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Abstract

Fault detection and isolation can help avoid system shutdowns, breakdowns and even

catastrophes involving human fatalities and property damage. The traditional way

to improve process safety and reliability is to enhance the quality and robustness of

each process component. Even so, fault-free process operation cannot be guaran-

teed. Computational intelligence techniques are being investigated as an extension of

traditional fault diagnosis methods.

In this thesis, a new approach for Neuro-Fuzzy (NF) model-based fault detection

and isolation (FDI) for a nonlinear process is presented. The identification mechanism

of the nonlinear dynamic process is a Neuro-Fuzzy adaptive model. We start by

defining a Neuro-Fuzzy model (also called a Takagi-Sugeno type fuzzy model). This

produces a nonlinear model comprised of local linear models of the process. The

parameters of this model are identified by a weighted least square estimation method

which is also used for symptom generation and evaluation.

This approach was successfully applied to a simulation of a Jacketed Continuously

Stirred Tank Reactor (JCSTR) system. Using this technique, not only can different

sensor and actuator faults be diagnosed, it can also diagnose disturbances and two

faults in sequence. Furthermore, we investigate the robustness this technique applied

to the JCSTR system with respect to operating point change and fault size vari-

ation, extending the robustness by developing a new nonlinear symptom mapping

interpolation approach, and finally applying it to identify the fault size and type.
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Chapter 1

Introduction

In a physical system, actuators, process components and sensors are often subjected to

unexpected and unpermitted deviations from standard conditions, called faults. The

basic task of fault diagnosis consists of three parts: fault detection, fault isolation,

and fault identification [11].

1 Fault Detection: detection of the time of occurrence of faults in the functional units

of the process, which lead to undesired or unacceptable behavior of the whole

system.

2 Fault isolation: localization (classification) of different faults (faulty components).

3 Fault identification: determination of the type, magnitude and cause of the fault.

A system that includes the capacity of detecting, isolating and identifying or classi-

fying faults is called a fault diagnosis system. Fault detection and isolation are in-

creasing demands for man-made dynamic systems to become safer and more reliable.

Model-based FDI schemes for faults are based on the deviation between measured

process state outputs and estimated outputs; this approach requires accurate mathe-

matical models of the plants. Therefore, the development of a reliable fault detection

and isolation scheme for nonlinear processes is often time consuming and difficult to

achieve due to the complexity of the system. Recent approaches to FDI for dynamic
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systems using methods of integrating quantitative and qualitative model information

are considered as an important extension to model-based FDI approaches. The train-

able artificial neural network (ANN) can be used as a nonlinear dynamic model of the

system, and fuzzy logic can be used together with neural networks to enhance FDI

diagnostic reasoning capabilities. In this thesis, an integrated scheme, using Neuro-

Fuzzy based models, provides a powerful tool to cope with nonlinear processes. This

approach is successfully developed and applied to a JCSTR (Jacketed Continuously

Stirred Tank Reactor) system, for diagnosis of different kinds of faults.
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Chapter 2

Literature Review and Objective

2.1 Literature Review

During the last two decades, much research on FDI has been done using quantita-

tive model-based approaches [5, 7], such as analytical approaches, parameter esti-

mation, and residual generation. The process model is a quantitative description of

the normal (fault-free) dynamic process and steady behavior, which is obtained by a

well-established process modeling technique. Driven by the same process inputs, the

process model must deliver a good approximation of the measured process variables,

and comparing the approximated variable with the measured one yields the residual.

Requiring a precise and accurate analytical model is problematic, since modeling er-

ror will affect the performance of the FDI scheme, especially in nonlinear systems

representing the majority of real processes.

To circumvent this precision problem, a more suitable strategy is to use abstract

qualitative models (fuzzy logic, digraphs) [9, 13]. The key advantage of fuzzy logic is

that it can provide a rather transparent representation of the system, based on the

linguistic interpretation in the form of IF-THEN rules, which can provide valuable

information for the operator to understand the causes of faults. Using this method,

3



the model can deal with and analyze the data. Moreover, from these data experts can

extract the rules that can be validated and combined with their prior knowledge, so

more or less complete system models that describe the real process can be obtained.

Unfortunately, the designer has to derive IF-THEN rules from the data sets manu-

ally. If the process is highly nonlinear, thus requiring large data sets, this is a serious

limitation.

Many approaches have been considered based on ideas of computational intel-

ligence or soft-computing by optimizing a design using artificial neural networks

(ANNS) [8, 10], which provide an excellent framework for dealing with nonlinear

systems. They have the ability to model nonlinear functions and provide suitable

weighting factors and an appropriate architecture, and can be well trained on numer-

ical data. However, it is not easy to incorporate heuristic knowledge from experts,

due to the “black-box” characteristic. ANNS cannot give insight into the behavior of

the system at the component level.

In this thesis, a robust FDI system combines both numerical (quantitative) and

symbolic (qualitative) techniques, that is, Neuro-Fuzzy structures. The Neuro-Fuzzy

approach represents a synergistic integration, yielding the benefits of both neural

networks and fuzzy logic systems: neural networks provide a connectionist structure

and learning abilities for the fuzzy logic systems, so they can model highly nonlin-

ear systems efficiently in a fuzzy-logic format, and fuzzy logic systems provide the

neural networks with high-level fuzzy IF-THEN thinking and reasoning, and a trans-

parent mathematical structure to describe the physical relationships in the process

[2, 4]. Most real-world problems are large scale and inevitably incorporate built-

in uncertainties. It is frequently advantageous to use several computing techniques

4



synergistically rather than a single one, resulting in construction of complementary

hybrid intelligent systems. Hence, Neuro-Fuzzy modeling is an integrated approach

that can utilize specific techniques to construct satisfactory solutions to real-world

problems.

2.2 Objective

This thesis focuses on the application of Neuro-Fuzzy techniques in FDI. It discusses

the structure of the Takagi-Sugeno modeling approach. Then a Neuro-Fuzzy based

learning and adaptation of the Takagi-Sugeno fuzzy model is used to diagnose faults

in a JCSTR system, with faults occurring in the actuators and sensors, and also

disturbances being introduced. We have extended this technique to diagnose two

faults in sequence using a new approach. After that, we investigated robustness with

respect to the operating point change and fault size change. Finally, we substantially

improve robustness by developing a novel nonlinear mapping interpolation to identify

the fault type and size from the unknown data.
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Chapter 3

Basic Construction of Neuro-Fuzzy

Systems

3.1 Basic Concept of Integrating Fuzzy Systems

and Neural Networks

3.1.1 Common Properties of Fuzzy Systems and Neural Net-

works

Fuzzy systems and neural networks are both numerical model-free estimators and

dynamic systems. They share the ability to capture the behavior of systems working

in uncertain, imprecise, and noisy environments. Both have an advantage over tradi-

tional statistical estimation and adaptive control approaches to function estimation.

