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Abstract

The classic way to control a process, in a model based framework, is to obtain a

model of the system and then to use it for the design of a controller. A nonlinear time-

varying process can be operated in real-time by an indirect adaptive controller. Part of this

thesis is devoted to describing the particular structure of such a controller and applying

it to a pulp bleaching process. We present and discuss all aspects of controlling a real-

world delay time system application, the pulp bleaching process at Irving Paper Ltd. The

bleaching process was thoroughly studied, and models identified offline as a single-input

single-output process then extended to a multivariable process. Then online identification

methods were used, and the process was accurately modeled as a first order system plus a

variable delay time. This is a difficult process to control, since the delay time varies with

pulp flow into and out of the bleaching vessel.

Another major part of the thesis focuses on improving the controller performance by

solving the variable delay time problem using a novel a Smart Delay Time Predictor ap-

proach and a recursive least squares (RLS) model identifier. This new approach is an

extension of the variable delay time estimator technique based on time-variable flow pro-

cesses. The present work has improved the approach proposed by Sayda and Taylor [6]

in one important respect: the time delay prediction method presented here eliminates the

adverse transients occurring in case of the uncertainty in the variable time delay, i.e., it

removes transient spikes due to miscalculation of the forced response inside the controller.

The efficacy and robustness of this technique is demonstrated by controlling the pulp

bleaching process using an indirect adaptive model predictive control (MPC) algorithm

with an RLS identifier and a variable delay time predictor embedded in that controller.

This algorithm produces control moves that account for good reference tracking in the

presence of disturbances and actuators constraint. Further, a filter is added to the RLS

parameter estimator to tackle the problem of small spikes occurring in the input and the

output of that controller.
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We extended the online identification methods to identify the pulp bleaching process

when dealing with it as a multivariate system. Such a model would be used as the basis

for multivariable control. However, the poor quality of the resulting model precluded that

work.
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Chapter 1

The Mechanical Pulp Bleaching

Process

1.1 Introduction

Pulp is the principle raw material for making paper. Paper is made from fibers, and

approximately 93% of this fiber coming from wood. Wood comes from two major groups of

trees: (i) conifers, more commonly called softwood, make up to 35% of the trees worldwide,

(ii) hardwood, which are trees with broad leaves, make up the remaining 65%.

Pulp mills convert the wood chips to pulp. Pulp is the fibrous material produced

chemically, mechanically or through a combination of chemical and mechanical means from

wood or other cellulose raw material. Pulp mixtures or “furnish” comes from four sources:

(i) hardwood pulp (ii) softwood pulp (iii) market pulp, which is the pulp purchased from

other mills, and (iv) brook, which is the waste from paper machines that is re-pulped for

re-use.

Pulping is a process by which a wood or non wood material is reduced to a fibrous mass.

The task can be accomplished by a mechanical means, chemical means or a combination

of the two treatments. Currently in North America, 70% of all pulping is chemical. In

mechanical pulping, wood fibers are separated by mechanical abrasion and water. The

wood is forced against a rotating disc or stone which literally shreds the wood into fibers.

The fibers are then washed from the stone or passed out of the refiner. The resulting slurry

is screened, cleaned and thickened [1]. Generally, chemical pulp can be bleached whiter

than other pulp and will form a stronger paper, but it has a lower yield, requiring more

wood. Mechanical pulp is usually not bleached because of the high residual lignin, which
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forms the bond that holds fibers together, but it may be brightened. Mechanical pulp is

generally weaker, but it requires less wood due to the high yield. Mechanical pulp is still

used for paper that require high level of yield, bulk, stiffness and low cost such as newsprint

and catalog papers.

1.2 Principles and practices of pulp bleaching

Bleaching is a chemical process applied to cellulosic materials to increase their brightness.

Brightness is the reflectance of visible light from cellulose cloth or pulp fibers formed into

sheets. Absorbance of visible light by wood pulp fibers is caused mainly by the presence

of lignin, one of the principal constituents of wood. Lignin in live wood is colored slightly,

while residual lignin remaining after an alkaline pulping process, discussed later, is highly

colored. In addition, lignin darkens with age. Bleaching processes increase brightness by

lignin removal or lignin decolorization. In the manufacture of mechanical pulp and chemi-

mechanical pulp, wood is broken down into fibers with little or no lignin removal and the

bleaching of pulp takes place by decolorization. Lignin removal bleaching not only increases

the brightness but the brightness stability of the product as well. The pulp is first cooked

in a digester. Then the brown stock is washed to remove the black liquor. This stock

is screened to remove unwanted particles, including bark and shive, which are fragments

of fibrous materials present in pulp or paper, resulting from incomplete resolution during

pulping. Finally the stock is cleaned to remove additional unwanted material.

Chemicals commonly used for pulp bleaching include oxidants (chlorine, chlorine diox-

ide, oxygen, ozone and hydrogen peroxide) and alkali (NaOH), and, for mechanical pulp

only, a reducing agent, sodium hydrosulfite. Hydrogen peroxide is commonly used as a

bleaching agent, and is simply called “peroxide”. These chemicals are mixed with pulp

suspensions and the mixture is retained at a prescribed pH, temperature and concentra-

tion for a specific minimum period of time.

Progress of bleaching is monitored by measuring pulp brightness and residual chemicals.

Several methods for measuring the brightness have been developed and used as standards.

ISO brightness can be defined as the brightness of paper measured at a wavelength of 457

nanometres under standard conditions. The standard ISO scale can be expressed as “%

ISO”, for example a sodium hydrosulfite agent (HYDRO) is added if the objective is to

produce newsprint in the paper machines. This bleaching agent increases the brightness

by 4 to 5%, to accommodate the brightness requirements of the newsprint (55 to 60%
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ISO), whereas hydrogen peroxide bleaching yields better pulp from magazine grade paper

(brightness 65 to 70% ISO). A4 papers can go up to a brightness of 98% ISO. Reaction

times for bleaching chemicals are generally in the range of few minutes to several hours,

requiring construction of large towers (reactors) to provide an adequate retention time.

1.3 Flow sheets for peroxide bleaching processes

The industry standard when the brightness target does not exceeds 75% ISO is the medium

consistency single-stage peroxide bleach plant. Mechanical pulp is treated with hydrogen

peroxide as follows: First, the pulp is treated using pentasodium diethylenetriaminepen-

taacetic (DTPA), which is added to remove transitional metal ions in the pulp, and it is

washed. Conditions include agitation and at least 15 minutes retention time at tempera-

ture, ranging from at least 105 − 130 oF (40 − 54 oC). Bleach liquor is generally made

up in a cascade mixing system and applied to the pulp. Bleach liquor is a mixture of

water, sodium hydroxide, hydrogen peroxide, and sodium silicate. The objective of caustic

extraction (NaOH) is to remove the alkali-soluble portion of the lignin from the woodpulp.

Finally, a small amount of lignin binds to cellulose.

Pulp is held in a tower for at least two hours, though retention in excess of this

time is also common. In general, a peroxide residual of 5 − 10% of the amount applied

is desired. Most systems add sulfur dioxide (SO2) at the end of the bleaching process, to

prevent reversion and for pH adjustment. In summary, three steps are generally required in

preparing the bleached pulp: (a) washing the pulp, (b) heating to the desired temperature,

and (c) retention to complete the reaction. The bleach plant flowsheet is shown in figure

1.1.

1.4 Factors affecting brightness in peroxide bleaching

Raw material in mechanical pulp is almost without exception wood. Mechanical pulp is

made from both softwoods and hardwoods, all of which have different response to peroxide

bleaching. Many factors have a major effect on the bleachability of the pulp, and thus on

its desired target brightness. Let us discuss some of them and examine their effects.
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Figure 1.1: Flowsheet for single-stage peroxide bleaching plant [2]

1.4.1 Effect of initial brightness of wood (unbleached pulp)

Initial brightness is highly dependent on the wood species from which the pulp is made.

Generally, a higher initial (unbleached) brightness implies a higher bleached brightness

where equivalent amounts of bleaching chemicals are applied. Wood used for mechanical

pulp should be characterized by good strength, high brightness, absence of color and free-

dom of other operating problems. The spruces meet these requirements better than other

trees in North America and can be used in newsprint without additional brightening. Other

favorite softwood trees are hemlock, pine and balsam.

1.4.2 Effect of the pulping process on initial brightness

Mechanical pulping involves a wide diversity of processes. Most mechanical processes use

grinders and refiners to separate the wood fiber. Grinding is the oldest method, in which

wood logs are forced against a rapidly revolving roughened grindstone and converted into

individual fibres. In refining, wood chips are fed between two metal discs (at least one of

which rotates) of a refiner and converted to individual fibres. These two processes result

in significantly different pulp characteristics. Groundwood pulp has a higher content of

fine material due to the abrasive action, whereas refiner pulp has a smaller content of fine

material but a higher content of long fibers. As a result, refiner pulping produces much

4



stronger fibres than stone groundwood. Various types of refined mechanical pulp can be

obtained by modifying the refiner pulping process. Thermo-mechanical pulping (TMP)

is a modification of a refiner mechanical pulping (RMP) process. If chips are heated to

110 − 130o C before refining, they become malleable and do not fracture readily under

the impact of the refiner bars. Refining can also be performed under pressure. If the

presteaming time and temperature are limited, higher steam pressures can be used in the

refiners without reducing pulp quality. At temperatures from 100− 150 oC wet lignin

softens but does not flow. When hot chips are fiberized in a refiner at high consistency,

whole individual fibers are released. A thermo-mechanical pulping process involves three

main operation areas [3]:

1. wood chip pretreatment consists of chip screening to remove under or oversize material;

chip washing to remove rocks, metal and sand; chip steaming to soften lignin binding

the fibers so that produced pulps have a greater percentage of long fibres and less

shives.

2. wood chip refining aims at breaking chips into individual fibres.

3. pulp processing aims at enhancing and controlling pulp quality. It consists of: pulp

screening and reject refining to remove unrefined fibres bundles; pulp cleaning to

remove heavy contaminants; pulp washing to remove wood resins and metallic ions;

and pulp bleaching to increase brightness.

Figure 1.2 exhibits the effect of different pulping processes on the final pulp brightness,

where the higher the temperature of the pulping process the lower the relative bleachabil-

ity of the mechanical pulps produced from the wood species. Production of TMP pulps

increased dramatically after the process introduction in the early 70′s because they could

be substituted for ground-wood pulps (GWP) in newsprint blends to give a stronger pulp.

1.4.3 Control of H2O2 decomposition due to metal impurities

Transition metals act as catalytic decomposition agents when in contact with H2O2.

The most commonly occurring metals are manganese, iron, copper, aluminium and nickel.

