implemented. The whole procedure is

demonstrated by application to the JCSTR model, and the simulation results show

that the algorithm is efficient and robust.

Unlike quantitative approaches, which require a rigorous process model and extensive

measurement to collect process data for parameter estimation, qualitative approaches

based on signed digraphs (SDGs) can clearly express qualitative relationships between
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variables, and only a minimum of process data is required to perform a quick diagnosis.

The biggest drawback of the SDG based approach is the loss of diagnosis resolution,

because of its qualitative nature.

A large number of articles in the literature focus on different ways of modifying the

SDG model to improve the ability of search, however in this thesis efforts have been

made firstly on enumerating precisely all possible qualitative states of all the measured

variables through propagating the original SDG model, both for initial and ultimate

response, and secondly on using process knowledge to good advantage, so that the

diagnostic resolution has been increased significantly.

Taking advantage of both initial and ultimate response patterns for fault isolation

makes early fault diagnosis possible and isolation more accurate. The concept of

initial response has been adopted by other authors; however, because of the precise

propagation of the pattern in this research, the advantage of initial response has been

exploited as widely as possible.

This research proposed a new way to understand PI control loops in an SDG, and to

propagate initial response patterns of control loops that is simple but efficient. Using

process knowledge to isolate sensor faults and disturbances of controlled variables

has also been done in this thesis for the first time, increasing diagnosis resolution

significantly.

New results were also obtained in the identification of compensatory variables (CVs)

and inverse variables (IVs). Although the necessary conditions are clearly stated

regarding these two kinds of variables, they are not sufficient. Process knowledge and

analysis is needed to obtain correct results. If the system has many controllers or

IVs and CVs, the work load and the size of the possible pattern base corresponding

to each states will seem to be large, however, with additional process knowledge,

the number of patterns can be reduced significantly, since generally compensatory
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variables arrive at steady state with only certain patterns.

The shortcoming of the algorithm comes from the use of process knowledge. Process

information is used during the propagation and building the quantitative rule base;

this makes the algorithm much more case specific. For each case we have to develop

the corresponding knowledge base based on system study.

The algorithm proposed in this thesis is a good fault diagnosis and isolation approach,

however it has limited capabilities for fault detection during transients or fluctuating

operation, so combining another fault detection technique with this SDG based FDI

approach may make it more effective.

6.2 Suggestions for Future Work

Research of this scale is obviously insufficient to cover every aspect of the topic. This

work has left much opportunity for further development.

This algorithm was only thoroughly tested and shown effective in steady state; only

a small effort was focussed on transient operation. Future work should pay more

attention to transient FDI.

When abnormal variables are in the neighborhood of the designed thresholds, SDGs

have difficulty providing accurate resolution. This thesis has not done a comprehen-

sive study of this aspect. However, the diagnostic algorithm proposed here is based

on a set of logic rules, which can be combined with other rules pertaining to plant op-

erations in an expert system. In principle, the expert systems approach is amenable

to the use of fuzzy logic, which may help address the problem of alarm threshold

sensitivity [9].

The effects of time delay and large time constants were not considered in this thesis.
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The algorithm proposed here could solve some problems related to time delay and

differences in time constant, if they are not extreme; however, when the time constants

are very different, the patterns taken from the same time sample may be wrong for

use as patterns in the rule base. This could be solved, at least partly, by calculation of

the relative time offsets and taking measurements at different sample times to obtain

the pattern to be compared. However, this will require further work and be more

case specific.

In this thesis, the sequence and time to fire different patterns, initial and ultimate

response patterns, was not taken into consideration, this is yet another future area

for research. For large systems, one fault’s initial response pattern may be the same

with other ultimate response pattern, so it is necessary to set up a time sequence,

first looking at initial response patterns, later on looking at final patterns.

Further research also should be done on large flow sheet systems. The bigger the

system, the more variables, and the more complicated it is to isolate faults correctly.

Though the system could still be analyzed, the size and complexity of this job may

be enormous.
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Appendix A

SDG Concepts

The following definitions are given for the purpose of understanding graph theory and

SDG analysis. They are taken from the literature [5], [9], [10] and [21].