They estimate a function without requiring a mathematical description of how the

outputs functionally depend on the inputs.
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3.1.2 Differences between Fuzzy Systems and Neural Net-

works

Neural networks have a large number of highly interconnected processing elements

(nodes) which demonstrate the ability to learn and generalize from training patterns

or data [1]. They are trainable dynamic systems which can learn a nonlinear input-

output mapping from training data sets, and they can update their weights through

adaptively repeating training cycles. They cannot give insight into the system, how-

ever. We know their input-output behavior, but know nothing about the system

internals. Neural networks superimpose input-output samples on a “black-box” con-

struction; is not easy to encode expert knowledge in the form of IF-THEN rules into

the neural networks.

Fuzzy systems, on the other hand, are structured numerical estimators. They

start from highly formalized insights about the structure of categories found in the

real world and then articulate fuzzy IF-THEN rules as a kind of expert knowledge

[16]. Their inputs are represented as linguistic variables, which are derived from mem-

bership functions. The membership functions map input elements into a membership

grade (or membership value) in the fuzzy set. Fuzzy linguistic descriptions of the sys-

tem are represented by the fuzzy IF-THEN rules. From the fuzzy implication relation

we can get the consequence (conclusion) of each rule. Usually the centroid of response

is used to generate the system output. However, fuzzy systems encounter different dif-

ficulties, such as how to determine the fuzzy logic rules and the membership functions.

7



3.1.3 Reason for Integrating Fuzzy Systems and Neural Net-

works

Fuzzy logic and neural networks are complementary technologies. The neuro-fuzzy

synergistic integration reaps the benefits of both neural networks and fuzzy logic

systems. Neural networks have good learning, computation, and optimization capa-

bilities. They can automatically tune the parameters of fuzzy rules and membership

functions from the training data set, thus improving the performance of fuzzy sys-

tems. Fuzzy systems can deal with issues such as reasoning and encode the expert

knowledge on a higher level, thus improving the transparency and performance of

neural networks, providing a structure framework to the neural networks. In this

way, we can combine the learning and computational ability of neural networks with

the human like IF-THEN thinking and reasoning of fuzzy system, to integrate them.

3.2 Construction of Fuzzy Systems and Neural Net-

works

3.2.1 Basic Concept of Neuro-Fuzzy Systems

This Neuro-Fuzzy model can be considered to be a neural network realization of the

Takagi-Sugeno-Kang fuzzy inference model (TSK model) [14, 15]. The basic idea of

using neural networks to realize or generalize the TSK model is to implement the

membership functions in the preconditions as well as the inference function in the

consequents. This approach can solve two main problems in fuzzy reasoning: the

lack of a definite method for determining the membership functions and the lack of

a learning function for self-tuning inference rules. The neural networks in the pre-

condition component can learn the proper membership functions, and those in the

8



consequent component learn the proper “action” of a rule. These fuzzy rules are

characterized by a collection of fuzzy IF-THEN rules in which the preconditions and

consequents involve linguistic variables. This collection of fuzzy rules characterizes

the simple input-output relation of the system. The general form of a fuzzy rule Ri

in the case of the multi-input-single-output (MISO) system is:

IF x1(k) is Ai,1 and x2(k) is Ai,2 and . . . , xn is Ai,n(k)

THEN fi(k) = ω0,i + ω1,ix1(k) + ω2,ix2(k) + · · ·+ ωn,ixn(k)

where Ri means the ith implication, i ∈ 1, . . . , r. The variables x1, . . . , xn comprise

the input vector, ω0,i, ω1,i, . . . , ωn,i are the consequent parameters, Ai,1, . . . , Ai,n are

the fuzzy sets defined on the universe of discourse of the inputs (also called antecedent

parameters), and fi(k) is the output from the ith implication.

The fuzzy implications are formed by fuzzily partitioning the inputs space. There-

fore, the premise of a fuzzy implication indicates a fuzzy subspace of the inputs space.

Each implicational relation expresses a local input-output relation. We can see that

those implicational relations express highly nonlinear functional relations.

The identification of a fuzzy model using input-output data consists of two parts:

structure identification and parameter identification. Structure identification consists

of premise structure identification and consequent structure identification. Regard-

ing the the premise structure, we need to find which variables are necessary in the

premise. We also need to find out the optimal fuzzy partition of the input space,

where the number of fuzzy subspaces corresponds to that of the necessary implica-

tions. The second procedure is concerned with consequent structure identification.

We need to find which variables are necessary in the consequent of an implication. In

addition, we also need to find a criterion for the verification of an obtained structure.

9



The methods for identifying nonlinear models are the following: in the presence of

moderate noise, the parameters of the model with the true structure are the least

sensitive to the changes of the observed data, which are used for identifying the pa-

rameters.

Parameter identification also consists of premise parameter identification and con-

sequent parameter identification. Premise parameters are the fuzzy variables of the

membership function. We can use different optimization techniques to identify them.

Sugeno [14] suggests a successive identification algorithm: as a piece of input-output

data is processed, we adjust the parameters so that the error of the inferred output

decreases, where the parameters are those that have been estimated by using the past

data. The consequent parameters are the coefficients of linear equations. When a

set of input-output data is given, the consequent parameters can be identified by, for

example, the least squares method.

3.2.2 Basic Structure of a Neuro-Fuzzy System

We consider the ith rule of a first-order Takagi-Sugeno fuzzy system in Figure 3.1

consisting of n inputs and r rules:

Layer 1: Every node in this layer is an adaptive node with a node membership

function µAij(xk), where i ∈ {1, . . . , r}, j ∈ {1, . . . , n}, where x is the input to the

node, and Aij is the linguistic label associated with this node. There are various

forms of membership function for the fuzzy set Aij. We can choose any continuous

piecewise differentiable functions, such as the commonly used trapezoidal, triangu-

lar, or bell shaped membership functions.Parameters in this layer are referred to as

premise parameters.
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Figure 3.1: The Basic Structure of a Neuro-Fuzzy System

The building of fuzzy membership functions need satisfy the following require-

ments:

1. Membership functions reaching to plus and minus infinity must exist.

2. The sum of the membership function values should add up to 1 for all symptom

values.

These conditions are necessary in order to ensure the intuitive understanding of mem-

bership functions. Figure 3.2 displays a typical set of symmetric triangular member-

ship functions, and equation (3.1) describes one example.
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Figure 3.2: Membership Functions Based on Triangles

µi =





0 x 5 a

x−a
b−a

a ≤ x ≤ b

c−x
c−b

b ≤ x ≤ c

0 c 5 x

(3.1)

The above [a, b, c] is the parameter set of the triangular membership function,

where a is the membership function’s left intercept with grade equal to 0, b is the

center peak where the grade equals 1, and c is the right intercept at grade equal to

0. The universe of discourse X comprises the crisp values from 0 to 80, with fuzzy

values: VL (very low), Low, Medium, High, and VH (very high). In Figure 3.2, the

linguistic value “Medium”, where a = 20, b = 40, c = 60, is defined over the universe

of discourse X = [0 : 80].