The most active decomposition element is manganese. The first step in successful bleaching

is to minimize the occurrence of catalytic decomposition. Two methods are used to achieve

this goal.
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Figure 1.2: Effect of pulping processes on final pulp brightness: Stone Ground Wood

(SGW ), Pressurized Ground Wood (PGW) and ThermoMechanical Pulping (TMP)[2]

• Pretreatment of mechanical pulp with organic chelants

The purpose of pretreatment of mechanical pulp is to wash off the transition metals

present in the pulp before addition of bleach liquor. It is carried out using an organic

chelant which forms an organo-metallic complex with the free metal. Typically, DTPA

is used in this role. Pretreatment is carried out at low consistency (3-5%) and pH

(4 − 6), after refining or grinding. Two easily measured parameters are used to

determine the effect of pretreatment and define the optimal application: brightness

and H2O2 consumption which is determined by measuring the residual peroxide in

the pulp at the discharge point of the bleaching tower. The effect of DTPA is, for

example, to increase brightness by up to 3 points and reduce peroxide consumption

by 35%. The reduction in peroxide consumption can be important in situations where

bleach liquor is reclaimed at the end of the bleaching treatment and recycled to a

previous bleaching stage. Figure 1.3 shows the relation between DTPA and the pulp

brightness.

• Stabilization of peroxide bleach liquor using sodium silicate

The second approach is to add sodium silicate to the alkaline peroxide liquor. It is a

cost effective stabilizer for bleaching and produces two strong effects: it reduces H2O2

decomposition occurring during bleaching and also it improves the internal stability

of the bleach liquor solution itself. Even with inclusion of a pretreatment to eliminate

some of the metals, addition of silicate to bleach liquor leads to a higher brightness

for the same peroxide application.
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Figure 1.3: Effect of DTPA addition on pulp brightness response [2]

1.5 Primary process variables

1.5.1 Peroxide charge

Brightness response in peroxide bleaching of mechanical pulp is directly related to per-

oxide application. Increased peroxide dosage leads to increased brightness. For a given set

of bleaching conditions, there is a threshold beyond which increased peroxide dosage has

a minimal effect on brightness. Figure 1.4 presents the relation between adding peroxide

and its impact on the pulp brightness. Clearly dosage levels greater than 5% to 6% lead

to little benefit, so any excess H2O2 is wasted.

1.5.2 Total alkalinity

The most important interaction for the appropriate control of alkaline peroxide mechan-

ical pulp bleaching is that between peroxide dosage and alkalinity level. Total alkalinity is

the pulp bleaching resistance to change in pH. If the alkali charge is too low, inefficient

bleaching is likely to result. If it is high, an alkali charge may lead to pulp darkening or

yellowing. The pH of pulp slurry immediately after bleach liquor addition in the 10.5 to

12 range. If the initial pH is too high, the rate of peroxide decomposition may exceed the

rate of the bleaching reaction, thereby reducing brightness response. If the initial pH is

too low, an extended retention time or higher temperature may be required to obtain the

same brightness response. Total alkalinity is the sum of all sources of alkali (OH radical)

7



Figure 1.4: Effect of hydrogen peroxide application on pulp brightness [2]

in bleach liquor expressed in terms of sodium hydroxide

%TA = NaOH + 0.115×Na2SO3

A useful way of expressing relationship between H2O2 and TA is TA/H2O2. The optimum

TA/H2O2 ratio diminishes as H2O2 augments. This influence of the TA/H2O2 ratio on

pulp brightness is described in figure 1.5, which can be interpreted by the alkali demand

from the wood acids present in the pulp. Because this value is constant, it’s more significant

at low peroxide application than at high peroxide application.
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Figure 1.5: Influence of TA
H2O2

on pulp brightness [2]
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1.5.3 Consistency

Consistency can be defined as the percentage of bone-dry fibrous material in any com-

bination of pulp and paper or stock (pulp and additives) and water.

C =
F

W
× 100

where C is the consistency of the pulp or stock slurry in percentage, F is the total weight

of fibrous material on that amount of pulp and stock slurry, and W is the total weight of

a particular amount of pulp or stock slurry.

H2O2 bleaching can be carried out over a wide range of consistency, from 4 to 35%.

Limitations on bleaching at high consistency have been equipment related: no efficient,

commercially available dewatering systems or high consistency mixers existed before the

last 10 to 15 years. Two stage peroxide bleaching often incorporates both a medium con-

sistency (15%) stage and a high consistency (25 − 35%) stage to allow maximum liquor

recycle. From figure 1.6, at low consistency, not only does GWP require more peroxide to

achieve the same brightness, but there is a definite ceiling for the brightness response which

cannot be exceeded by further peroxide addition. However, from the shape of curves, it is

probable that an upper brightness limit will also eventually be reached under higher con-

sistency conditions. A continuous increase in the bleaching response occurs as consistency

is increased up to the 40% level. Above this level pulp handling and homogeneous chemical

mixing exceed the capabilities of available commercial equipment.

1.5.4 Time and Temperature

Of the variables affecting the brightness response of mechanical pulp, time and temper-

ature are the most closely related. An increase in bleach temperature can compensate for

a decrease in retention time, to a point. Conversely, if the bleach temperature is held be-

low 140o F (60o C) extending the retention time produces same brightness response. When

TMP is bleached at different temperatures under optimized TA conditions, two limitations

are immediately apparent as shown in figure 1.7: (i) At higher temperature, brightness

develops rapidly reaching a maximum in 30 minutes or less. (ii) Although brightness de-

velopment is more rapid at higher temperatures, final brightness is less than that achieved

with the same chemical charge at a lower temperature. The rapid decrease in brightness ob-

served for high temperatures (85o C) bleach is a result of peroxide being consumed totally

[2]. This occurs because, at higher temperature, the reaction rates for both bleaching and
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decomposition are increased. The effectiveness of transition metals control is imperative to

minimize peroxide decomposition.

Figure 1.6: Effect of consistency on pulp brightness for GWP [2]

Figure 1.7: The effect of temperature on the rate of brightness development [2]

1.6 Thesis Outline

After a review of the fundamental related to pulp and paper production and the refiner

mechanical pulp bleaching process, Chapter 2 describes methods employed to model the

process using three different offline system identification algorithms. A discussion about

how to model the bleaching tower is presented. An extensive explanation of the idea of the
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variable delay time and its calculation inside such a process is presented and illustrated.

Chapter 3 presents the idea of indirect adaptive predictive control, its advantages compared

to the classic PID controller, the application of the online identification method to model

a single-input single-output (SISO) bleaching process, its results and benefits compared

to the offline identification techniques. Chapter 4 is devoted to the description of the

model predictive controller (MPC) and its extension to be applied as an indirect adaptive

controller. Also, we explain the problem of having uncertainty of the calculation of the

variable delay time in the bleaching process, with illustrations. A novel Smart Delay

Time Predictor used to tackle the problems of adverse transients occurring in case of the

uncertainty of the variable time delay, is described and embedded in the adaptive MPC

controller. A filter is added to the online recursive least squares algorithm (RLS) parameter

estimator to eliminates small spikes appearing in the control output. A robustness study

on the controller is taken into consideration. The thesis conclusion is given in Chapter 5.

1.7 Contributions

This thesis describes the development of a useful control strategy for the control of a TMP

plant. The manipulated variables are hydrogen peroxide and sulfur dioxide. An indirect

adaptive controller is developed based on model predictive control (MPC) because of its

simplicity, flexibility and capability of handling problems in one algorithm. Problems due

to the uncertainty of the variable delay time in the bleach tower are explained and solved.

The main contributions of the thesis are as follows:

• A thorough study of the modeling of the pulp bleaching process using three offline and

online identification algorithms, with full descriptions and simulations, was conducted

yielding impressive results for modeling the pulp bleaching process. This work was a

comparison and an extension of single-input single-output and multiple-input single-

output system identification simulations employed in [6].

• A time-varying indirect adaptive predictive controller was designed, that can be ex-

ecuted online (using online identification algorithms, and model predictive control

as a controller) and applied for a single-input single-output process where hydrogen

peroxide and final pulp brightness are the process input and output respectively.

• A novel time delay prediction method is created to tackle the problem of adverse

transients occurring in case of uncertainty of the variable time delay, i.e., it elimi-
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nates spikes due to miscalculation of the time delay inside the controller; and (2) a

thorough study compared to Zenger et al [16] and illustrations of the variable time

delay calculation were exhibited. The efficacy and robustness of this technique is

demonstrated by controlling the pulp bleaching process using a model predictive con-

trol (MPC) algorithm with a variable delay time embedded in that controller. The

contributions of this method presented here include the delay time predictor that: (1)

is straightforward to implement and to use (2) corrects the uncertainty of the delay

time estimator, and (3) is reliable for a broad class of chemical processes.

• A discrete filter was embedded in the RLS parameter estimator was added to suppress

the spikes occurring in the controller input and output whenever the setpoint changes.

That yields to smooth the peroxide input dosage and the pulp brightness output

responses.
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Chapter 2

Industrial TMP Bleaching System

Identification

2.1 Introduction

Many experimental studies have been carried out on the effect of operating conditions

on the final pulp brightness in a peroxide bleaching plant. Residence time, peroxide charge,

reaction temperature, inlet pH, stock consistency and SO2 dosage are generally recognized

as the most important operating conditions. To model the peroxide bleaching process, one

needs to select a set of variables which is pertinent to the physical and chemical phenomena

taking place in the process [4].

There are two main ways to build a mathematical model of the process we are interested

in. One way is to build a model that describes relations between input, output and states

based on the physical and chemical principles describing the process. That approach could

produce a number of differential equations describing the process, called a non parametric

model. That can be very difficult due to lack of knowledge about what really is happening

inside the system, e.g., complicated flow patterns, boundary conditions near the walls of

the vessel, etc. [5]. Thus we will consider some aspects of this approach but not attempt

to complete such a model. The other way is to try to describe the connection between

input and output signals without using detailed knowledge about the system, at least

not directly, but instead building a linear “black box model” and estimate the unknown

parameters. Knowledge about the system in not disregarded, it is used in the process of

choosing the right model structure.
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2.2 TMP bleaching process mathematical model

Pulp brightness is, of course, the most important variable when discussing the bleaching

process. Changes in production rate resulting from variations in the stock flow rate and/or

stock consistency affect the residence time in the bleaching tower as well as the chemical

demand to achieve the desired brightness gain. Brightness variation of the pulp entering

the bleaching plant is a major disturbance to the operation of the plant. Pulp consistency,

temperature, chemical charge and inlet pH values determine the bleaching reaction rate.

Two categories can describe the bleaching process based on their chemical and physical

laws. The first category concerns the chemical kinetics of the bleaching reaction, the

second one deals with the dynamics of the pulp transport and mixing in the unsteady flow

system, which is composed of the bleaching tower, pipes and storage tanks [6].

2.2.1 Kinetic model

The most important aspect in modeling a bleaching tower is the knowledge of bleaching

reaction kinetics. Moldenius empirical kinetic model [7] is still a widespread one used to

depict the hydrogen peroxide bleaching of mechanical pulps and is given by the following

expression:
dK

dt
= −k

[
H2O2

]0.67 [
OH−

]−0.23
K2.2 (2.1)

where K is the chromophores concentration that should be eliminated to increase the

pulp brightness, k is the reaction constant, H2O2 is the peroxide concentration, and OH−

is the alkaline ion concentration. This equation clearly shows the importance of peroxide

concentration and the relationship between peroxide and total alkalinity (OH−). To predict

the brightness of the pulp, a relationship between the light absorption coefficient and

brightness is needed. The Kubelka −Munk equation [8] provides a relationship between

the absorption coefficient K, the scattering coefficient S, and the brightness R.