Truth Table:The SDG propagation rule or qualitative manipulation used in this

thesis is shown in the following table provided in Figure A-1. In the truth table, the

A

B B A

1 0 -1 1 0 -1

1

0

-1

T F F F F T

F T F F T F

F F T T F F

A B

Figure A-1: Truth Table for Qualitative Simulation

letter T (TRUE) corresponds to a consistent branch according to the measurement

pattern of the initial and terminal nodes. The above truth table does not consider

time delay and/or disturbance damping on the branch. For example, suppose that

the initial node A take value of ‘+’ or ‘-’, if we consider time delay or time lag, then

the terminal node B may deviate from the normal value or remain unchanged. How-

ever, under this truth table, all of the variables will have either positive or negative

deviation. A normal A(A = 0) or normal B(B = 0) implies fault does not propagate

through the branch.

Directed Path: A directed path from node A to node B in a digraph is an alternating
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sequence of nodes and directed arcs of the digraph such that the first and last nodes

in the sequence are nodes A and B, respectively.

Consistent Branch: the initial node and the terminal node match the sign on the

arc according to the qualitative manipulation.

Strongly Connected Component (SCC): A subset of a digraph is called a

strongly connected component if every node of the subset can be reached from every

other node of this subset.

Maximum Strongly Connected Component (MSCC): A node or SCC with no

input arcs. An MSCC is sometimes also called a root node.

The complement subsystem to an acyclic path in the SDG is the subgraph that

is obtained if all nodes in the acyclic path (including initial and terminal nodes) are

eliminated.

The complement subsystem to a cycle path in a subgraph of the SDG is the

subgraph obtained if all nodes in the cycle are eliminated from the original subgraph.

Initial Response: The initial response of a system variables is its first nonzero

response. The initial response of the entire system is its response at the smallest time

by which all of the system variables have shown their initial response. It is also called

the first change in some place. There may be more than one possible initial response.

Final or ultimate response: A reachable state where each node with an unambigu-

ous net influence has the same sign as the influence. There may be multiple possible

final responses.

Inverse Response (IR): the final sign of a variable is opposite from the initial

direction of deviation of the variable.

Compensatory Response (CR): the variable returns to its nominal steady-state

value after an initial deviation.

Inverse Variables (IVs) and Compensatory Variables (CVs): are defined as

variables that exhibit IR or CR to a particular disturbance due to negative feedback.

Arc length in the SDG of a DAE System are determined as follows: The arcs in the

DE part of the SDG have length 1 and the arcs in the AE part of the SDG have arc

length 0 because of the instantaneous response behaviors [21].

Shortest path(s): Shortest path(s) from an exogenous variable (el) to a system
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variable (xj) is the directed path with the smallest number of arcs length among all

of the directed paths from el to xj.

Pattern: If a fault happens, there are deviations in process variables, and the set of

all the symptoms caused by a fault is the pattern of this fault.
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Appendix B

Necessary Conditions for CVs and

IVs

As first proposed by Oyeleye and Kramer [10], generally, (1) inverse variables (IVs)

and compensatory variables (CVs) are located inside an SCC on a negative feedback

cycle.

Necessary conditions for an IR variable are, (2) The complementary subsystem to at

least one of the acyclic paths from the disturbance variable to the IV should contain a

positive cycle (or self-cycle). (3) The complementary subsystem to the positive cycle

in one of the complimentary subsystems in condition (2) should not violate conditions

4a, 4b, or 5 discussed below.

Necessary and Sufficient Conditions for a CR variables are, (4) The complementary

subsystems to all acyclic paths from the disturbance variable to the CV should each

(a) have at least one zero self-cycle (integrator); and (b) not have a cycle containing all

of the variables in the subsystem. (5) The complementary subsystems to all nonzero

cycles (excluding self-cycles) in each complimentary subsystem in condition 4 should

each satisfy conditions 4a, 4b, and 5.
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Appendix C

Simulation Results for Robustness

Tests

C.1 Simulation Results for Transient Operation

FDI results for the ten faults happening in the transient period are shown in Figures

C-1 to C-5.
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Figure C-1: FDI Results for Fault Happening in a Transient
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Figure C-2: FDI Results for Fault Happening in a Transient
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Figure C-3: FDI Results for Fault Happening in a Transient
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Figure C-4: FDI Results for Fault Happening in a Transient

86



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

6

7

8

= High in initial state
= High in final state
= Low in initial state
= Low in final state
= No fault
= False alarm

I
v

O
v

T
s

V
s

T
ji

T
i

F
i

Time (hrs)

FDI result

(a) Ov(-) Fault

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

6

7

8

= High in initial state
= High in final state
= Low in initial state
= Low in final state
= No fault
= False alarm

I
v

O
v

T
s

V
s

T
ji

T
i

F
i

Time (hrs)