Layer 2: Every node in this layer is a fixed node labeled
∏

, which multiplies the

incoming signals and sends the product out:

Φi =
n∏

j=1

µAij(xj) (3.2)
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where i ∈ {1, . . . , r}, j ∈ {1, . . . , n}. Each node output represents the firing strength

of a rule.

Layer 3: Every node in this layer is a fixed node labeled N. The ith node calculates

the ratio of the ith rule’s firing strength to the sum of all rules’ firing strengths:

Φi =
Φi∑r

k=1 Φk

(3.3)

For convenience, outputs of this layer are called normalized firing strengths.

Layer 4: Every node in this layer is an adaptive node with a node function:

yi = Φifi (3.4)

fi(k) = ω0,i + ω1,ix1(k) + ω2,ix2(k) + · · ·+ ωn,ixn(k) (3.5)

where Φi is a normalized firing strength from layer 3 and ω0,i, ω1,i, . . . , ωn,i are referred

to as consequent parameters.

Layer 5: The single node in this layer is a fixed node, which computes the overall

output as the summation of all incoming signals:

y =
r∑

i=1

Φifi =
r∑

i=1

yi (3.6)
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Chapter 4

Neuro-Fuzzy Systems Approaches
in FDI

4.1 Introduction

Most FDI schemes consist of two major levels: a symptom generation level and a

diagnostic level. In the first one, symptoms are generated which indicate the state

of the process and enable fault detection. In the second, the most probable fault is

identified. Generating significant symptoms is important: the better the symptoms

are, the more successful the diagnosis will be. In the following, a new approach using

neural networks and fuzzy-models is developed and demonstrated on an industrial

JCSTR (Jacketed Continuously Stirred Tank Reactor) system. The scheme is based

on the comparison of actual process variables with nominal ones, derived from the

process model. The symptoms are generated with the nonlinear Neuro-Fuzzy model

that is run in parallel to the process. In this technique, a fairly transparent FDI

scheme for nonlinear processes is presented, which has the following advantages:

1. Several symptoms can be generated from the model, based on its intuitive struc-

ture and the parameters. It is possible to distinguish different faults in all

regions of operation.
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2. The laborious modeling task for nonlinear systems is reduced. The model can

be trained from measured data, and less prior knowledge is required.

This technique is based on a Takagi-Sugeno fuzzy model [14] of the nominal process.

The models can be built from heuristic knowledge and by means of identification

algorithms from measurement data. We use the Local Linear Model Tree Algorithm

(LOLIMOT) [3] for diagnosis. This approach is capable of determining the structure

of the fuzzy system as well as the parameters of the rule consequent parts. After the

structure is determined, the parameters of the rule consequents can be estimated by

a weighted linear least squares algorithm.

4.2 Neuro-Fuzzy Functional Model

Nonlinear dynamic models are the basis for sophisticated control and fault diagnosis

systems. For dynamic processes, Takagi-Sugeno fuzzy models are especially attrac-

tive because their rule consequents can be interpreted as linear difference equations

that represent local poles, zeros, gains, etc. The fuzzy functional model approximates

a nonlinear dynamic process by piece-wise linear models as shown in Figure 4.1 [6].

Each local model is valid in a sub-region of the input space. The partitions where

the local models are valid are not crisp, but fuzzy. Therefore the validity of one local

model for a certain point in the input space is expressed by a weighting function

continuously defined over the whole input space and scaled from zero (not valid) to

one (fully valid). The model output is computed as a weighted sum of all local mod-

els (hyperplanes). This process leads to a nonlinear interpolation between the local

model outputs. The rule consequents describe the fuzzy regions in the input space.

The rule consequents are crisp functions of the model inputs.
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Figure 4.1: Structure of Local Linear Model

The nonlinear dynamic discrete function f with n inputs xi, i = 1, · · · , n and one

output ŷ is defined as

ŷ(k) = f(x(k)) (4.1)

x(k) = [x1(k), . . . , xn(k)]

= [u1(k − 1), . . . , u1(k − nu1), . . . , um(k − 1), . . . , um(k − num)] (4.2)

Note that x(k) includes all inputs (process inputs and disturbances), and their time

delayed values. The unknown function f(¦) is approximated by a piece-wise linear

model, in the form of a Takagi-Sugeno fuzzy model.

Rule Ri: IF x1(k) is Ai,1, AND x2(k) is Ai,2, AND . . . xn(k) is Ai,n, THEN

ŷi(k) = ω0,i + ω1,ix1(k) + ω2,ix2(k) + . . . + ωn,ixn(k) (4.3)

where i ∈ 1, . . . , r, x1, . . . , xn are the input vector elements, and Ai,1, . . . , Ai,n are the

fuzzy sets defined on the universe of discourse of the inputs (also called antecedent
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parameters). The parameters ω0,i, ω1,i, . . . , ωn,i are consequent parameters of the ith

linear regression model, which can be found by a weighted least squares estimation

method. The output of the overall model is the weighted sum of all r local linear

model parameters,

ŷ(k) =
r∑

i=1

fi(k)Φi (4.4)

where Φi is the normalized weighting function for the ith model. In the sequel, for

the sake of simplicity, the equation can also be written in the form:

ŷ(k) = (
r∑

i=1

ω0,iΦi) + (
r∑

i=1

ω1,iΦi)x1(k) + . . . + (
r∑

i=1

ωn,iΦi)xn(k)

= (ω0 + ω1x1(k) + ω2x2(k) + . . . + ωnxn(k)) (4.5)

where each parameter ωi is a nonlinear interpolation between the parameters of the

rule conclusions. This process is referred to as dynamic linearization (linearization

along a trajectory). The superimposed parameters ωi describe the dynamic process

behavior near the actual set point. The dynamic linearization has some appealing ad-

vantages compared to normal linearization: Linearized Takagi-Sugeno fuzzy models

cope with errors which are caused by the rule premise part, while normal linearized

models do not. Dynamic linearization overcomes this disadvantage. The characteris-

tic values can be calculated as the weighted superimposition of the rule consequent

parameters, and the disturbing influence of the rule premise part is minimized.

17



4.3 Fault Detection Symptom Generation

4.3.1 Concept of a Residual

As mentioned above, the local linear model is well suited for generation of symptoms

used for FDI purposes. One typical symptom type is the deviation between measured

and estimated signals, the so called output residuals r. They have the property of

being close to zero in the fault free case and significantly deviating from zero if a fault

affects the true process or the process measurements. They are generally not exactly

zero, due to uncertainty and / or noise.

This only applies under the ideal conditions of having an accurate model and

uncorrupted measurements. However, in practice, due to modeling uncertainty and

measurement noise, it is necessary to assign thresholds δ larger than zero in order to

avoid false alarms. This is associated with a reduction of fault detection sensitivity,

and with this choice of the threshold only a compromise between decision sensitivity

and false alarm rate can be achieved [5].