R = 1 +
K

S
−

[
2K
S

+
(

R
S

)2
] 1

2

(2.2)

The brightness is calculated from the light absorption and light scattering coefficients using

the above equation.
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2.2.2 Bleach tower model

In order to model the dynamics of a bleaching tower, it is necessary to know the flow

pattern of the pulp stock inside the tower. The flow pattern not only determines the

residence time distribution of the reacting materials but also controls the effectiveness of

the bleaching reaction. Most of mechanical pulp bleaching plants using hydrogen peroxide

operate at 20% consistency or higher, as was previously described in section 1.5.3, since

higher consistency increases brightening capability. Aside from a little mixing at the inlet

and outlet of the retention tower, the pulp stock is nearly in a state of plug flow inside

the tower. The retention tower can be represented by a Continuous Stirred Tank Reactor

(CSTR) followed by a Plug Flow Reactor (PFR) and, then, by a second CSTR. The first

CSTR can be used to depict the chemical bleaching reaction that takes place in the mixer.

In general, we neglect this mixing part of the tower, because the brightness sensor cannot

capture its fast time constant response when measuring the output pulp brightness. The

plug flow is due to the assumption that the the bleached pulp is assumed to flow inside the

tower with no mixing. The second CSTR is due to the mixing the pulp with sulfur dioxide

(SO2) at the bottom of the tower. Qian and Tessier proved from their simulation results

in [4] that the dynamics of the bleached pulp inside the tower can be represented as a delay

time dynamics (plug flow) followed by a first order lag dynamics (mixing part). Their

simulations also confirm that the sensitivity of the final pulp brightness to the chemical

charges is the dominant control variable, and to the initial pulp brightness is the most

important disturbance.

2.3 TMP bleaching process system identification

System identification is the field of modeling dynamic systems from experimental data;

a model is fitted to the collected data from the real process by assigning suitable numerical

values to its parameters [10]. Once the parameters are estimated, the model is validated

to recognize if it is an appropriate representation of the process. If not, then another

approach or a more complex model structure must be pondered. The system is driven by

input variables u(t) and disturbances v(t). The user can control u(t) but not v(t). The

output signals are variables which provide useful information about the system. There are

many different ways to identify systems. One broad distinction is between online and offline

methods. The online methods give estimates recursively as the measurements are obtained

and are the only alternative if the identification is going to be used in an adaptive controller
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or if the process is time varying. In many cases the offline methods for simple processes

as identifying DC motors give estimates with higher precision and are more reliable, for

instance in terms of convergence.

One of the advantages in using system identification is that only basic quantitative

knowledge of the process mechanism is required to find a suitable structure for modeling

the process input-output relationships. Also, using system identification, dynamic modeling

can be realized more easily and in less time than using the mathematical analysis where

the development of complex differential equation may be required. Furthermore, some

methods do not require special input signals, whereas many “classic methods”, discussed

in section 2.3.1 to section 2.3.3, depend strongly on having the input of a precise form, e.g.,

steps, sinusoids or impulses. Other techniques can handle any type of input signal. One

requirement of the input signal is that it should excite all modes of the process sufficiently;

aside from that, a good identification method should be insensitive to the characteristics of

the input signal [12]. The objective of the industrial pulp bleaching system identification

is to find some form of mathematical model suitable for the control of a plant, which

describes how the input, the output and the disturbances are related. We consider in our

plant study the hydrogen peroxide (H2O2) and sulfur dioxide (SO2) dosages as the inputs

to the system. The final pulp brightness and the pulp pH are taken as the outputs of the

system. We start our approach adopted in this study by using simple offline identification

methods as follows:

2.3.1 Least-Squares Method

A popular identification method used is the well known least-squares method which can be

traced back to Gauss (1809), who used such a technique for calculating orbits of the planets

[10, 11]. The basic idea is to minimize the sum of the squares of the error between the

observation and its estimate computed as a function of the past observations. The linear

regression is the simplest type of parametric model. In the general least-squares problem, it

is assumed that “the computed variables”, ŷ, in Gauss terminology is given by the model:

ŷ = θ1ϕ1(x) + θ2ϕ2(x) + . . . + θnϕn(x) (2.3)

where ϕ1, ϕ2, . . . , ϕn are elements of an n-vector of known quantities defining the model

structure, and θ1, θ2, . . . , θn comprise an n-vector of unknown parameters. Pairs of obser-

vations {(xi, yi), i = 1, 2, . . . , N} are obtained from an experiment. The elements of the

vector ϕ(x) are often called regression variables or regressors while ŷ is called the regressed
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variable. We will call θ the parameter vector. The problem is to determine the parameters

in such a way that the variables ŷi computed from the model (2.3) and the experimental

values xi agree as closely as possible with the measured variables (experimental data) yi.

The principle of least-squares says that the parameters should be selected in such a way

that the loss function

J(θ) =
1

2

N∑

i=1

e2
i

is minimal where

ei = yi − ŷi = yi − θ1ϕ1(xi)− . . .− θnϕn(xi) i = 1, 2, . . . , N

To simplify the calculations, the following vector notations are introduced:

ϕ = [ϕ1 ϕ2 . . . ϕn]

θ = [θ1 θ2 . . . θn]T

y = [y1 y2 . . . yN ]T

e = [e1 e2 . . . eN ]T

Φ =




ϕ(x1)

.

.

.

ϕ(xN)




In the statistical literature the equation errors are often called residuals. The least-squares

estimates of θ is defined as the vector that minimizes the loss function J which can be

written as

J(θ) =
1

2
eT e =

1

2
‖e‖2 (2.4)

where

e = y − ŷ (2.5)

and

ŷ = Φθ (2.6)

According to equation (2.5) the equation error e(t) is a linear function of the parameter

vector θ. The parameter θ in such a way that ‖e‖2 is minimal can be determined as follows

[12]:

θ = θ̂ = (ΦT Φ)−1ΦT y (2.7)

if ΦT Φ is nonsingular.
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Figure 2.1 exhibits data of incremental variables recorded during 2176 minutes from

Irving Paper mill, where the pulp brightness (right trace) increased sharply after a delay

time of about 425 minutes, which is the time the pulp took to be bleached inside the

bleaching tower, after increasing the peroxide dosage at about 550 minutes (top left trace),

and sulfur dioxide SO2 after 960 minutes (bottom left trace), to destroy the peroxide residual

and to reduce the pH of the pulp to between 4 and 5. From these recorded data, the
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Figure 2.1: Input data (H2O2 and SO2) and output data (pulp brightness)

bleaching process model can be represented as a three stage dynamic process [4, 5]:

• A pure gain K represents the linearized bleaching reaction kinetics, since the reaction

is complete when the pulp exits the bleaching tower.

• A long variable delay time Td results from the plug flow pattern of the bleaching

tower.

• A first order dynamics with a time constant τ due to the SO2 mixing process at the

bottom of the tower.

Based on these assumptions, the model structure is defined by ϕ = [−y(k) u(k)]. We

start by removing the trends in the data (if needed), eliminating the delay time difference

between the hydrogen peroxide input and the pulp brightness output, then estimating the
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process parameters (i.e. gain and time constant) using system identification methods. Sim-

ulation results in figure 2.2 show the model identification using the least-squares method.

Let us denote the inputs as U1 and U2, whereas the pulp brightness output is called as Y1.
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Figure 2.2: Least Squares algorithm for SISO and MISO system models

Two cases are considered: the first case (dashed line) deals with the process as a single-

input single output (SISO) model, where the peroxide dosage is the input and the final

pulp brightness is the output. The result is not entirely accurate due to the noisy data,

existence of disturbances and not taking SO2 effect into account. The gain K equals 8.936

and the time constant is 25 minutes, whereas the delay time is 425 minutes. The transfer

function is formed as:

Y1 = 8.936e−425s

25s+1 U1

The second case (dotted line) deals with the process as a multiple-input single output

(MISO) model, where SO2 is the second input variable affecting the identification model.

The time constant of the simulated brightness matches closely the actual one of the process,

which is in the vicinity of 18 minutes. The H2O2 gain equals 1.175 whereas SO2 gain is
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9.53, yielding to the following MISO transfer function

Y1 =
[

1.175
18s+1 9.53

]



e−425sU1

U2




The simulation result is much better compared to the first case, as it captures the effect

of the secondary dynamics due to the adding of the SO2 dosage to the pulp brightness.

Let us use another type of data as in figure 2.3 which shows the multiple-inputs multiple-

outputs (MIMO) of the pulp bleaching process. we consider the manipulated variables

as the hydrogen peroxide H2O2 and the sulfur dioxide SO2. The controlled variables are

scrutinized as the pulp brightness output and the pH. We consider the following transfer

0 500 1000 1500 2000 2500
0.5

1

1.5

2

2.5

H
2
O

2

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

SO
2

0 500 1000 1500 2000 2500
64

66

68

70

72

74
Brightness

0 500 1000 1500 2000 2500
2.5

3

3.5

4

4.5

5
pH 

Figure 2.3: Data for a MIMO process

function model, which will be suitable to identify those data, where U1 and U2 are H2O2

and SO2 respectively, whereas Y1 and Y2 are the pulp brightness and pH respectively:

 Y1

Y2


 =




K1

τs+1
−K2

K3 K4





 e−sTdtU1

U2




The model identification results are shown in figures 2.4 and 2.5 This analysis produced

the following MIMO transfer function:



Y1

Y2


 =




4.0272
12.797s+1 −8.848

−0.873 −3.9875







e−440sU1

U2



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Figure 2.4: Least Squares identification for MISO model on the pulp brightness

Figure 2.4 depicts good results for the identification of the pulp brightness, whereas we can

observe from the figure 2.5 that the pH identification is not as accurate. That is due to

not taking the effect of NaOH into account while identifying the process. Thus, using the

multivariable model to control the process may yield to inaccurate results. So, in chapter

4, we will focus more on controlling a single-input single-output process rather than a

multivariable one.

2.3.2 Equation Error Model Structure

The next simplest input-output relationship is obtained by describing the process model

as a linear difference equation in both the inputs and outputs:

y(t)+a1y(t−T )+. . .+anay(t−naT ) = b1u(t−nkT )+. . .+bnbu(t−(nb+nk)T )+e(t) (2.8)

where k is the number of delay time samples. Since the white noise e(t) here enters as

a direct error in the difference equation, the model (2.8) is often called an equation error

model (structure). We can introduce:

A(q) = 1 + a1q
−1 + . . . + anaq

−na

and

B(q) = b1q
−1 + . . . + bnbq

−nb
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Figure 2.5: Least Squares identification for MISO model on pH

where q is the delay operator in the z-transform notation. Equation (2.8) can be written

as follows:

A(q)y(t) = B(q)u(t− nk) + e(t) (2.9)

The parameters of the ARX model structure are estimated using the least-squares method.