FDI result

(b) Iv(-) Fault

Figure C-5: FDI Results for Fault Happening in a Transient

C.2 Simulation Results for Operation Point Vari-

ations

Figures C-6 to C-9 show the other nine faults’ workable region. The meanings of the

symbols in these figures are: “o”, FDI result is correct and fast, less than one hour;

“∇”, FDI result is correct but late, more than one hour and less than two hours; “x”,

FDI was not possible, or very late, or only several points (less than 3) are shown.
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Figure C-6: FDI Work Region
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Figure C-7: FDI Work Region
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Figure C-8: FDI Work Region
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Figure C-9: FDI Work Region
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C.3 Simulation Result for Operation Fluctuation

For case A, FDI results are given in Figures C-10 to C-14. For case B, FDI results

are given in Figures C-15 to C-19. For case C, FDI results are given in Figures C-20

to C-24. For case D, FDI results are given in Figures C-25 to C-29.
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Figure C-10: FDI Results for System with Fluctuation, Case A
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Figure C-11: FDI Results for System with Fluctuation, Case A
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Figure C-12: FDI Results for System with Fluctuation, Case A
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Figure C-13: FDI Results for System with Fluctuation, Case A
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Figure C-14: FDI Results for System with Fluctuation, Case A

90



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

6

7

8

= High in initial state
= High in final state
= Low in initial state
= Low in final state
= No fault
= False alarm

I
v

O
v

T
s

V
s

T
ji

T
i

F
i

Time (hrs)

FDI result

(a) Fault Fi High

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

6

7

8

= High in initial state
= High in final state
= Low in initial state
= Low in final state
= No fault
= False alarm

I
v

O
v

T
s

V
s

T
ji

T
i

F
i

Time (hrs)

FDI result

(b) Fault Fi Low

Figure C-15: FDI Results for System with Fluctuation, Case B
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Figure C-16: FDI Results for System with Fluctuation, Case B
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Figure C-17: FDI Results for System with Fluctuation, Case B
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Figure C-18: FDI Results for System with Fluctuation, Case B
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Figure C-19: FDI Results for System with Fluctuation, Case B
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Figure C-20: FDI Results for System with Fluctuation, Case C
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Figure C-21: FDI Results for System with Fluctuation, Case C

93



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

6

7

8

= High in initial state
= High in final state
= Low in initial state
= Low in final state
= No fault
= False alarm

I
v

O
v

T
s

V
s

T
ji

T
i

F
i

Time (hrs)

FDI result

(a) Fault Tji High

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

6

7

8

= High in initial state
= High in final state
= Low in initial state
= Low in final state
= No fault
= False alarm

I
v

O
v

T
s

V
s

T
ji

T
i

F
i

Time (hrs)

FDI result

(b) Fault Tji Low

Figure C-22: FDI Results for System with Fluctuation, Case C
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Figure C-23: FDI Results for System with Fluctuation, Case C
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Figure C-24: FDI Results for System with Fluctuation, Case C
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Figure C-25: FDI Results for System with Fluctuation, Case D
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Figure C-26: FDI Results for System with Fluctuation, Case D
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Figure C-27: FDI Results for System with Fluctuation, Case D
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Figure C-28: FDI Results for System with Fluctuation, Case D
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Figure C-29: FDI Results for System with Fluctuation, Case D
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Appendix D

Matlab Code for Simulation

The FDI algorithm for JCSTR model is listed here. The JCSTR model is used the
one supplied by Atalla Sayda [28].

% function [P_x] = cstrfdi;

%---------------------------------------------%

%---------- Main Script ---------------------%

%---------------------------------------------%

% Step test for Model 1 - CSTR Heater

% Created by John Hedengren

% And modified by Atalla Sayda,

% UNB on May 20, 2004; August 17, 2007

clc; clear all; close all;

global Fault Disturbance t0_fault tf_fault global Vset Tset

% Initial Conditions of States

Fault = ’No Fault’; Disturbance = ’No Disturbance’; Tss

=33.5824+273; Tjss = 104.2784 + 273; Vss = 180; Finss = 0.1; Foutss

= 0.1; Fjinss = 0.15; Tinss = 10 + 273; Tjinss = 120 + 273;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% Volume and Temperature Setpoint Modification %%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% To change the setpoints of the volume and temperature,

% Just assign dTset and/or dVset

% to whatever percent change you want to simulate.