4.3.2 Residual-Based Symptoms

The symptoms are based on the comparison of features from the process behavior

with nominal features from the model. In Figure 4.2, da represents actuator faults,

ds represents sensor faults, dp represents process disturbances, u represents the ac-

tual input vector, ud represents the vector of desired inputs, yd represents the desired

process outputs, y represents the actual process output, and ŷ represents the Neuro-

Fuzzy model output. The simplest symptom is the output error between the model

and the process, with the time window of appropriate length l and the threshold δ [6].
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Figure 4.2: Symptom Generation Using a Neuro-Fuzzy Model

rk =
l∑

i=1

|ŷ(k − i)− y(k − i)| (4.6)

IF rk < δ there is no fault

IF rk ≥ δ there is fault

4.4 Fault Diagnosis-Symptom Evaluation

The fault symptom patterns generated by the residual, as described above, are sim-

ple and lead to an easy approach for diagnosis. For detection, the residual generated

using the fault-free Neuro-Fuzzy model NF0 becomes large in magnitude when an

anomaly occurs, so detection is fast and certain.
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Once detection is achieved, the Neuro-Fuzzy models NFj, j = 1, 2, .., 10 are mon-

itored and the resulting ten output patterns ŷj are compared with the outputs of the

process. The output patterns are unique for each anomaly, so isolation is achieved

when one of the ŷj patterns matches that of the process; in other words, the residual

rj = y − ŷj is small (nearly equal to zero), i.e, it is within the threshold δ. This

procedure is described in more detail and illustrated in section 5.5.
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Chapter 5

Single Fault Diagnosis in a JCSTR

System

5.1 Introduction to the JCSTR System

5.1.1 Process Description

Consider a jacketed stirred tank reactor and heater as shown in Figure 5.1, where

the tank inlet stream is received from another process unit. The objective is to raise

and maintain the temperature of the contents of the tank to a desired value. A heat

transfer fluid is circulated through a jacket to heat the fluid in the tank. In some

processes, steam is used as the heat transfer fluid, and most of the energy exchanged

is due to the phase change of steam to water. In other processes, a heat transfer fluid

is used where there is no phase change. In this module, we assume that no change of

phase occurs in either the tank fluid or the jacket fluid. This model was developed

by Atalla F. Sayda [12] and is presented in more detail in Appendix A.

As shown in Figure 5.1, the JCSTR system has the following five input variables
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Figure 5.1: Jacketed Continuously Stirred Tank Reactor (JCSTR)

which are denoted by u:

1. Fout: Mix Outflow

2. Fjin: Jacket Heating Fluid Inflow

3. Fin: Mix Inflow Disturbance

4. Tin: Inlet Temperature Disturbance

5. Tjin: Jacket Heating Fluid Temperature Disturbance

It also has the following three outputs variables which are denoted by y:

1. TJ : Measured Heating Fluid Temperature

2. TT : Measured Mix Temperature

3. VT : Measured Volume

Table 5.1 shows the process output data in the nominal case defined by a volume

set point Vsp = 180 m3 and temperature set point Tsp = 33.5824 ◦C. Each variable
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has a pair of values which indicate the minimum and maximum value. In the nominal

(steady state) case these are equal.

Number Outputs Variables Data Unit

1 Heating Fluid Temperature TJ0 [104.2784104.2784] ◦C

2 Measured Mix Temperature TT0 [33.5824 33.5824] ◦C

3 Measured Volume VT0 [180 180] m3

Table 5.1: Process Output Data of the Nominal Case

Table 5.2 shows the process input data in the nominal case. Each variable has

a pair of values which indicate the minimum and maximum value in the nominal.

Again, for each variable, all the data pairs are the same.

Number Inputs Variables Data Unit

1 Mix Outflow Fout [0.1000 0.1000] m3/s

2 Heating Fluid Inflow Fjin [0.1500 0.1500] m3/s

3 Mix Inflow Disturbance Fin [0.1000 0.1000] m3/s

4 Inlet Temperature Disturbance Tin [283 283] K

5 Heating Fluid Temperature Disturbance Tjin [393 393] K

Table 5.2: Process Input Data of the Nominal Case

5.1.2 Objective

The objective is to control the temperature and the volume inside the tank by varying

the jacket inlet valve flow rate (the temperature control or TC loop) and tank outlet

valve flow rate (the level control or LC loop) respectively. A set of faults and distur-

bances was chosen to study the behavior of the JCSTR based on a nonlinear model

which is described in Appendix A. The disturbances and fault set can be summarized

by the following a list of anomalies:
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1. Disturbance = ‘Low Mix Inflow’: −50 percent anomaly;

2. Disturbance = ‘High Mix Inflow’: 50 percent anomaly;

3. Disturbance = ‘Low Inlet Temperature’: −50 percent anomaly;

4. Disturbance = ‘High Inlet Temperature’: 50 percent anomaly;

5. Disturbance = ‘Low Heating Fluid Temperature’: −20 percent anomaly;

6. Disturbance = ‘High Heating Fluid Temperature’: 20 percent anomaly;

7. Fault = ‘Faulty Temperature Sensor’: −20 percent fault;

8. Fault = ‘Faulty Volume Sensor’: −20 percent fault ;

9. Fault = ‘Faulty Outflow Valve’: −20 percent fault;

10. Fault = ‘Faulty Heating Fluid Inflow Valve’: 20 percent fault.

5.2 Anomaly Models

The specific form of anomalies considered in this study are indicated in Figure 4.2:

1. An actuator failure is represented by an additive error signal da introduced

in the output of the controller. For example, if the controller is calling for

a value to be 80 percent open and there is a “−20 percent fault”, then the

valve is actually 64 percent open. We choose to model this as an additive input

da = −16 percent; however the same effect would result if an artificial “actuator

gain” were set to 0.8.

24



2. A sensor failure is represented by an additive error signal ds introduced in the

output of the process. For example, if the actual process temperature is 100 ◦C

and there is a “−20 percent fault ”, then the temperature sensor reading is

80 ◦C. Again, we choose to model this as an additive input ds = −20 ◦C;

however the same effect would result if an artificial “sensor gain” were to set to

0.8.

3. Disturbances represent uncontrolled inputs to the process (inputs not involved

in closed-loop control) changing by a certain percent. For example, if the mix-

ture inflow is nominally Fin = 0.1 m3/s then a “−20 percent disturbance” is a

step change from 0.1 m3/s to 0.08 m3/s.