We shall also call the model (2.9) an ARX model, where AR refers to the autoregressive

part A(q)y(t) and X to the extra input B(q)u(t − nk) (called the exogenous variable in

econometrics). When the true noise term e(t) in the ARX model structure is not white

noise and na is nonzero, the estimate does not give a correct model. That suggests the use

of a more complex model: ARMAX model.

2.3.3 ARMAX Model Structure

The basic disadvantage of equation (2.9) is that lack of adequate freedom in describing

the properties of the disturbance term. We could add flexibility to that by describing the

equation error as a moving average of white noise. This gives the model:

A(q)y(t) = B(q)u(t− nk) + C(q)e(t) (2.10)

with

C(q) = 1 + c1q
−1 + . . . + cncq

−nc
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The parameters of the ARMAX model structure are estimated using a prediction error

method. In view of the moving average (MA) part C(q)e(t), this model will be called

ARMAX.

Results and comments

Figure 2.6 illustrates the ARX and ARMAX identification methods for a SISO model.

We computed the output ymodel that results when the model is simulated with the input

u. The result is plotted together with the corresponding measured pulp brightness output

data (ydata). The percentage of the output variation that is explained by the model

fit = 100× (1− 1− ‖ymodel − ydata‖
‖ydata −mean(ydata)‖) (2.11)

is also computed and displayed. The fit for the ARX model (model m1) using a first order

dynamic model equals 73.24, whereas the fit for the ARMAX model (m2) is 71.68. The fit

in both models are almost similar but are still not high and accurate because of not taking

the effect of the second input of the process (SO2) into consideration.

Figure 2.7 illustrates the ARX and ARMAX identification methods for a MISO model,
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Figure 2.6: ARX and ARMAX models for a SISO system model

where the fit for a first order dynamic ARX model (model m1) equals to 83.05, whereas

the fit for the ARMAX model (model m2) is 82.13. The model in this case fit better than

the previous one in figure 2.6 which shows the importance of adding the SO2 as a second

input to the bleaching process.
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Figure 2.7: ARX and ARMAX models for a SISO system model

2.3.4 Offline system identification Conclusion

Simulation results in the previous three offline identification methods show the effectiveness

of using such methods to identify a complex process such as the pulp bleaching process

where using the system identification toolbox to identify the process as ARX and ARMAX

models have proven to be successful for time-varying long delay time processes as long as we

eliminate the delay time samples from the identified data. MIMO least-squares algorithm

yields to significant results. As a conclusion, offline identification should be compared to

other online identification methods while dealing with adaptive control systems which needs

online identification algorithms to deal with online time-varying processes. Those methods

will be discussed in chapter 3.

2.4 Delay time estimation

2.4.1 Introduction

A traditional modeling technique for a unit operation is to describe the process as a

combination of basic idealized models such as perfect mixers and plug flow vessels. The

dynamics of a continuous flow process is dependent on the mass flow rate. The time

constant of the process is determined by the flow rate through the vessel, the liquid volume
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in it and the degree of mixing. In traditional design, the process is usually assumed to

be in a nominal operation point so that the flow rates and volumes are constant, but

this assumption is generally not valid. Because of disturbances and intentional changes in

the pulp production and utilization rates, the flow rate through the process is not always

constant.

One may model a plug flow vessel, through which the process material is assumed to

flow without any mixing occurring, as a pure time delay. The concentration of the solute at

the outlet of the vessel is the same as at the inlet a certain time ago [13]. Under steady flow

conditions, the delay time can be calculated by dividing the volume in the vessel by the

flow rate. We define the residence time of the feed material as the time between entering

at the input of the flow system to exiting at the output. The bleaching tower, which is

the main contributing element in the continuous flow system of the bleaching process, can

be represented by a by a plug flow reactor followed by a continuous stirred tank reactor.

The division of the residence time into two parts is motivated by a simple model of a flow

system. The plug flow of a system is modeled as a transportation part e−sTd , and the part

where the material is mixed is modeled as a first-order lag 1
1+sτ

.

2.4.2 Delay time estimation literature

In chemical reaction engineering, the concept of residence time distribution (RTD) is

fundamental to reactor design. RTD is the exit age distribution of fluid molecules leaving

a reactor. The classical residence time distribution covers only the case of stationary

operating conditions, i.e., the flow rate through the system and the liquid volume in the

system are constant. However, there is a strong practical need to consider processes under

unsteady operating conditions also, because of disturbances and intentional changes in the

process operation. To consider such systems with time-varying behavior brings the classical

RTD theory beyond its scope, and extensions to the theory are needed [14].

The volume and flow through vessels and tanks, or more generally the quantities influ-

encing the dynamics of the continuous flow system, are time varying and this in fact is an

additional difficulty in the identification procedure. For example, the flow in an industrial

process is subjected to changes both for random reasons, such as disturbances of various

kinds, and intentionally, when the production and/or utilization is increased or decreased.

Similarly, the volume changes in a buffer vessel, and the purpose is to control the flow

variations.
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2.5 Estimation of the delay time based on inflow

Zenger [15, 16] introduced the concept of a variable delay function, which can be used

to estimate the delay time even though the flows and volume are varying. Models with

varying liquid volumes are more complex than those with varying flow rates only, and it

is often impossible to find a transformation that would change the representation into one

with constant coefficients. Consider the case of a plug flow vessel, in which both the input

and output flow rates and the liquid volume change. The model equations are:

V̇ (t) = Qi(t)−Qo(t) (2.12)
∫ t

t−Td(t)
Qi(τ)dτ = V (t) (2.13)

where Qi(t) and Qo(t) are the inflow and outflow rates in liters per minute, V (t) is the

liquid volume in the plug flow vessel, and Td(t) in equation (2.13) can be understood as

the past time when material exiting the vessel entered, i.e., the present delay time. We can

justify equation (2.13) as follows:

1. It is the property of an ideal plug flow vessel that during the time that a particle

stays in the vessel, the volume V (t) of new liquid must enter, V (t) being the total

liquid volume at the time that the particle leaves the vessel.

2. all old material must have left the vessel when the observed particle is at the outlet

of the vessel.

3. When the original particle is at the bottom of the tank, we want to know t1 which

is t − Td(t), which is the time at which this particle has entered the vessel; thus we

consider Qi(t) in this case.

An illustration of the previous explanation is shown in figure 2.5, where to stands for the

initial time the particle entered the vessel, whereas tf is the time the particle leaves the

vessel. By differentiating equation (2.13) it is easy to derive:

d

dt

[ ∫ t
t−Td(t) Qi(τ)dτ

]
=

d

dt
V (t)

Then

Qi(t)−Qi(t− Td(t)) ∗ (1− Ṫd(t)) = V̇ (t)

From equation (2.12): Qi(t) = Qo(t) + V̇ (t)

Qo(t) + V̇ (t)−Qi(t− Td(t)) ∗ (1− Ṫd(t)) = V̇ (t)
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Figure 2.8: Estimation of the delay time based on the inflow

So

1− Ṫd(t) =
Qo(t)

Qi(t− Td(t))

Ṫd(t) = 1− Qo(t)

Qi(t− Td(t))
(2.14)

Zenger proposed [16] solving equation (2.14) to determine the delay time numerically. This

problem has one deficiency, namely, we cannot predict exactly the delay time initial condi-

tion to solve this differential equation. That yields to inaccurate results in the calculation

of the delay time.

2.6 Prediction of the delay time based on the outflow

As shown in equation (2.13), we can estimate Td(t) by integrating the pulp inflow backward

in time until that integral equals the present volume. Alternatively, we can also predict the

variable delay time Tdp(t) by integrating the pulp outflow forward in time until the integral

equals the present volume. This is expressed as follows:

∫ t+Tdp(t)

t
Qo(τ)dτ = V (t) (2.15)

where V (t) and t + Tdp(t) are respectively the present volume and the predicted time at

the instant t. Equation (2.15) can be understood as the definition of the “predicted delay
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time” as follows: If a new particle enters at time t and V (t) is the corresponding volume

in the vessel, then Tdp(t) corresponds to that future time when a volume of liquid V (t) has

exited the vessel. However, predicting the pulp outflow Qo(t) is difficult for the following

reason: the paper-making operators would have to specify their future need for pulp, which

is not practical. An algorithm can be realized to determine the delay time either backward

as in equation (2.13) or forward as in equation (2.15) as follows:

1. Store the pulp inflow (liters/minute) and bleaching tower level (meters) over a time

interval equal to the maximum retention time of the tower, with a sampling time h

equal to 1 minute.

2. Calculate the pulp volume in the tower which equals the level of the pulp times the

cross section area of the tower.

Backward delay time estimation (equation (2.13))

3. Measure the volume at time t and set a counter k = t− h.

4. Integrate the inflow backward from k to t.

5. If the integration results equal to the volume at time t then stop and Td(t) = t − k,

else set k = k − h and goto step 4.

Forward delay time prediction (equation(2.15))

6. Measure the volume at time t and set a counter k = t + h.

7. Assume future outflow and integrate it forward from t to k.

8. If the integration result equals to the volume at time t then stop and Tdp(t) = k − t,

else set k = k + h and goto step 8.

Either algorithm can be used for identifying the bleaching process delay time using offline

data, but it will cause some problems while using it for the real-time control, since Tdp

and thus the future outflow is required but difficult to predict. Those problems will be

discussed in chapter 4. Figures 2.9 and 2.11 show the volume and the pulp inflow for two

data sets obtained from Irving Paper. Figures 2.10 and 2.12 exhibit the pulp inflow and

both the estimated and the offline predicted delay time for two data sets.
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2.7 Conclusion

The purpose of the chapter was to compare the effectiveness of either using bleaching

process mathematical model or system identification to model such a process. Due to

the complexity of the this process, system identification was proposed and the system

was modeled as first order system plus a variable delay time. Three offline identification

techniques were described and simulated yielding to moderate results in the SISO model

and significant one in case of the MIMO model. The estimated and predicted variable

delay time, based on the pulp inflow and outflow respectively, were presented, illustrated

and calculated separately out of the identification algorithm.
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Figure 2.9: Volume and inflow of the first data set
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Figure 2.10: Estimated and predicted delay time, first data set
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Figure 2.11: Volume and inflow of the second data set
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Figure 2.12: Estimated and predicted delay time, second data set
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Chapter 3

Indirect Adaptive Predictive Control

3.1 Introduction

Broadly speaking, process control refers to mechanisms for automatically maintaining

the conditions of a mechanical, chemical, or electrical process at specific levels and to

neutralize random disturbances caused by external forces. A process can be virtually any

collection of objects or material with measurable and modifiable characteristics such as, a

car traveling at a certain speed, or a power line transmitting electricity at a certain voltage.

The conditions or state of a process are generally measured in terms of continuous process

variables, such as flow rates, temperatures, and pressures that can change at any time. In a

basic process control system, a sensor measures a process variable, a computer decides how

to correct the error between the actual and desired values, and an actuator such as a valve

or a motor carries out the controller’s decision to force the process variable to follow the

desired trajectory. The resulting change is then remeasured by the sensor and the whole

sequence of operations repeats in an ongoing feedback or closed loop.