% You may use either negative or positive values

% For example, I would assign dTset = + 0.2

% to step up the temperature by 20%.

dTset = 0.0; dVset = 0.0;

% Mixture temperature setpoint (k)

Tset = (1.0 + dTset)*33.5824 + 273;

% Mixture volume setpoint (m^3)

Vset = (1.0 + dVset)*Vss;

% Initial conditions

x0 = [0;Vss;0;Tss;Tjss];

% Simulation time span (sec)

t0 = 0; tf = 5*3600;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Disturbances & Faults %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% Introduction of fault scenario into the system %%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% In order to apply a fault scenario in the closed loop system,

% Uncomment one fault at a time.

% You may want to modify tfault to change the

%time of fault application into the system.

% tfualt should be less or equal to the final time of

%the simulation (tfault <= tf "final time of thesimulation").

% Fault application end time (sec)

t0_fault = 1.5*3600; tf_fault = 5*3600;

% Disturbance = (’Low Mix Inflow’);

% Disturbance = (’High Mix Inflow’);

% Disturbance = (’Low Inlet Temp’);

% Disturbance = (’High Inlet Temp’);

% Disturbance = (’Low Heating Fluid Temp’);
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% Disturbance = (’High Heating Fluid Temp’);

% Fault = (’Faulty Temp Sensor’);

Fault = (’Faulty Volume Sensor’);

% Fault = (’Faulty Outflow Valve’);

% Fault = (’Faulty Heating Fluid Inflow Valve’);

% Nonlinear ODE Solution

[t_non,x_non,sys_non] = eufix1y(’closnoncstr’, t0, tf, x0, 10);

sys_non(1,:) = [Foutss, Fjinss, Finss, Tinss, Tjinss, Vss, Tss,

Tjss];

x_non = x_non(1:25:1801,:); t_non = t_non(:,1:25:1801); sys_non =

sys_non(1:25:1801,:);

% Nonlinear Model Results

Fout_non = sys_non(:,1); Fjin_non = sys_non(:,2); V_non =

sys_non(:,6); T_non = sys_non(:,7) - 273; Tj_non = sys_non(:,8) -

273;

P_non = [V_non,Fout_non,T_non,Tj_non,Fjin_non];

Finsense = sys_non(:,3); Tinsense = sys_non(:,4); Tjinsense =

sys_non(:,5);

% Normal values

Fout_nom = 0.1; Fjin_nom = 0.15; V_nom = 180; T_nom = 33.5824;

Tj_nom = 104.2784;

% % caculating deviation delta = (fault-normal)/(0.002*normal)

V_delt = V_non-V_nom; L_dev = length(V_non); for j=1:L_dev if

abs(V_delt(j)) < 0.001

V_delt(j) = 0;

end end V_dev = V_delt/(0.002*V_nom); for i=1:L_dev if V_dev(i) >= 1

V_x(i) = +1;

elseif V_dev(i) <=-1

V_x(i) = -1;

else

V_x(i) = 0;

end end Fout_delt = Fout_non-Fout_nom; for j=1:L_dev if

abs(Fout_delt(j)) < 0.001

Fout_delt(j) = 0;

end end Fout_dev = Fout_delt/(0.002*Fout_nom); for i=1:L_dev if

Fout_dev(i) >= 1
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Fout_x(i) = +1;

elseif Fout_dev(i) <=-1

Fout_x(i) = -1;

else

Fout_x(i) = 0;

end end T_delt = T_non-T_nom; for j=1:L_dev if abs(T_delt(j)) <

0.001

T_delt(j) = 0;

end end T_dev = T_delt/(0.002*T_nom); for i=1:L_dev if T_dev(i) >= 1

T_x(i) = +1;

elseif T_dev(i) <=-1

T_x(i) = -1;

else

T_x(i) = 0;

end end Tj_delt = Tj_non-Tj_nom; for j=1:L_dev if abs(Tj_delt(j)) <

0.001

Tj_delt(j) = 0;

end end Tj_dev = Tj_delt/(0.002*Tj_nom); for i=1:L_dev if Tj_dev(i)

>= 1

Tj_x(i) = +1;

elseif Tj_dev(i) <=-1

Tj_x(i) = -1;

else

Tj_x(i) = 0;

end end Fjin_delt = Fjin_non-Fjin_nom; for j=1:L_dev if

abs(Fjin_delt(j)) < 0.001

Fjin_delt(j) = 0;

end end Fjin_dev = Fjin_delt/(0.002*Fjin_nom); for i=1:L_dev if

Fjin_dev(i) >= 1

Fjin_x(i) = +1;

elseif Fjin_dev(i) <=-1

Fjin_x(i) = -1;

else

Fjin_x(i) = 0;

end end

% fault pattern

P_delt = [V_delt,Fout_delt,T_delt,Tj_delt,Fjin_delt]; P_x =

[V_x;Fout_x;T_x;Tj_x;Fjin_x];