5.3 Learning in the Neural-Fuzzy Model

Figure 5.2: Neuro-Fuzzy Model Input and Output Map

We consider a number of scenarios which happen from hour 0 to hour 5. In Figure

4.2, there are five inputs u = [Fout; Fjin; Fin; Tin; Tjin]. For each input, we choose one
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datum from every ten generated data points. These data are applied to the JCSTR

system, producing three corresponding outputs y = [TJ ; TT ; VT ]. The same input data

are also applied to the Neuro-Fuzzy system, producing three corresponding outputs

ŷ. This training process produces a steady-state map shown in Figure 5.2, in which

the circle variables indicate the input and output data. When the system is in the

normal condition, we build the fault-free Neuro-Fuzzy model denoted by NF0. We

train the NF0 model to produce its corresponding output variables in the normal

condition. When the system is in faulty conditions (anomalies 1 to 10), we also

build Neuro-Fuzzy faulty models NF1 to NF10 for these cases. We also train each of

these faulty-models to produce its corresponding output variables for nominal-sized

anomalies. The Neuro-Fuzzy learning approach relies on the off-line weighted least

square estimation method. In neural learning, an objective function E is sought to

be minimized:

E =
1

2
(y − ŷ)2 (5.1)

We can optimize the consequent parameters ωi to reduce the error measure E between

the Neuro-Fuzzy model output ŷ and the process output y. The learning rule for ωi

is:

ωi(t + 1) = ωi(t) + α

5∏
j=1

µAij(xj) u (y − ŷ)T (5.2)

where t is the number of iteration of learning, α is the constant learning rate, u is the

vector of input variables, µAij(xj)( i ∈ {1, . . . , r}, j ∈ {1, . . . , n}) are the membership

functions, of triangular form, equation (3.1). There are three objectives: The first is

to train and test the performance of the Neuro-Fuzzy model in the fault-free condi-

tion, the second is to detect the anomalies, and the third is to isolate the anomalies

after they occur.
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5.4 Fault-free Behavior of the Neuro-Fuzzy Model

In this section, we set different operating points for the measured volume and mea-

sured mix temperature variables while the system is fault-free. Figure 5.3 shows

the two “staircase” plots which indicate the NF fault-free (NF0) model outputs cor-

responding to different operating point changes. In the figures, the star variables

indicate the process outputs under normal conditions, and the circle variables indi-

cate the Neuro-Fuzzy model outputs under normal conditions.
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Figure 5.3: The Fault-free Performance of the Neuro-Fuzzy Model

5.4.1 The First “Staircase” Plot

Figure 5.3 (a) shows the NF fault-free model outputs for the first “staircase”.

1. From hour 0 to hour 2, the operating points of both variables are set at -30

percent ([dVsp, dTsp] = [−54 m3,−10.5 ◦C]): from hour 0.3, the NF fault-free

model outputs gradually fit the process model outputs and reach almost the
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same steady state.

2. From hour 2 to hour 4, the operating points of both variables are set at -15 per-

cent ([dVsp, dTsp] = [−27 m3,−5.25 ◦C]): from hour 2.1, the NF fault-free model

outputs gradually fit the process model outputs and reach the same steady state.

3. From hour 4 to hour 6, the operating points of both variables are nominal

([dVsp, dTsp] = [0, 0]): from hour 4.0, the NF fault-free model outputs immedi-

ately fit the process model outputs so that they overlap each other. So there

are six straight lines, not three straight lines in the figure.

4. From hour 6 to hour 8, the operating points of both variables are set at 15

percent ([dVsp; dTsp] = [27 m3, 5.25 ◦C]): from hour 6.1, the NF fault-free model

outputs gradually fit the process model outputs and reach the same steady state.

5. From hour 8 to hour 10, the operating points of both variables are set at 30

percent ([dVsp, dTsp] = [54 m3, 10.5 ◦C]): from hour 8.2, the NF fault-free model

outputs gradually fit the process model outputs and reach the same steady state.

Figure 5.3 (a) shows that the NF fault-free model outputs for “staircase 1” pro-

vide a good steady state match with the process model outputs, so the NF fault-free

model should have good performance.
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5.4.2 The Second “Staircase” Plot

In a similar study, Figure 5.3 (b) shows the NF fault-free model outputs for the

second “staircase”: From hour 0 to hour 2, the operating point of the measured vol-

ume is set at −30 percent and the measured mix temperature is set at 30 percent

([dVsp, dTsp] = [−54 m3, 10.5 ◦C]); from hour 2 to hour 4, the operating point of the

measured volume is set at -15 percent and the measured mix temperature is set at

15 percent ([dVsp, dTsp] = [−27 m3, 5.25 ◦C]); from hour 4 to hour 6, the operating

points of both variables are nominal ([dVsp, dTsp] = [0, 0]); from hour 6 to hour 8, the

operating point of the measured volume is set at 15 percent and measured mix tem-

perature is set at -15 percent ([dVsp; dTsp] = [27 m3,−5.25 ◦C]); from hour 8 to hour

10, the operating point of the measured volume is set at 30 percent and measured mix

temperature is set at -30 percent ([dVsp, dTsp] = [54 m3,−10.5 ◦C]). Again, Figure 5.3

(b) shows that the NF fault-free model outputs for “staircase 2” also provide a good

steady-state match with the process model outputs.

5.5 Diagnosis of Single Anomalies

5.5.1 Procedure

In this study, we develop and test our approach for diagnosing one anomaly (fault or

disturbance) may occur in the JCSTR system. We train the Neuro-Fuzzy models and

see how they can diagnose these ten anomalies after they occur. We set the setpoint

of the measured volume and measured mix temperature to two different values to test

the robustness of the NF model. A few figures are included in the body of this thesis

to illustrate the process, and the rest are included in Appendix B.
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5.5.2 Using the Neuro-Fuzzy Model in the Nominal Case

In this case, the normal operating point of the volume and temperature are nominal

(dVsp = 0, dTsp = 0). The system starts in a fault-free condition, and an anomaly is

introduced at hour 2. Data are acquired from hour 0 to hour 5 for fault detection

and isolation testing at the rate of 0.6 sample/min.

1 Fault Detection Stage

All ten anomalies are displayed in the figure and tables that follow. Two of these

anomalies are discussed as examples to illustrate the detection stage, and the

other anomalies are attached in Appendix B. From the results, all the anomalies

can be detected if they occur one at a time. In Figure 5.4, the plus variables

indicate the NF model outputs under normal conditions, and the star variables

indicate the system process outputs in faulty conditions.

Figure 5.4 (a) shows the effect of a low mix inflow disturbance which decreases

by 50 percent at hour 2 . The heating fluid temperature decreases by 35 per-

cent, the measured mix temperature increases by 7 percent and then returns to

normal condition, and the measured volume decreases by 8 percent and then

returns to normal. Thus, all of the three output variables have changes.

Figure 5.4 (b) shows the effect of a faulty temperature sensor which decreases

by 20 percent at hour 2 . The heating fluid temperature increases by 6 percent,

the measured mix temperature decreases by 20 percent, and the measured vol-

ume has no change. Two of the output variables have changes.