3.2 Terminology

Many authors use different terms for the same concepts. For example, the process

variable is also known as the controlled variable since it is the object of the controller’s

effort. But since that quantity is resulting from other physical phenomena involved in the

process, it is sometimes described as the process output. The signal that the controller

sends to the actuator is sometimes called the controller output or the process input the

actuators in turn apply it to the process. Other authors refer to it as the control effort, the
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corrective action, or the manipulated variable since it represents the quantity manipulated

directly by the controller. The desired value that the controller endeavors to reach for a

special process variable is almost universally known as the setpoint, while it is occasionally

called the reference value. The procedure that the controller employs to determine its

next control effort is diversely referred to as the control law, the control algorithm, or the

control equation. In the same vein, an actuator that implements the controller’s decision

is sometimes called the final control element. If the control law is an algebraic equation, it

almost always includes several coefficients that can be set by the designer to prescribe how

hard the controller is required to work at eliminating the error between the process variable

and the setpoint. These controller parameters can be adjusted to match the controller’s

performance specification (e.g., risetime, percent overshoot). This operation is accordingly

known as tuning, and the adjustable parameters are frequently called tuning parameters or

tuning constants.

For example, the basic proportional controller uses a percentage of the past error as the

next control effort, assuming that a larger error needs a larger control effort (and similarly

for small errors). Exactly what gain the controller should use to multiply with the error

to compute the control effort is a matter of tuning. A higher gain would be appropriate

for a sluggish process, whereas a lower gain would be necessary to prevent over-correcting

a process that is more sensitive to the controller’s effort [17].

3.3 Adaptive control

In every language, “to adapt” means to change a behavior to confirm to new circum-

stances. Intuitively, an adaptive controller is thus a controller that can modify its behavior

in response to changes in the dynamics of the process and the character of the distur-

bances. Since ordinary feedback also attempts to reduce the effects of disturbances and

plant uncertainty, the question of the difference between feedback control and adaptive

control arises.

In practice there are many different sources of variation, and they are usually due to

a mixture of different phenomena. The underlying reasons for the variation are in most

cases not fully understood. When the physics of the process is reasonably well known

(as for airplanes), it is possible to determine suitable controller parameters for different

operating conditions by linearizing the models and using some methods for control design.

This is the common way to design autopilots for airplanes, and this approach is usually
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not considered to be adaptive control. Most industrial processes are very complex and not

well understood; it is neither possible nor economical to make a thorough investigation of

the causes of the process variations and account for them as in flight control. Adaptive

controllers can be a good alternative in such cases [23].

An adaptive controller is “a controller with adjustable parameters and a mechanism

to adjust the parameters” [21, 23]. It can tune its own parameters or otherwise modify

its own control laws so as to accommodate fundamental changes in the behavior of the

process [17]. The controller is inherently nonlinear because of the parameter adjustment

mechanism.

3.3.1 Problems with Traditional PID Control

Non-adaptive controllers are generally “good enough” for most industrial process control

applications. The universal proportional-integral-derivative controller or PID loop is espe-

cially simple and easy to implement. And though its operations are somewhat simplistic by

the standards of modern control theory, a PID loop can be remarkably effective at keeping

the process variable close to the setpoint.

The simplicity of the PID controller also makes it fairly easy to understand and easy

to diagnose when it fails to perform as desired. Tuning a PID controller is a relatively

straightforward operation that can be accomplished with a few empirical tests that have

remained essentially unchanged since the 1940s (Ziegler and Nichols, 1942 [18]). There is

also a variety of well-developed techniques for extending the effectiveness of PID loops in

more challenging applications such as gain scheduling for setpoint dependent processes and

the Smith Predictor for deadtime-dominant processes [19].

However, even with these enhancements a PID controller leaves considerable room

for improvement. Once tuned, it can only control the process if its behavior remains

unchanged. If the behavior of the process changes appreciably after start up, the controller

may no longer be able to compensate the error when a load disturbs the process variable

or a setpoint changes. If the mismatch between the process behavior and the controller’s

original tuning becomes severe, the closed-loop system may even become unstable as the

controller alternately overcorrects, then undercorrects the error until a failure occurs.

The traditional way to cope with time-varying process behavior is to manually retune

the loop whenever its performance degrades. That may work if the variation is slow, but
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repeatedly tuning and retuning a loop can be tedious and time consuming, especially if the

process takes hours to respond to a tuning test, which is the case in a TMP bleaching tower.

Tuning rules also require at least some training to apply properly, so many PID controllers

end up poorly tuned when implemented by inexperienced operators. In extreme cases,

plant operators will deactivate a poorly tuned controller when a disturbance occurs, then

reactivate it once they have dealt with the disturbance manually. That strategy defeats

the very purpose of feedback control.

3.3.2 Advantage of adaptive control

Convenience is one of the most compelling reasons to replace PID loops with adaptive

controllers. A controller that can continuously adapt itself to the current behavior of

the process relieves the need for manual tuning both at startup and thereafter. In some

cases, manual retuning may not even be possible if the behavior of the process changes

too frequently, too rapidly, or too much. A setpoint-dependent or nonlinear process can be

particularly difficult to control with a fixed parameter controller since it reacts differently

to the controller’s efforts depending on the current value of the setpoint. A pH process, for

example, becomes more efficient near the required level, yielding to less use of bleaching

chemicals to achieve a given change in the pH. It is possible to equip a traditional controller

with a different set of tuning parameters for each possible value of the setpoint (a strategy

known as gain scheduling), but each parameter set has to be manually adjusted. An

adaptive controller can perform that chore automatically.

Self tuning control has been used for many applications since the mid-1970′s, mainly in

the process industry. Applications are found in the areas of pulp and paper, as explained in

the thesis, chemical reactors and autopilots. Self-tuning regulators and adaptive controllers

in general have found their main uses in three categories of applications: (i) processes with

long delay times, (ii) processes where feedforward can be used, and (iii) processes with

dynamics and/or disturbances which have time-varying characteristics. The main reason

why self-tuning and adaptive control have great superiority in those cases is that in order

to achieve good control of those types of processes it is crucial to have models of the process

to be controlled and/or the disturbances. The estimator part of the self-tuning controller

can produce an estimate of the process and disturbances and use that information in the

design.

An adaptive controller, being inherently nonlinear, is more complicated than a fixed-
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gain controller in the case of normal feedback control. Before attempting to use adaptive

control, it is therefore important to investigate whether the control problem might be solved

by constant-gain feedback. In the literature on adaptive control there are many cases in

which constant-gain feedback can do as well as an adaptive controller. One way to proceed

in deciding whether adaptive control should be used in sketched in figure 3.1. For more

details about adaptive controllers, the reader can refer to [20, 21, 22, 23, 24].

Process dynamics


 varying
 constant


Use a controller with

varying parameters


Use a controller with

constant parameters


Use gain scheduling

Use an adaptive


controller


    P
redictable

    variations


Unpredictable

variations


Figure 3.1: Procedure to decide what type of controller to use [23]

The basic ideas and components of self-tuning regulators, or more generally adaptive

controllers, are discussed as follows: The design of a controller contains several parallel

steps:

1. Generating specifications for the closed-loop system

2. Determining a model for the process to be controlled

3. Deciding on a design method

4. Calculating the parameters of the controller

An adaptive control system can be thought as having two loops. The inner loop consists

the process and an ordinary feedback controller. The parameters of the controller are

adjusted by the outer loop, which is composed of a recursive parameter estimator and

a design evaluator. Notice that the system may be viewed as an automation of process
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modeling and design, in which the process model and the control design are updated at

each sampling period. The updating loop for the controller parameters can be switched

off as soon as the estimated parameters have converged to their final values, i.e., when

the controller has tuned or adjusted itself to the specifications of the process. The result

is a self-tuning regulator. However, if the process is changing over time it is necessary to

continuously update the process parameters and the controller parameters. We then have

an adaptive controller. This implies that a self-tuning regulator is an adaptive controller if

the parameter updating is not switched off. Self-tuning regulators are thus a special class

of adaptive controllers. Figure 3.2 depicts an indirect self-tuning regulator or an indirect

adaptive controller depending on the parameter update strategy. Its structure and blocks

are described below.

Figure 3.2: Indirect self-tuning regulator [23].

• Estimation

Estimation can be performed continuously or on a regular or irregular basis, depend-

ing on the process and requirements. In digital implementations, which are most

common, different sampling rates can be used for the controller and the estimator.

It is also possible to use hybrid systems in which control is performed continuously

and the parameters are updated discretely. Parameter estimation can be done in

many ways as will be discussed in the next section and also in the appendix: Recur-

sive Least Squares (RLS), Least Mean Squares (LMS), and Normalized Least Mean

Squares (NLMS) algorithms. The system shown in figure 3.2 is thus a very rich

structure. A straight forward approach is to estimate the parameters of the transfer

function of the process. This gives an indirect adaptive algorithm. The controller
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parameters are not updated directly, but rather indirectly via the estimation of the

model of the process.

• Controller Design

This block represents an online solution to a design problem for a system with known

parameters. This is the underlying design problem. Such a problem can be associated

with most adaptive control schemes, but it is often given indirectly. To evaluate

adaptive control schemes, it is often useful to find the underlying design problem,

because it will give the characteristics of the system under the ideal conditions when

the parameters are known exactly.

• Controller

This block is an implementation of the controller whose parameters are obtained

from the control design. The model predictive control (MPC) scheme (explained

in chapter 4) is very flexible with respect to the choice of the underlying design and

estimation methods. Many different combinations have been explored. The controller

parameters are updated indirectly via the design calculations in the indirect self-

tuning control shown in figure 3.2 [23].

3.4 Online System Identification Algorithms

3.4.1 Introduction

Fluid-dynamic systems are inherently nonlinear and are subject to a combination of

coherent and random unsteady disturbances. As a result, accurate low-order dynamic

models are difficult to obtain for real-time control of such systems. Also, in many least-

squares methods it is assumed that all data samples are already recorded, which is not

convenient for online modeling. That was already discussed in chapter 2. Therefore,

controllers implementing adaptive online system identification are ideally suited to flow

control problems. In online identification the algorithms must run continuously as new

measurement data is flowing in. Two points are of interest: the first one is how to develop

a recursive form of the least squares estimation algorithm. The second is how to give more

weight to the “new” data. Recursive Least Squares (RLS) algorithm will be discussed and

applied to identify the time-varying pulp bleaching process where the parameter vector is

updated every time a new data sample is measured [25]. Least Mean Squares (LMS) and

Normalized Least Mean Squares (NLMS) algorithms will be discussed in the appendix.
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3.4.2 Recursive Least Squares algorithm

In least-squares estimation, unknown parameters of a linear model are chosen in such a

way that the sum of the squares of the difference between the actually observed and the

computed values is a minimum. The form of the model is:

y(t) = −a1y(t− 1)− a2y(t− 2)− . . .− any(t− n) + b0u(t) + . . . + bmu(t−m) (3.1)

which can be written in terms of the regression vector

φT (t) =
[
−y(t− 1)− y(t− 2) . . .− y(t− n) u(t) . . . u(t−m)

]
(3.2)

and the parameter vector

θ(t) =
[

a1 a2 . . . an b0 . . . bn

]
(3.3)

as

y(t) = φT (t)θ (3.4)

This translates into finding the parameters that minimizes the following loss function

V (θ, n) =
1

2

n∑

i=1

(y(i)− φT (i)θ)2 (3.5)

where y(i) is the instantaneous output signal and φT (i) is the regression variable vector.