%identify fault
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L = length(t_non);

figure(1) for i= 1:L if P_x(:,i)==[0;0;0;0;0]

plot(t_non(i)/3600,0,’o’),k=i;

hold on

end end hold on for i=k:k+1 if P_x(:,i)==[1;1;-1;1;1]

plot(t_non(i)/3600,7,’+’)

elseif P_x(:,i)==[0;1;0;1;1]

plot(t_non(i)/3600,7,’^’)

elseif P_x(:,i)==[1;1;0;1;1]

plot(t_non(i)/3600,7,’^’)

elseif P_x(:,i)==[0;1;-1;1;1]

plot(t_non(i)/3600,7,’^’)

end %% high mix inflow

if P_x(:,i)==[-1;-1;1;-1;-1]

plot(t_non(i)/3600,7,’x’),

elseif P_x(:,i)==[0;-1;0;-1;-1]

plot(t_non(i)/3600,7,’v’)

elseif P_x(:,i)==[-1;-1;0;-1;-1]

plot(t_non(i)/3600,7,’v’)

elseif P_x(:,i)==[0;-1;1;-1;-1]

plot(t_non(i)/3600,7,’v’)

end %% low mix inflow

if P_x(:,i)==[0;0;+1;-1;-1]

plot(t_non(i)/3600,6,’+’)

elseif P_x(:,i)==[0;0;0;-1;-1]

plot(t_non(i)/3600,6,’^’)

end %% high Inlet Temp

if P_x(:,i)==[0;0;-1;1;1]

plot(t_non(i)/3600,6,’x’)

elseif P_x(:,i)==[0;0;0;1;1]

plot(t_non(i)/3600,6,’v’)

end %% Low Inlet Temp

if P_x(:,i)==[0;0;1;1;-1]

plot(t_non(i)/3600,5,’+’)

elseif P_x(:,i)==[0;0;0;0;-1]

plot(t_non(i)/3600,5,’^’)

end %% High Heating Fluid Temp
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if P_x(:,i)==[0;0;-1;-1;1]

plot(t_non(i)/3600,5,’x’)

elseif P_x(:,i)==[0;0;0;0;1]

plot(t_non(i)/3600,5,’v’)

end %% Low Heating Fluid Temp

if P_x(:,i)==[-1;-1;1;-1;-1]

plot(t_non(i)/3600,4,’x’)

elseif P_x(:,i)==[-1;-1;0;-1;-1]

plot(t_non(i)/3600,4,’v’)

elseif P_x(:,i)==[0;-1;1;-1;-1]

plot(t_non(i)/3600,4,’v’)

elseif P_x(:,i)==[0;-1;0;-1;-1]

plot(t_non(i)/3600,4,’v’)

% elseif P_x(:,i)==[0;0;0;-1;-1]

% plot(t_non(i)/3600,4,’v’)

end %% Faulty Volume Sensor

if P_x(:,i)==[0;0;-1;1;1]

plot(t_non(i)/3600,3,’x’)

elseif P_x(:,i)==[0;0;0;1;1]

plot(t_non(i)/3600,3,’v’)

end %% Faulty Temp Sensor

if P_x(:,i)==[+1;-1;1;-1;-1]

plot(t_non(i)/3600,2,’x’)

elseif P_x(:,i)==[+1;-1;0;-1;-1]

plot(t_non(i)/3600,2,’v’)

end %% Faulty Outflow Valve

if P_x(:,i)==[0;0;-1;-1;-1]

plot(t_non(i)/3600,1,’x’)

end %% Faulty Heating Fluid Inflow Valve

hold on end end hold on

for i=k+2:L if P_x(:,i)==[1;1;-1;1;1]

plot(t_non(i)/3600,7,’+’)

elseif P_x(:,i)==[0;1;0;1;1]

plot(t_non(i)/3600,7,’^’)

elseif P_x(:,i)==[1;1;0;1;1]

plot(t_non(i)/3600,7,’^’)

elseif P_x(:,i)==[0;1;-1;1;1]

plot(t_non(i)/3600,7,’^’)
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end %% high mix inflow

if V_delt(k+1) > V_delt(k+2)