30



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

20

40

60

80

100

Detection Stage 
Heating Fluid Temperature (T

J
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
32

33

34

35

36

Measured Mix Temperature (T
T
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
160

170

180

190

 Measured Volume (V
T
)

Time (hrs)

NF fault−free model output
Process output in faulty condition

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
100

105

110

115

Detection Stage 
Heating Fluid Temperature (T

J
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
25

30

35

Measured Mix Temperature (T
T
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
170

175

180

185

190

 Measured Volume (V
T
)

Time (hrs)

NF fault−free model output
Process output in faulty condition

(a) Anomaly 1 (b) Anomaly 7

Figure 5.4: Anomaly Detection in the Nominal Case

In the detection stage, from hour 0 to hour 2, the Neuro-Fuzzy model is in the

normal condition, so there is no anomaly in the system. Based on the fault-free

Neuro-Fuzzy model NF0, we detect an anomaly in the system soon after hour

2. Some other results are attached in Appendix B.

2 Fault Isolation Stage

In the isolation stage, from hour 2 to hour 5, we use a bank of Neuro-Fuzzy

faulty models NF1 to NF10 (which are developed offline) to isolate each of the

ten anomalies.

In Figure 5.5 to Figure 5.9, the plus variables indicate the NF model outputs in

normal conditions, the circle variables indicate the NF model outputs in faulty

conditions, and the solid variables indicate the system process outputs in faulty
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Figure 5.5: Anomaly Isolation Stage 1 in Nominal Case
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Figure 5.6: Anomaly Isolation Stage 1 in the Nominal Case
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Figure 5.7: Anomaly Isolation Stage 1 in the Nominal Case

conditions. The solid variables are used to determine whether NF faulty models

have good performance.

Table 5.3 and Table 5.4 show the two isolation stages and results, using the

Neuro-Fuzzy models. For the three output variables, each variable has a pair of

values which constitute the “symptoms” used for isolation, as discussed below.

Note that the “threshold” and “range” used in categorizing symptoms below

were determined by the operating range of each variable and the need to mini-

mize false alarms.

For the heating fluid temperature, TJ0 = 104.1092 ◦C is the value in nor-

mal conditions, and other values of P (TJ) are recorded, namely the mini-

mum (TJmin) or maximum (TJmax) values in the faulty condition. We define

∆P (TJ) = TJmax − TJ0 or ∆P (TJ) = TJ0 − TJmin, accordingly. The threshold

(δ(TJ)) for the normal condition is determined to be 3 ◦C, i.e, a value within
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‘±3 ◦C’ indicates that the output is normal, and its pattern is denoted by ‘0’.

When ∆P (TJ) value is above or below the threshold 3 ◦C, an anomaly in the

system is detected. The range (Λ(TJ)) of different degrees is determined to be

16 ◦C. If ∆P (TJ) value is between ‘3◦C’ and ‘19 ◦C’, its pattern is denoted by

‘+’. If ∆P (TJ) value is between ‘19 ◦C ′ and ‘35 ◦C’, its pattern is denoted by

‘++’, and so on. If ∆P (TJ) value is between ‘−19 ◦C’ and ‘−3 ◦C’, its pattern is

denoted by ‘−’. If ∆P (TJ) value is between ‘−35 ◦C’ and ‘−19 ◦C’, its pattern

is denoted by ‘−−’, and so on.

For the measured mix temperature, TT0 = 33.5265 ◦C is the value in nor-

mal conditions, and other values of P (TT ) are recorded, namely the mini-

mum (TTmin) or maximum (TTmmax) values in the faulty condition. We define

∆P (TT ) = TTmax − TT0 or ∆P (TT ) = TT0 − TTmin, accordingly. The thresh-

old (δ(TT )) for the normal condition is determined to be 1 ◦C, a value within

‘±1 ◦C’ indicates that the output is normal, and its pattern is denoted by ‘0’.

When ∆P (TT ) value is above or below the threshold 1 ◦C, an anomaly in the

system is detected. The range (Λ(TT )) of different degrees is determined to be

4 ◦C. If ∆P (TT ) value is between ‘1 ◦C’ and ‘5 ◦C’, its pattern is denoted by

‘+’. If ∆P (TT ) value is between ‘5 ◦C’ and ‘9 ◦C’, its pattern is denoted by

‘++’, and so on. If ∆P (TT ) value is between ‘−5 ◦C’ and ‘−1 ◦C’, its pattern

is denoted by ‘−’. If ∆P (TT ) value is between ‘−9 ◦C’ and ‘−5 ◦C’, its pattern

is denoted by ‘−−’, and so on.

For the measured volume, VT0 = 180.3020 m3 is the value in normal conditions,

and other values of P (VT ) are recorded, namely the minimum (VTmin) or max-

imum (VTmax) value in the faulty condition. We define ∆P (VT ) = VTmax − VT0
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or ∆P (VT ) = VT0 − VTmin, accordingly. The threshold (δ(VT )) for the normal

condition is determined to be 5 m3, i.e. a value within ‘±5 m3’ indicates that

the output is normal, and its pattern is denoted by ‘0’. When ∆P (VT ) value is

above or below the threshold 5 m3, an anomaly in the system is detected. The

range (Λ(VT )) of different degrees is determined to be 16 m3. If ∆P (VT ) value

is between ‘5 m3’ and ‘21 m3’, its pattern is denoted by ‘+’. If ∆P (VT ) value

is between ‘21 m3’ and ‘37 m3’, its pattern is denoted by ‘++’, and so on. If

∆P (VT ) value is between ‘−21 m3’ and ‘−5 m3’, its pattern is denoted by ‘−’.

If ∆P (VT ) value is between ‘−37 m3’ and ‘−21 m3’, its pattern is denoted by

‘−−’, and so on.

Thus, in Table 5.3 to Table 5.4, those patterns are denoted by ‘0’, ‘−’, ‘−−’,

‘−−−’, ‘+’, ‘++’, and ‘−⇒0’ based on the behavior of ‘unchanged ’, ‘decreases

to low degree’, ‘decreases to very low degree’, ‘decreases to very very low degree’,

‘increases to high degree’, ‘increases to very high degree’, and ‘increases from

low degree to normal condition’ symptoms.

Returning to Figure 5.5 to Figure 5.7 and Table 5.3, we see that during the first

isolation stage can isolate the 2nd, 3rd, 5th, 7th, 8th, and 10th anomalies by

hour 2.1.