Solving for the minimizing parameters we get the closed form solution as follows [26]:

θ̂ = (
n∑

i=1

φ(i)φT (i))−1(
n∑

i=1

φ(i)y(i)) (3.6)

Most of the time we are interested in real-time parameter estimation, therefore it is

computationally more efficient if we update the estimates recursively as new data becomes

available online. The recursive form is given by [26]:

θ̂(k) = θ̂(k − 1) + L(k)(y(k)− φT (k)θ̂(k − 1)) (3.7)

where

L(k) = P (k)φ(k) = P (k − 1)φ(k)(1 + φT (k)P (k − 1)φ(k))−1 (3.8)

and

P (k) = (1− L(k)φT (k))P (k − 1) (3.9)

where P (k) is normally referred to as the covariance matrix.
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Equation (3.7) updates the estimates at each step based on the error between the

model output and the actual output. The structure is similar to most recursive estimation

schemes. In general most have similar parameter update structure and the only difference

is the update gain L(k). L(k) defines how to correct the previous estimate based on

new measurement data. The scheme can be viewed as a filter that averages the data to

come up with optimal estimates. Averaging is a good strategy if parameters of the model

are constant in nature. However, many times the parameters that we are estimating are

time-varying and we are interested in tracking the variations [26]. In the next section the

generalized RLS for time-varying parameters is discussed.

Recursive least square estimation with forgetting

If the values of the parameters of a system change abruptly, periodic resetting of the

estimation scheme can potentially capture the new values of the parameters. However, if

the parameters vary continuously but slowly a different heuristic but effective approach is

popular. That is the concept of “forgetting” in which older data is gradually discarded in

favor of more recent information. In least-squares methods, forgetting can be viewed as

giving less weight to older data and more weight to recent data. The “loss-function” is

then defined as follows:

V (θ̂, n) =
1

2

n∑

i=1

λn−i(y(i)− φT (i)θ̂)2 (3.10)

where λ is called the forgetting factor and 0 < λ < 1. It operates as a weight which

diminishes for the more remote data. The scheme is known as least-squares with exponential

forgetting and θ can be calculated recursively using the same update equation but with

L(k) and P (k) defined as follows:

L(k) = P (k − 1)φ(k)(λ + φT (k)P (k − 1)φ(k))−1 (3.11)

and

P (k) = (1− L(k)φT (k))P (k − 1)
1

λ
(3.12)

The main difference with the classical least-squares method is how the covariance matrix

P (k) is updated. In the classical RLS the covariance vanishes to zero with time, losing its

capability to keep track of changes in the parameter. In equation (3.12) however, the

covariance matrix is divided by λ < 1 at each update. This slows down fading out of the

covariance matrix. In general, exponential convergence in the constant case implies certain
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degree of tracking capability in the time varying case. Normally, λ value is usually set

between 0.95 and 1.

The RLS with forgetting has been widely used in estimation and tracking of time-

varying parameters in various fields of engineering. However, when excitation of the system

is poor this scheme can lead to the covariance“wind-up” problem. During poor excitation

old information is continuously forgotten while there is very little new dynamic information

coming in. This might lead to the exponential growth of the covariance matrix and as a

result the estimator becomes extremely sensitive and therefore susceptible to numerical and

computational errors. This problem has been investigated by many researchers in the field

and several solutions, mostly ad hoc, have been proposed to avoid covariance “wind-up”.

The idea of most of these schemes is to limit the growth of covariance matrix, for example

by introducing an upper bound. A popular scheme uses a time-varying forgetting factor

[27]. During low excitations, the forgetting factor is closer to unity to enhance the perfor-

mance of the estimator. In another approach, an on/off method along with a time-varying

forgetting factor for improved performance is used. The concept of resetting the covariance

matrix during low excitations is another possible approach.

Summary of the RLS Algorithm

1. Set k = 1 and assign a value to λ

2. Compute the filter gain with the forgetting factor λ

L(k) =
P (k − 1)φ(k)

λ + φT P (k − 1)φ(t)

3. Compute the true estimation error

e(k) = y(k)− φT θ̂(k − 1)

4. Update the estimate of the coefficient vector

θ(k) = θ(k − 1) + L(k)e(k)

5. Update the covariance matrix with the forgetting factor λ

P (k) =
1

λ
(P (k − 1)− L(k)φT (k)P (k − 1))

6. Increment k by 1 and go back to step 2
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3.5 Results and implentation comments

3.5.1 RLS estimation

Figure 2.3 in chapter 2 presented data collected for MIMO process of the pulp bleaching

process. We assumed in our case that the process is described by the single-input single

output (SISO) system where the manipulated variable is U1 = hydrogen peroxide H2O2 and

the controlled variable is Y1 = the pulp brightness output. Using the RLS algorithm, figure

3.3 depicts the first order model identification where a time delay of 440 minutes is occurring

after adding the peroxide dosage in the top of the bleaching tower, till the pulp brightness

increases. This figure shows the time domain performance for system identification using

RLS, where the plus + signal represents the actual output and the dashed one represents

the estimated output of the model. It is observed that a significant error convergence leads

almost overlapping of the two signals, with a gain of 5.1 and a time constant of 32 minutes.

The transfer function can be written as follows:

Y1 = 5.1e−440s

32s+1 U1

To validate our identification, we use the command lsim in MATLAB to simulate the

time response of the discrete linear bleaching system to the H2O2 input, using the transfer

function mentioned above. Figure 3.4 shows the validation result, where the model suc-

ceeded to track the pulp brightness increase at the right time. The identified model does

not track accurately the pulp brightness data after 1200 minutes due to fluctuations in the

brightness.

3.5.2 S-function RLS Implementation

We use a specifically structured function (S-function) of MATLAB in our simulation ex-

periments. S-function can simulate the dynamics of a system, but it is relatively difficult

to use correctly. In most basic sense, S-functions are simply MATLAB functions using a

special calling syntax that enables us to interact with Simulinks equation solvers. This in-

teraction is very similar to the interaction that takes place between the solvers and built-in

Simulink blocks. The form of an S-function is very general and can accommodate continu-
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Figure 3.3: Performance of the RLS algorithm

ous, discrete, and hybrid systems. As a result, nearly all Simulink models can be described

by S-functions. An advantage of using S-functions is that we can build a general purpose

block that we can use many times in a model, varying parameters with each instance of

the block and integrating with our own analysis and simulation routines.

The RLS estimator presented in Section 3.4.2 is simulated by using S-function under

Simulink where we initialize the covariance matrix and the forgetting factor as P (0) =

10000I (the higher the value of the covariance matrix initial condition, the more the identi-

fied model parameters tends to converge to the right values of the process paramaters) and

λ = 1 respectively. We include an S-function block defined by an M-file S-function code

into an Simulink model, and excite the plant to be estimated with a 1 Hz square wave.

Referring to the first data set in chapter 2 where the first order model has a gain of 8.936

and a time constant of 25 minutes, and converting the parameters to z-transform yields

to the transfer function model shown in figure 3.5, where the gain and the time constant

equals 0.3266 and -0.9635 respectively. Those values are almost similar to the one of the

process (gain = 0.3522 and time constant = -0.9606). We show the Simulink block diagram

in figure 3.5 and the experiment results displayed in the scopes of figure 3.6.
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3.6 Conclusion

The indirect adaptive control design and the Recursive Least squares (RLS) method for

plant estimation were discussed. Simulation studies for the estimator algorithm was mainly

undertaken after describing how to use MATLAB S-function. From the simulation, it can

be concluded that online identification algorithms work well for such a complex process.

RLS algorithm shows impressive identification models. To validate this method, the lsim

MATLAB command was used to simulate the time response of the discrete linear bleaching

system to the H2O2 input, using the identified transfer function model.
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Figure 3.5: Simulink block diagram of RLS parameter estimator
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Figure 3.6: Simulation results of the model parameters
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Chapter 4

Model Predictive Control

Model Predictive Control (MPC) refers to a class of algorithms that compute a sequence

of manipulated variable adjustments in order to optimize the future behavior of a plant.

Originally developed to meet the specialized control needs of power plants and petroleum

refineries, MPC technology can now be found in a wide variety of application areas includ-

ing chemicals, food processing, automotive, aerospace, metallurgy and pulp and paper [28].

Although modern optimal control theory provides an elegant and powerful solution to the

problem of controlling an unconstrained linear plant, it had little impact on control technol-

ogy development in the process industries. The most significant of the reasons cited for this

failure include: failing to deal with constraints, process nonlinearities, model uncertainty

(robustness), unique performance criteria and cultural reasons (people, education, etc.).

MPC was developed in the process industries in the 1960’s and 70’s, based primarily on

heuristic ideas and input-output step and impulse response models proposed by Richalet

et al in 1976 [29] and then summarized in a 1978 Automatica paper [30]. The solution

software was referred to as IDCOM, an acronym for Identification and Command. The

basic principle of MPC is to solve an open-loop optimal control problem at each time step.

The decision variables are a set of future manipulated variable moves and the objective is

to minimize deviations from a desired trajectory; constraints on manipulated, state and

output variables are naturally handled in this formulation. Feedback is handled by provid-

ing a model update at each time step, and performing the optimization again. A major

reason for the success of MPC is the relative ease with which it may be used to control

nonlinear multivariable processes with dead time. The greatest drawback is its need for an

appropriate model of the process to be available [32]. We already have dealt with such a

problem in chapter 3.
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4.1 Dynamic matrix control strategy

The MPC methodology yields satisfactory performance if it is able to satisfy the following

requirements: to guarantee stability and particularly to be robust, to be as efficient as

possible, to achieve the desired performance criteria, and to be easy to implement and

operate in real time through use of digital computers. Dynamic matrix control DMC, a

particular MPC method, is used in the pulp bleaching process due to its ease and efficiency.

Its basic strategy is as follows [32]:

4.1.1 Prediction

The process model utilized in the DMC formulation is the step response of the plant, while

the disturbance is regarded as a constant over a specified horizon Np (prediction horizon).

The discrete-time response of the plant is:

y(t) =
∞∑

i=1

gi∆u(t− i)

where gi are the sampled output values for the step response and ∆u(t) = u(t)− u(t− 1).