if P_x(:,i)==[-1;-1;1;-1;-1]

plot(t_non(i)/3600,7,’x’),

elseif P_x(:,i)==[0;-1;0;-1;-1]

plot(t_non(i)/3600,7,’v’)

elseif P_x(:,i)==[-1;-1;0;-1;-1]

plot(t_non(i)/3600,7,’v’)

elseif P_x(:,i)==[0;-1;1;-1;-1]

plot(t_non(i)/3600,7,’v’)

end %% low mix inflow

end if V_delt(k+1) == V_delt(k+2)

if P_x(:,i)==[0;0;+1;-1;-1]

plot(t_non(i)/3600,6,’+’)

elseif P_x(:,i)==[0;0;0;-1;-1]

plot(t_non(i)/3600,6,’^’)

end %% high Inlet Temp

end

if T_delt(k+1) > T_delt(k+2)

if P_x(:,i)==[0;0;-1;1;1]

plot(t_non(i)/3600,6,’x’)

elseif P_x(:,i)==[0;0;0;1;1]

plot(t_non(i)/3600,6,’v’)

end %% Low Inlet Temp

end

if P_x(:,i)==[0;0;1;1;-1]

plot(t_non(i)/3600,5,’+’)

elseif P_x(:,i)==[0;0;0;0;-1]

plot(t_non(i)/3600,5,’^’)

% elseif P_x(:,i)==[0;0;+1;-1;-1]

% plot(t_non(i)/3600,5,’*’)

% elseif P_x(:,i)==[0;0;0;-1;-1]

% plot(t_non(i)/3600,5,’^’)

end %% High Heating Fluid Temp

if P_x(:,i)==[0;0;-1;-1;1]

plot(t_non(i)/3600,5,’x’)

elseif P_x(:,i)==[0;0;0;0;1]

plot(t_non(i)/3600,5,’v’)
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end %% Low Heating Fluid Temp

if V_delt(k+1) < V_delt(k+2)

if P_x(:,i)==[-1;-1;1;-1;-1]

plot(t_non(i)/3600,4,’x’)

elseif P_x(:,i)==[-1;-1;0;-1;-1]

plot(t_non(i)/3600,4,’v’)

elseif P_x(:,i)==[0;-1;1;-1;-1]

plot(t_non(i)/3600,4,’v’)

elseif P_x(:,i)==[0;-1;0;-1;-1]

plot(t_non(i)/3600,4,’v’)

% elseif P_x(:,i)==[0;0;0;-1;-1]

% plot(t_non(i)/3600,4,’v’)

end %% Faulty Volume Sensor

end

if T_delt(k+1) < T_delt(k+2)

if P_x(:,i)==[0;0;-1;1;1]

plot(t_non(i)/3600,3,’x’)

elseif P_x(:,i)==[0;0;0;1;1]

plot(t_non(i)/3600,3,’v’)

end %% Faulty Temp Sensor

end

if P_x(:,i)==[+1;-1;1;-1;-1]

plot(t_non(i)/3600,2,’x’)

elseif P_x(:,i)==[+1;-1;0;-1;-1]

plot(t_non(i)/3600,2,’v’)

end %% Faulty Outflow Valve

if P_x(:,i)==[0;0;-1;-1;-1]

plot(t_non(i)/3600,1,’x’)

end %% Faulty Heating Fluid Inflow Valve

hold on end end hold on,

text(0.1,1,’I_v’),text(0.1,2,’O_v’),text(0.1,3,’T_s’),

text(0.1,4,’V_s’),text(0.1,5,’T_{ji}’),

text(0.1,6,’T_i’),text(0.1,7,’F_i’),

% plot(2.5,2.4,’+’); text(2.6,2.4,’= High in initial state’),

% plot(2.5,2,’^’);text(2.6,2,’= High in final state’),

% plot(2.5,1.6,’x’); text(2.6,1.6,’= Low in initial state’),

% plot(2.5,1.2,’v’);text(2.6,1.2,’= Low in final state’),

% plot(2.5,0.8,’o’);text(2.6,0.8,’= No fault’),
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plot(2.5,7,’+’); text(2.6,7,’= High in initial state’),

plot(2.5,6.6,’^’);text(2.6,6.6,’= High in final state’),

plot(2.5,6.2,’x’); text(2.6,6.2,’= Low in initial state’),

plot(2.5,5.8,’v’);text(2.6,5.8,’= Low in final state’),

plot(2.5,5.4,’o’);text(2.6,5.4,’= No fault’),

axis([0,t_non(L)/3600,-1,8]); xlabel(’Time (hrs)’); title(’FDI

result’,’fontsize’, 12);