Figure 5.8 to Figure 5.9 and Table 5.4 show the second isolation stage. By hour

2.5, the three output variables for the last four anomalies have different patterns

and sizes. We can isolate the 1st, 4th, 6th, and 9th anomalies within 30 minutes.
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Fault Isolation, Stage 1

Heating Fluid Temperature Measured Mix Temperature Measured Volume

P (TJ ) = [ TJ0 TJmax ] or P (TT ) = [ TT0 TTmax ] or P (VT ) = [ VT0 VTmax ] or

P (TJ ) = [ TJmin TJ0 ], ◦C P (TT ) = [ TTmin TT0 ], ◦C P (VT ) = [ VTmin VT0 ], m3

Anomaly Pattern Size Pattern Size Pattern Size

2nd + [104.1092 110.1360] − [29.8881 33.5265] + [180.3020 196.1848]

3rd + [104.1092 111.0231] − [31.7965 33.5265] 0 [180.2768 180.3020]

5th − [89.1025 104.1092] − [30.3771 33.5265] 0 [180.3020 180.5776]

7th + [104.1092 111.5119] −− [28.1455 33.5265] 0 [180.3020 180.7830]

8th − [97.2710 104.1092] 0 [33.5265 33.6023] − [162.0445 180.3020]

10th − [101.0274 104.1092] 0 [32.8348 33.5265] 0 [180.3020 180.3476]

Table 5.3: Fault Isolation Stage 1 in the Nominal Case

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
20

40

60

80

100

The 1st Anomaly−−Low Mix Inflow
Heating Fluid Temperature (T

J
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
32

34

36

38

 Measured Mix Temperature (T
T
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

160

170

180

190

Measured Volume (V
T
)

Time (hrs)

NF fault−free model output
Process output in faulty condition
NF

1
 faulty model output

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
80

90

100

110

The 4th Anomaly−−High Inlet Temperature
Heating Fluid Temperature (T

J
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
33

34

35

36

Measured Mix Temperature (T
T
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
170

175

180

185

190

Measured Volume (V
T
)

Time (hrs)

NF fault−free model output
Process output in faulty condition
NF

4
 faulty model output 
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Figure 5.8: Anomaly Isolation Stage 2 in the Nominal Case
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Figure 5.9: Anomaly Isolation Stage 2 in the Nominal Case

Fault Isolation, Stage 2

Heating Fluid Temperature Measured Mix Temperature Measured Volume

P (TJ ) = [ TJ0 TJmax ] or P (TT ) = [ TT0 TTmax ] or P (VT ) = [ VT0 VTmax ] or

P (TJ ) = [ TJmin TJ0 ], ◦C P (TT ) = [ TTmin TT0 ], ◦C P (VT ) = [ VTmin VT0 ], m3

Anomaly Pattern Size Pattern Size Pattern Size

1st −−− [66.5292 104.1092] 0 [33.5265 34.0617] −⇒0 [169.5783 180.3020]

4th − [87.1606 104.1092] 0 [33.5265 33.9386 ] 0 [180.1590 180.3020]

6th −⇒ 0 [100.3641 104.1092] 0 [33.5265 33.7141] 0 [179.3016 180.3020]

9th − [98.0391 104.1092] 0 [33.5265 33.8371] ++ [180.3020 201.6231]

Table 5.4: Fault Isolation Stage 2 in the Nominal Case
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3 Summary

The above two isolation stages in the nominal case are shown in Table 5.5. The

♥ indicates the isolated anomalies. So all the anomalies can be isolated 30

minutes after they occur.

Fault Isolation Stages

Anomaly From Hour 2.1 - Stage 1 From Hour 2.5 - Stage 2

1st ♥
2nd ♥ ♥
3rd ♥ ♥
4th ♥
5th ♥ ♥
6th ♥
7th ♥ ♥
8th ♥ ♥
9th ♥
10th ♥ ♥

Table 5.5: Fault Isolation Stages in the Nominal Case

5.5.3 Ten Percent Offset of the Neuro-Fuzzy Model

In this section, the operating point of the measured volume is decreased 10 per-

cent (dVsp = −18 m3), the measured mix temperature is also decreased 10 percent

(dTsp = −3.35 ◦C), and we use the same Neuro-Fuzzy models to diagnose anomalies

under this level of offset.

1 Fault Detection Stage
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All ten anomalies are displayed in the figures and tables that follow. Two of

these anomalies are discussed as examples to illustrate the detection stage, and

the other anomalies are attached in Appendix B. From the results, all the sin-

gle anomalies can be detected. In Figure 5.10, the plus variables indicate the

NF model outputs under normal conditions, and the star variables indicate the

system process outputs in faulty conditions.
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Figure 5.10: Anomaly Detection at Ten Percent Offset

Figure 5.10 (a) shows the effect of a low mix inflow disturbance faulty behav-

ior which decreases by 50 percent at hour 2. The heating fluid temperature

decreases by 36 percent, the measured mix temperature increases by 6 percent

and returns to normal condition, and the measured volume decreases by 10 per-

cent and then get back to normal. Thus all of the three output variables have

changes.
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Figure 5.10 (b) shows faulty behavior of a faulty temperature sensor which de-

creases by 20 percent at hour 2. The heating fluid temperature increases by

15 percent, the measured mix temperature decreases by 21 percent, and the

measured volume has no change. Two of the output variables have changes.

In the detection stage, from hour 0 to hour 2, the Neuro-Fuzzy model is in the

normal condition, so there is no anomaly in the system. Based on the fault-free

Neuro-Fuzzy model NF0, we detected an anomaly in the system just after hour

2. The other results are attached in Appendix B.

2 Fault Isolation Stage

In the isolation stage, from hour 2 to hour 5, we use the same bank of Neuro-

Fuzzy faulty models NF1 to NF10 (which are developed offine) to isolate each

of the ten anomalies.

In Figure 5.11 to Figure Figure 5.16, the plus variables indicate the NF model

outputs in normal conditions, the circle variables indicate the NF model out-

puts in faulty conditions, and the solid variables indicate the system process

outputs in faulty conditions. The solid variables are used to determine whether

NF faulty models have good performance. Table 5.6 and Table 5.7 show the

results of the isolation stages using the Neuro-Fuzzy models. For the three out-

put variables, as before, each variable has a pair of values which constitute the

“symptoms” used for isolation, as discussed below.

For the heating fluid temperature, TJ0 = 96.6733 ◦C is the value in normal con-

ditions, and other values of P (TJ) are recorded, namely the minimum (TJmin)
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or maximum (TJmax) values in the faulty condition. The determination of the

threshold in normal condition, the determination of the range of different de-

grees, and the determination of different patterns are the same as the nominal

case.

For the measured mix temperature, TT0 = 30.2185 ◦C is the value in normal con-

ditions, and other values of P (TT ) are recorded, namely the minimum (TTmin)

or maximum (TTmax) value in the faulty condition. The determination of the

threshold in normal condition, the determination of the range of different de-

grees, and the determination of different patterns are the same as the nominal

case.

For the measured volume, VT0 = 161.7959 m3 is the value in normal condition,

and other values of P (VT ) are recorded, namely the minimum (VTmin) or maxi-

mum (VTmax) value in the faulty condition. The determination of the threshold

in normal condition, the determination of the range of different degrees, and

the determination of the different patterns are the same as the nominal case.