The predicted values along the horizon will be:

ŷ(t + k|t) =
∞∑

i=1

gi∆u(t + k − i) + n̂(t + k|t)

=
k∑

i=1

gi∆u(t + k − i) +
∞∑

i=k+1

gi∆u(t + k − i) + n̂(t + k|t) (4.1)

As regards the disturbances, their value are considered to be the same as at instant t along

all the horizon, that is, to be equal to the measured value of the output (ym) minus the

the one estimated by the model (ŷ(t|t)). This is described as follows:

n̂(t + k|t) = n̂(t|t) = ym(t)− ŷ(t|t) (4.2)

Then equation (4.1) can be written as:

ŷ(t + k|t) =
k∑

i=1

gi∆u(t + k − i) +
∞∑

i=k+1

gi∆u(t + k − i) + ym(t)− ŷ(t|t)

=
k∑

i=1

gi∆u(t + k − i) + f(t + k) (4.3)

where f(t+k) is the free response of the system, that is, the part of the response that does

not depend on the future control actions and is given by:

f(t + k) = ym(t) +
∞∑

i=1

(gk+i − gi)∆u(t− i) (4.4)
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For a stable process, the coefficients gi of the step response tend to be constant after Np

sampling periods, which yields to an approximation in equation (4.4) as follows:

f(t + k) = ym(t) +
Np∑

i=1

(gk+i − gi)∆u(t− i) (4.5)

Computing the prediction along the prediction horizon (k = 1, . . . , Np), with Nu control

actions, yields equation (4.3) to be:

ŷ(t + Np|t) =
Nu∑

i=1

gi∆u(t + Np − i) + f(t + Np) (4.6)

Defining the system’s dynamic matrix as:

G =




g1 0 . . . 0

g2 g1 . . . 0
...

... · · · ...

gNu gNu−1 . . . g1

...
... · · · ...

gNp gNp−1 . . . gNp−Nu−1




Np∗Nu

it can be written that:

ŷ = GU + F (4.7)

Note that G is made up Nu (the control action) columns of the system’s step response

compatibly shifted down in order, ŷ is a Np-dimensional vector comprising the system

prediction along the horizon, U depicts the Nu-dimensional vector of control increments,

and F is the free response vector.

4.1.2 Cost function and reference trajectory

The set of future control values is calculated by optimizing a specific criterion J in order to

keep the process as close as possible to the reference trajectory ω(t+k) which is the desired

set point or a close approximation of it. It is normally defined as a smooth transition from

the current value of the output y(t) towards the known reference by means of the following

first order system:

ω(t + k) = α ω(t + k − 1) + (1− α)r(t + k) k = 1 . . . Np (4.8)

where α is a parameter between 0 and 1 (the closer to 1 the smoother the transition) that

constitutes an adjustable value that will influence the dynamic response of the system, and

r(t + k) is the constant future reference.

48



The specific criterion usually takes the form of a quadratic function (cost function) of

errors between the prediction output signal and the prediction reference trajectory plus a

weighted quadratic input term as follows:

J =
Np∑

j=1

[ŷ(t + j|t)− ω(t + j)]2 +
Nu∑

j=1

λ[∆u(t + j − 1)]2 (4.9)

where λ is a positive constant that can be used to tune the DMC controller to achieve the

required performance. If there are no constraints, the solution to the minimization of the

cost function J = eT e + λUT U = (GU + F − ω)T (GU + F − ω) + λUT U , where e is the

vector of future errors along the prediction horizon, and U is the vector composed of the

future control increments ∆u, . . . , ∆u(t + Nu), can be obtained analytically by computing

the derivative of J and making it equal to 0, which provides the general result [32]:

U = (GT G + λI)
−1

GT (ω − F ) (4.10)

An explicit solution can be obtained if the criterion is quadratic, the model is linear and

there are no constraints, otherwise an iterative optimization method has to be used. The

control signal u(t|t) is sent to the process, while the subsequent control signals calculated

are rejected, because at the next sampling instant y(t+1) is already known and the output

prediction is repeated with this new value and all sequences are brought up to date. In

other words, given the control signal ∆u(t) = K(ω− f), where K is the first row of matrix

(GT G+λI)−1GT (figure 4.1), we observe that if there are no future predicted errors, that is,

if (ω− f) = 0 , then there is no need for a control move, since the objective will be fulfilled

with the evolution of the process; otherwise, there will be an increment in the control action

proportional (with a factor of K) to the future error. Notice that the action is taken with

respect to future errors, not past errors, as is the case in conventional feedback controllers.

4.1.3 Constrained DMC

The flexible constraints handling capabilities of MPC are very attractive for practical ap-

plications. Due to safety reasons, it is necessary to keep a safe zone around the operating

points of a typical process, since the effect of perturbations can make the process vio-

late constraints. As a matter of fact, all actuators saturate. Figure 4.2 shows a typical

control loop with actuator saturation. Ignoring the presence of saturation can cause long

undesirable transients in the closed loop. Those transients are due to the controller states

having “wound up” to large values [33]. The constraints acting on a process originating
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Figure 4.2: Control system with saturation on the plant input

from amplitude limits in the control signal, where ∆u is the manipulated variable before

saturation, and umin and umax are the minimum and maximum limits of the control action

respectively, can be described by:

u = sat(û) =





umin if û < umin.

û if umin < û < umax.

umax if û > umax.

(4.11)

4.2 Problems due to Variable Delay Time

We have already described in chapter 2 the reason of having a variable delay time in the

pulp bleaching process; this is due to the variability of the inlet and the outlet pulp flow

inside the bleaching tower. One main problem occurs in case of introducing an uncertainty

in the variable delay time which affects the bleaching process closed loop performance and
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stability. Figure 4.3 from [6] presents the peroxide dosage (top plot) and the pulp bleaching

output (bottom plot) coming from controlling the pulp bleaching process using a model

with fixed parameters and a model predictive control algorithm (DMC) as a controller. A

variable delay time of 550 minutes in depicted in the output of the process. Once a ±5%

uncertainty in the variable delay time is applied, the brightness response starts to show

some “blips” at 500 minute intervals. In order to explain those blips, let us consider the

−5% case, in which the brightness response occurs earlier than was expected. This implies

that the early measurement of the brightness will cause an error in the estimation of the free

response in the DMC control algorithm as was described in equation (4.5). Consequently,

the future error between the predicted free response and the set point profile will no longer

be zero, which causes a downward blip in the control action as time elapses. This will cause

a blip in the brightness response after some delay time that will result in another error, and

the story is repeated every delay time, resulting in peaking. In other words, if the measured

brightness happened earlier than estimated, so it is considered as a positive disturbance

added to the estimated brightness (increase in the free response F ) which means that DMC

will detect a new brightness (positive disturbance), thus will order the peroxide to decrease

its amount starting from this time to the time the final estimated brightness is reached

(predicted). This is why we get a downward blip. To understand deeply this problem, let

us now explain those blips phenomena or those adverse transients from the physical and

mathematical point of view.

Figure 4.3: The system response for ∓5 delay time uncertainty
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4.2.1 Physical point of view

1. Case of early real brightness (measured)

If the measured brightness responses earlier than estimated, then this is considered

to be a positive disturbance added to the estimated brightness (increase in the free

response F). This assumed disturbance causes the DMC algorithm to decrease the

peroxide dosage at this time to reach the final desired brightness. This negative blip

in peroxide dosage results in a blip in brightness after the process time delay.

2. Case of late real brightness (measured)

If the measured brightness responses later than estimated, then this is considered to

be a negative disturbance subtracted from the estimated brightness (decrease in

the free response F). This assumed disturbance which causes the DMC algorithm

to increase the peroxide dosage at this time to reach the final desired brightness. This

overblip in peroxide dosage results in a blip in brightness after the process time delay.

The illustration is shown in figure 4.4.
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Time( min)

Blips physical explanation

Early Real Brightness
(negative disturbance)

Late Real Brightness
(positive disturbance)

Expected Brightness

Figure 4.4: Physical explanation of blips

4.2.2 Mathematical point of view

1. +5 % Td Estimation Error

This case is illustrated in figure 4.5, where the real delay time is longer than the

one estimated (Td(real) > Td(estimated)). Thus the free response F in this figure

(F1, F2, . . . , FNp) will respond after the reference trajectory ω (W1, W2, . . . , WNp),

so the error (e = ω − F) is positive and then the control action 4u will increase

(starting from Td(estimated) to Td(real)). In other words, in case of late response of
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the final brightness, and referring to the free response in equation (4.5) where ym is

the measured output brightness, ym decreases and so does F, yields to an increase in

the error and then in the control action 4u (positive blips).
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Figure 4.5: +5 % delay time estimator error

2. -5 % Td Estimation Error

This case is illustrated in figure 4.6, where the real delay time is less than the one

estimated (Td(real) < Td(estimated)). Thus the free response F in this figure (F1,

F2, . . . , FNp) will respond before the reference trajectory ω (W1, W2, . . . , WNp), so

the error (e = ω − F) is negative thus the control action 4u will decrease (starting

from Td(real) to Td(estimated)). In other words, in case of early response of the

final brightness, the free response in equation (4.5)where ym is the measured output

brightness, ym increases and so does F, yields to an decrease in the error and then in

the control action 4u (negative blips).

4.3 Delay Time Predictor

We mentioned that the problem in figure 4.3 is due to the uncertainty of the variable

delay time estimator. The symptom of this is the existence of transient spikes blips in

the bleach dosage and unwanted variation in pulp brightness. We are suggesting a new

approach, namely as Smart Delay Time Predictor which corrects the delay time uncertainty

in the final pulp brightness as follows: Assume a brightness setpoint change is required at

time to and a recommended control action (hydrogen peroxide dosage) is then brought into
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Figure 4.6: -5 % delay time estimator error

action to achieve the required pulp brightness. At this time the delay time is estimated

ti be T̂ o
d , i.e., the DMC algorithm “expects” that the brightness will respond at to + T̂ o

d .

As the time advances we continue to predict the exact delay time after which the output

brightness should begin to track the set point, based on the inlet pulp flow and the variable

level data, then advancing the delay time inside the MPC controller, step by step from

T̂ 1
d to T̂ k

d , where k is the number of step prediction, and at the same time integrating the

delay time backwards to a point where T̂ k
d equals the time back to the application of the

step change. The difference of this type calculation compared to the one employed in [6] is

that in [6] the delay time was calculated outside the DMC controller then stored as data

and embedded inside the controller afterwards. But in our method, we calculate the delay

time and then correct the controller inside the same loop of delay time calculation, then

once the backward integration of the variable time delay reaches any setpoint change, the

delay time calculation stops.

This method is valid for both cases of estimated delay time: either the response happens

earlier than predicted or later than predicted. At that time, we predict correctly the delay

time starting from the control action 4u had increased till the start of the pulp brightness

output to track the set point. Consequently, there is need to increase or decrease the

hydrogen peroxide dosage. The illustration is shown in figure 4.7, where two types of

time delay uncertainty (early and late respectively) are exhibited. Several arrows pointing

backwards show the calculation method of the delay time predictor. As a conclusion, this

novel time delay calculation method is presented to tackle the problem of adverse transients

occurring in case of the uncertainty of the variable time delay, i.e., it eliminates transient

spikes occurring during any miscalculation of the time delay inside the controller.
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4.4 The indirect adaptive predictive control design for

the bleaching process

We introduced in chapter 3 that an adaptive controller is a controller with adjustable

parameters, which is tuned online according to some mechanism in order to cope with

time-variations in process dynamics and changes in the environment. The outer loop con-

stituted by the blocks in figure 3.2 denoted “identification” and “controller design” is what

separates the adaptive controller from a conventional one. The identification block con-

tains a recursive estimation algorithm which aims at determining the best model of the

process at the current instant. The design block then applies this model to produce a

model predictive controller strategy.