% Plot the results

figure(2);

subplot(3,2,1)

plot(t_non/3600,Vset*ones(size(t_non)),t_non/3600,V_non,’-+’); grid;

title(’Measured volume and its setpoint (m^{3})’);

subplot(3,2,2); plot(t_non/3600, Fout_non*1000,’-+’); grid;

title(’Mix outflow (i.e., manipulated variable u1) (l/s)’);

subplot(3,2,3);

plot(t_non/3600,Tset*ones(size(t_non))-273,t_non/3600,T_non,’-+’);

grid; title(’Measured mix temperature and its setpoint ( ^{o}C)’);

subplot(3,2,4); plot(t_non/3600,Tj_non,’-+’); grid; title(’heating

fluid temperature ( ^{o}C)’);

subplot(3,2,5); plot(t_non/3600, Fjin_non*1000,’-+’); grid;

title(’heating fluid inflow (i.e., manipulated variable u2) (l/s)’);

%-----------------------------------------------------%

%------------- CSTR Nonlinear Model --------------%

%-----------------------------------------------------%

function [xdot,sys] = closnoncstr(t,x)

global Fault Disturbance t0_fault tf_fault global Vset Tset

%%%%%%%%%%%%%%%%

%% Parameters %%

%%%%%%%%%%%%%%%%
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% Diameter of the reactor (m)

Dr = 5;

% Reactor Height (m)

Hr = 2*Dr;

% Reactor volume (m^3)

Vr = (pi / 2)*(Dr^3);

% Area for heat transfer (m^2)

A = (9/4)*pi*(Dr^2);

% Heat capacity (j/kg.K)

Cp = 4.1868 *1000;

% Mixture inflow 1.5 ft^3/s (m^3/s)

Fin = 0.1;

% Mixture Outflow 1.5 ft^3/s (m^3/s)

Foutss= 0.1;

% Mixture Volume 180 (m^3)

V = x(2);

% Density (kg/m^3)

rho = 997.95;

% Temperature of the mixture feed (K)

Tin = 10 + 273;

% Temperature of the mixture (K)

% Tss = 34.7602 C

T = x(4);

% Heating water inflow 2 ft^3/s (m^3/s)

Fjinss = 0.15;

% Heating water Outflow 2 ft^3/s (m^3/s)

Fjout = 0.15;

% Heating water Volume (m^3)

Vj = 9;

% Temperature of the heating water feed (K)

Tjin = 120 + 273;

% Temperature of the heating water (K)

% Tjss = 103.4932 C

Tj = x(5);

% Heat Transfer coefficient (W/m^2.K)

U = 851.74;

% Temp proportional gain

Kpt = 0.033114;

% Temp integral gain

Kit = 4.5929e-005;

% Volume proportional gain

Kpv = 0.0024;

% Volume integral gain
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Kiv = 1.4621e-006;

% Actuators flags

K1 = 1; K2 = 1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Disturbances & Faults %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if ((t >= t0_fault) & (t <= tf_fault)),

switch Fault

case (’Faulty Temp Sensor’),

T = 0.8 * x(4) + 0.2 * 273;

% Temp sensor fault flag

case (’Faulty Volume Sensor’),

V = 0.8 * x(2);

% Volume sensor fault flag

case (’Faulty Outflow Valve’),

K1 = 0;

% Faulty outflow actuator (i.e. stuck valve)

Foutss = 0.08;

case (’Faulty Heating Fluid Inflow Valve’),

K2 = 0;

% Faulty coolant inflow actuator (i.e. stuck valve)

Fjinss = 0.12;

end

switch Disturbance

case (’Low Mix Inflow’),

Fin = 0.1 * 0.8; % Low mix inflow

case (’High Mix Inflow’),

Fin = 0.1 * 1.2; % High mix inflow *****

case (’Low Inlet Temp’),

Tin = 10 * 0.8 + 273;

% Low inlet temperature *****

case (’High Inlet Temp’),

Tin = 10 * 1.2 + 273; % High inlet temperature

case (’Low Heating Fluid Temp’),

Tjin = 120 * 0.8 + 273; % Low coolant temperature

case (’High Heating Fluid Temp’),

Tjin = 120 * 1.2 + 273; % High coolant temperature

end

end

%%%%%%%%%%%%%%%%
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%% ODE %%

%%%%%%%%%%%%%%%%

xdot(1,1) = V - Vset; Fout = Foutss + K1*(Kpv*xdot(1,1) + Kiv *

x(1,1)); if (Fout <= 0.0), Fout = 0.0; end if (Fout >= 0.15), Fout =

0.15; end if (Fin <= 0.0), Fin = 0.0; end if (Fin >= 0.15), Fin =

0.15; end xdot(2,1) = (Fin - Fout); if ((x(2) <= 0.001) & (xdot(2,1)