Figure 4.8 illustrates the Simulink model that was used to simulate the indirect adaptive

predictive control closed loop system. The plant for the purpose of simulation was chosen

as a first order discrete transfer function as previously mentioned in chapter 2. In this case,

the bleaching process is handled as a SISO process. A simulation is illustrated in figure

4.10 and 4.11, where an indirect adaptive DMC controller with a delay time predictor is

applied to control the pulp brightness, with the controller parameters, i.e. the prediction

horizon Np(k) = 4τ +Td(k) where τ is the bleaching process time constant, and the control

horizon Nu = 1. The DMC control law presented in section 4.1.2 is simulated by using

S-function under the Simulink. We implemented this S-function in an M-file to estimate
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the unknown process parameters, to calculate the controller parameters and to implement

the control law. Given the degree of the polynomials of the process model and the reference

model parameters, the system will be simulated automatically. Notice that because of the

phase delay of 200 samples in the beginning of the simulation, and due to the rise time of

the model parameters till reaching stability (another 100 samples), we have to ensure that

in the first 300 samples the real process parameters are set in the controller (using a clock

as shown in the simulink model), then we switch the model parameters calculation to the

RLS estimator. Otherwise, the controller will not be able to detect the model parameters

because their initial values are set to zero when we start applying the RLS algorithm,

yielding to an error in the controller S-function.

Figure 4.8: Simulink model of the indirect adaptive predictive control

The results without RLS gain filtering show a small downward blip in both the peroxide

dosage and the pulp brightness. This is due to the setpoint changes that cause the gain

and the time constant of the RLS model to change slightly at each setpoint change (see

figure 3.6). The slight variation in the gain parameter which tend to recover after a short

time constant is exhibited in figure 4.9. To solve such a problem, we include a discrete filter

block that implements a finite impulse response (FIR) filter. We specify the coefficients of

the numerator and denominator polynomials in ascending powers of z−1 as vectors using

the numerator and denominator parameters. In this case, we assume a filter of numerator

equal to 0.00995 and a denominator of 0.99, both are in the z-domain. The results are

significant: There are no downward or upward blips either in the peroxide dosage or in the
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final pulp brightness for the case of gain filtering in figure 4.10.
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Figure 4.9: RLS gain estimator before and after filtering

the control action, due to the application of a square wave (a train of 0’s and 1’s

setpoints) of different pulse widths occurring at different levels of the variable delay time,

is shown in figure 4.10 in the top plot, whereas the final pulp brightness that tracks exactly

the setpoint brightness signals after the delay time is in the bottom plot. The variable delay

time in this scenario is shown in figure 4.11.

4.4.1 Robustness behavior

Using an online parameter estimation algorithm to identify the parameters of the model,

the parameters of most linear model based controllers can be adjusted in line with changes

in process characteristics. Although great strides have been made in resolving the imple-

mentation issues of adaptive systems, for one reason or other, many practitioners are still

not confident about the long term integrity of the adaptive mechanism. This concern has

led to another contemporary topic in modern control engineering; robust control.

Robust control involves, firstly, quantifying the uncertainties or errors in a “nominal”

process model, due to nonlinear or time-varying process behavior for example. If this can be

accomplished, we essentially have a description of the process under all possible operating

conditions. The next stage involves the design of a controller that will maintain stability as

well as achieve specified performance over this range of operating conditions. A controller

with this property is said to be “robust” [34]. A sensitive controller is required to achieve
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Figure 4.10: Input and output of the indirect adaptive predictive control before and after

filtering

performance objectives. Unfortunately, such a controller will also be sensitive to process

uncertainties and hence suffers from stability problems. On the other hand, a controller that

is insensitive to process uncertainties will have poorer performance characteristics in that

controlled responses will be sluggish. The robust control problem is therefore formulated as

a compromise between achieving performance and ensuring stability under assumed process

uncertainties.

In the previous section, we used S-functions to implement the indirect adaptive predic-

tive algorithm, and we showed that the adaptive control can be very effective and can give

good closed-loop performance. It is attributed to the adaptive behavior of the controller

that it changes its parameters, not the structure, according to the changing dynamics of

the system. However, that does not mean that adaptive control is the universal tool that

should always be used.

The following simulations are intended to study the system behavior in the presence of

parameter uncertainties in the pulp bleaching process. To corroborate the robustness results

instead of using as a control model the linear model that best fits the nonlinear process,
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a model with estimation errors is used. For example, when working in a model with a

error of ±25% on the gain, thus we recalculate the control action for those new values, the

response of shown in figure 4.12 is obtained, where an additional input dosage is added to

accommodate the amount of gain uncertainty. The final pulp brightness responses (+25%

as the dotted line and -25% as the dash-dotted line in the bottom trace) differ from the

nominal case by not tracking the setpoint for a quite a long time, equal to the previous

delay time. Fortunately, it correct itself after that. That shows that our DMC controller

is robust despite the big percentage gain uncertainty.

Another robustness behavior is presented in figure 4.13 where the model is subjected

to a ±25% time constant uncertainty. The simulation depicts small transients in the

multivariable input and the controller output after an additional process delay time. That

shows that a perturbation in the bleaching process time constant has only a minor effect

on the input and output responses.

4.5 Multivariable MPC

Most industrial plants have many variables to be controlled (outputs) and many manip-

ulated variables used to control the plant (inputs). In some cases a change in one of the

manipulated variables generally affects the corresponding controlled variable and each of

the input-output pairs can be considered as a single-input single-output (SISO) plant and

controlled by independent or decoupled loops. In several cases, when one of the manip-

ulated variables is changed, it not only affects the corresponding controlled variable but

also perturb the other controlled variables. These interactions between process variables
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may result in poor performance of the control process and even instability. When the influ-

ences are not negligible, the plant must be considered to be a process with multiple-inputs

multiple-outputs (MIMO) instead of a set of of SISO processes. In our study of the me-

chanical pulp process, we consider the manipulated variables as the hydrogen peroxide H2O2

and the sulfur dioxide SO2. The controlled variables are scrutinized as the pulp brightness

output and the pH. Total decoupling is very difficult to achieve for such a process which

exhibit complex dynamics and varying dead times.

Bleaching applications are some of the toughest pH measurement challenges in process

industry. They nearly always expose the sensors to high pressures, high temperatures,

high solids, and rapidly changing chemical compositions. Installation of pH probes is also

difficult due to the high velocity and pressure of the process. Also, because the pulp lines

are so large, often 24 inches in diameter, it is difficult to ensure that the pH probe is inserted

into the area of flow that provides a representative measurement. Selection of wetted sensor

materials is also a concern. The chemicals used in bleaching are aggressive, and with high

temperatures will attack many metals and plastics. Good pH control is extremely difficult

due to the continuous nature of the process. Often, the process is simply moving so fast

that there is insufficient retention time for the pH to stabilize, thus the pH may still be

changing at the hydrogen peroxide (H2O2) injection point. Because this control is related

to brightness, a stable pH value is desired, but not always achievable. To maintain good

pH control, temperature swings must be avoided. Therefore, one of the most important

variables affecting the pulp quality is the pH at the end of the stage, i.e. at the exit of

the first caustic extraction tower [35]. The target pH after the tower is usually between 4

to 4.5. Low pH degrades the pulp quality and increase chemical consumption in further

bleaching stages. High pH proves to be of no substantial benefit while the additional

caustic consumption is costly. Thus, it is desirable to minimize caustic consumption while

maintaining pulp quality. A good control scheme will allow lowering the pH target while

maintaining the pulp quality and minimize the caustic consumption. The control problem

is complicated by the fact that the buffering effect provided by the aqueous system may

vary, and by the time-varying nature of the dynamics. The MIMO controller is not studied

here because of the lack of knowledge on the factors affecting the pH model identification

such as NaOH. That will yield to inaccurate control response.
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Chapter 5

Conclusions

1. The mechanical pulp bleaching process at Irving Paper mill has been described, an-

alyzed and modeled. Hydrogen peroxide dosage, SO2 dosage, incoming pulp bright-

ness, and pulp consistency are considered the most crucial factors affecting the bleach-

ing process output considered here: the pulp brightness output and pH. Hydrogen

peroxide H2O2 and SO2 are taken as the inputs.

2. An important class of systems in the process industry deals with material transport,

in which the liquid flow rates and volumes may be continuously varying. Often it is

possible to describe these kinds of systems with linear models, in which the parameters

are variable. The result is an extension to cover continuously varying operation

conditions, viz. the case of varying flow rates in a material transport process. Also,

the case with varying volumes has been discussed, and the related problems in this

case have clearly been revealed by the developed mathematical methodology.

3. The discussion was then extended to cover time delays, which are naturally modeled

by using plug flow vessels. The concept of the variable delay time was introduced,

analyzed and illustrated through descriptive figures for both cases: the delay time

based either on the inflow or the outflow.

4. A thorough explanation of the modeling of the pulp bleaching process using three of-

fline and online identification algorithms, with full descriptions and simulations, was

considered yielding to impressive results for modeling the bleaching process. This

work was a comparison and an extension of single-input single-output and multiple-

input single-output system identification simulations employed in [6] bringing in sig-
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nificant results.

5. A nonlinear time-varying process can be executed online (using online identification

algorithms) by an indirect adaptive predictive controller (using model predictive con-

trol as a controller) was described and applied for a single-input single-output process

where hydrogen peroxide and final pulp brightness are the process input and output

respectively.

6. identification of the process has demonstrated the crucial SO2 impact on both the

pulp output brightness and the pulp pH. This will yield to the control of the pulp pH

improves both the efficiency of the bleaching process and the quality of the produced

paper. But, taking NaoH into account while doing the identification will lead to

better control results. This was beyond the scope of this thesis.

7. A novel time delay calculation method is presented that tackles the problem of ad-

verse transients occurring in case of the uncertainty of the variable time delay, i.e.,

eliminates the transient spikes occurring due to miscalculation of the time delay inside

the controller. The efficacy and robustness of this technique is demonstrated by con-

trolling the pulp bleaching process using a model predictive control (MPC) algorithm

with a variable delay time embedded in that controller. The contributions of this

method presented here include the delay time predictor that: (1) is straightforward

to implement and to use (2) corrects the uncertainty of the delay time estimator, and

(3) is reliable for a broad class of chemical process.

8. Drawbacks of PID controllers with time-varying systems were discussed. An indirect

adaptive model predictive controller design method for a SISO model using RLS

estimator was then developed to demonstrate the practical applicability of the theory.

A filter was added to the gain parameter estimator to suppress the spikes due to

transients in identified parameters with each change in the setpoint. The stability

and robustness of the closed loop system was shown to be a direct consequence of

the design method. The controller exhibits a good response to changes in both gain

and time constant model parameters. These contributions have produced an effective

solution to a difficult control problem.
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