< 0.0)),

xdot(2,1) = 0.0;

elseif ((x(2) >= 220.0) & (xdot(2,1) > 0.0)),

xdot(2,1) = 0.0;

end xdot(3,1) = Tset - T; Fjin = Fjinss + K2*(Kpt*xdot(3,1) +

Kit*x(3,1)); if (Fjin <= 0.0), Fjin = 0.0; end if (Fjin >= 0.3),

Fjin = 0.3; end A = (pi*(Dr^2)/4) + (4*(x(2))/Dr); xdot(4,1) =

((Fin*(Tin - x(4))/x(2)) + (U*A*(Tj-x(4))/(x(2)*rho*Cp))); xdot(5,1)

= (Fjin*(Tjin - Tj)/Vj) - (U*A*(Tj-x(4))/(Vj*rho*Cp)); sys = [Fout;

Fjin; Fin; Tin; Tjin; V; T; Tj];

function [tout, yout, sysout] = eufix1(dyfun, t0, tf, y0, step,

trace)

%EUFIX1 Solve ordinary state-vector differential

%equations, low order method.

%EUFIX1 integrates a set of ODEs ydot = f(y,t) using the most

%elementary Euler algorithm, without step-size control.

%

%CALL:

%[t, y] = eufix1(’dyfun’, t0, tf, y0, step, trace)

%

%INPUT:

%dyfun - String containing name

%of user-supplied problem description.

%Call: ydot = model(t,y) coded in fname.m => dyfun = ’fname’.

%t - Time (scalar).

%y - Solution column-vector.

%ydot - Returned derivative column-vector; ydot = dy/dt.

%t0 - Initial value of t.

%tf - Final value of t.

%y0 - Initial value column-vector.

%step - The specified integration step. (Default: step = 1.e-2).

%trace - If nonzero, each step is printed. (Default: trace = 0).

%

%OUTPUT:

%t - Returned integration time points (row-vector).
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%y - Returned solution, one column-vector per tout-value.

%

%Display result by: plot(t, y) or plot(t, y(:,2)).

% Initialization

if nargin < 5, step = 1.e-2; end %% default step if not supplied

if nargin < 6, trace = 0; end %% disable trace if not requested

if tf < t0, error(’tf < t0!’);

return; end %% check for glaring error

t = t0;

h = step;

y = y0(:);

k = 1;

tout(k) = t;

yout(k,:) = y.’;

if trace

clc, t, h, y

end

% The main loop

while (t < tf)

if t + h > tf, h = tf - t; end

% Compute the derivative

[dy,sys] = feval(dyfun, t, y);

dy = dy(:); sys=sys(:);

% Update the solution (with no check on error)

t = t + h;

y = y + h*dy;

k = k+1;

tout(k) = t;

yout(k,:) = y.’;

sysout(k,:) = sys.’;

if trace

home, t, h, y, dy

end

end

if (t < tf) % if true, something bad happened!

disp(’Singularity or modeling error likely.’)

t

end

% ... here is the output (tout in row vector form)

tout = tout(1:k);
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yout = yout(1:k,:);

sysout = sysout(1:k,:);

Code for robust test of JCSTR model. Only changes shows here.

%%changes made in main fdi code

%identify fault, changed with original one

L = length(t_non);

%%fault detection

% k=0;

% for i= 1:30

% sum = abs(P_x(1,i))+abs(P_x(2,i))+

%abs(P_x(3,i))+abs(P_x(4,i))+abs(P_x(5,i));

% if sum <2

% k=k+1;

% end

% end

k=22;

%%changes made in CSTR Nonlinear Model

function [xdot,sys] = closnoncstr1(t,x)

% dTset = 0.02*sin(2*pi*t/(3600*10));

% dVset = 0;

dTset = 0;

dVset = 0.05*sin(2*pi*t/(3600*10));

% Mixture temperature setpoint (k)

Tset = (1.0 + dTset)*33.5824 + 273;

% Mixture volume setpoint (m^3)

Vset = (1.0 + dVset)*180;
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