Thus, in Table 5.6 to Table 5.7, those patterns are denoted by ‘0’, ‘−’, ‘−−−’,

‘+’, ‘+ + +’, ‘+⇒0’, and ‘−⇒0’ based on the behavior of ‘unchanged ’, ‘de-

creases to low degree’, ‘decreases to very very low degree’, ‘increases to high

degree’, ‘increases to very very high degree’, ‘decreases from high degree to nor-

mal condition’, and ‘increases from low degree to normal condition’ symptoms.

Figure 5.11 to Figure 5.13 and Table 5.6 illustrate the first isolation stage. From
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Figure 5.11: Anomaly Isolation Stage 1 at Ten Percent Offset
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Figure 5.12: Anomaly Isolation Stage 1 at Ten Percent Offset
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Figure 5.13: The 10th Anomaly, Isolation Stage 1 at Ten Percent Offset

hour 2.1, the three output variables of different anomalies have different pat-

terns and sizes. We can isolate the 3rd, 5th, 6th, 9th, and 10th anomalies soon

after they occur.

Fault Isolation, Stage 1

Heating Fluid Temperature Measured Mix Temperature Measured Volume

P (TJ ) = [ TJ0 TJmax ] or P (TT ) = [ TT0 TTmax ] or P (VT ) = [ VT0 VTmax ] or

P (TJ ) = [ TJmin TJ0 ], ◦C P (TT ) = [ TTmin TT0 ], ◦C P (VT ) = [ VTmin VT0 ], m3

Anomaly Pattern Size Pattern Size Pattern Size

3rd + [96.6733 112.5615] −⇒ 0 [28.6010 30.2185] 0 [161.7959 162.1454]

5th − [84.5856 96.6733] − [28.8635 30.2185] 0 [161.7724 161.7959]

6th +⇒ 0 [96.6733 100.2204] 0 [30.2185 30.7516] 0 [161.7959 162.5652]

9th − [83.8178 96.6733] 0 [30.2185 30.7991] + + + [161.7959 204.1402]

10th + [96.6733 101.7396] + [30.2185 31.3336] 0 [161.7959 162.5476]

Table 5.6: Fault Isolation Stage 1 at Ten Percent Offset

Figure 5.14 to Figure 5.16 and Table 5.7 illustrate the second isolation stage.

From hour 2.5, the three output variables of different anomalies have different

patterns and sizes. We can isolate the 1st, 2nd, 4th, 7th, and 8th anomalies
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within 30 minutes.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

60

80

100

120

The 1st Anomaly−−Low Mix Inflow
Heating Fluid Temperature (T

J
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
28

30

32

34

 Measured Mix Temperature (T
T
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
140

150

160

170

180

Measured Volume (V
T
)

Time (hrs)

NF fault−free model output
Process output in faulty condition
NF

1
 faulty model output

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
70

80

90

100

110

120

The 2nd Anomaly−−High Mix Inflow
Heating Fluid Temperature (T

J
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
25

30

35

Measured Mix Temperature (T
T
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
160

170

180

190

200

Measured Volume (V
T
)

Time (hrs)

NF fault−free model output
Process output in faulty condition
NF

2
 faulty model output

(a) Anomaly 1 (b) Anomaly 2

Figure 5.14: Anomaly Isolation Stage 2 at Ten Percent Offset

Fault Isolation, Stage 2

Heating Fluid Temperature Measured Mix Temperature Measured Volume

P (TJ ) = [ TJ0 TJmax ] or P (TT ) = [ TT0 TTmax ] or P (VT ) = [ VT0 VTmax ] or

P (TJ ) = [ TJmin TJ0 ], ◦C P (TT ) = [ TTmin TT0 ], ◦C P (VT ) = [ VTmin VT0 ], m3

Anomaly Pattern Size Pattern Size Pattern Size

1st −−− [61.0641 96.6733] 0 [30.2185 30.6767] −⇒ 0 [151.8216 161.7959]

2nd + [96.6733 110.1360] − [27.5978 30.2185] + [161.7959 177.8241]

4th − [80.3966 96.6733] 0 [30.2185 30.4359] 0 [161.7959 162.1668]

7th + [96.6733 112.0293] − [26.7357 30.2185] 0 [161.7959 162.0533]

8th − [84.7866 96.6733] 0 [30.0791 30.2185] 0 [159.0385 161.7959]

Table 5.7: Fault Isolation Stage 2 at Ten Percent Offset
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Figure 5.15: Anomaly Isolation Stage 2 at Ten Percent Offset
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Figure 5.16: The 8th Anomaly, Isolation Stage 2 at Ten Percent Offset
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3 Summary

The above two isolation stages are shown in Table 5.8. The ♥ indicates the

successfully isolated anomalies. So all the anomalies can be isolated after they

occur.

Fault Isolation Stages

Anomaly From Hour 2.1 - Stage 1 From Hour 2.5 - Stage 2

1st ♥
2nd ♥
3rd ♥ ♥
4th ♥
5th ♥ ♥
6th ♥ ♥
7th ♥
8th ♥
9th ♥ ♥
10th ♥ ♥

Table 5.8: Fault Isolation Stages at Ten Percent Offset

5.5.4 Thirty Percent Offset of the Neuro-Fuzzy Model

In this study, when the operating points of the measured volume and the measured

mix temperature are both decreased 30 percent (dVsp = −54 m3, dTsp = −10 ◦C), we

use the same Neuro-Fuzzy models to diagnose anomalies under this level of offset.

We obtain the following results; note that the procedure is identical to the previous

discussions, so it is only briefly outlined here.

1 Fault Detection Stage
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The same two anomalies are presented in Figure 5.17. Again, detection is suc-

cessful for each anomaly.
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(a) Anomaly 1 (b) Anomaly 7

Figure 5.17: Anomaly Detection Stage at Thirty Percent Offset

2 Fault Isolation Stage

As before, at hour 2 to hour 5, we switch to the same bank of Neuro-Fuzzy

faulty models (NF1 to NF10) to isolate the anomalies. Table 5.9 illustrates

the first isolation stage. From hour 2.1, we can isolate the 2nd, 3rd, 5th, and

8th anomalies soon after they occur. Table 5.10 illustrates the second isolation

stage. From hour 2.5, we can isolate the 4th, 6th, 7th, and 10th anomalies

within 30 minutes. Table 5.11 illustrates the third isolation stage. From hour

3, we can isolate the 1st and 9th anomalies within one hour after they occur.

At this time all anomalies are successfully isolated.
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Fault Isolation, Stage 1

Heating Fluid Temperature Measured Mix Temperature Measured Volume

P (TJ ) = [ TJ0 TJmax ] or P (TT ) = [ TT0 TTmax ] or P (VT ) = [ VT0 VTmax ] or

P (TJ ) = [ TJmin TJ0 ], ◦C P (TT ) = [ TTmin TT0 ], ◦C P (VT ) = [ VTmin VT0 ], m3

Anomaly Pattern Size Pattern Size Pattern Size

2nd ++ [79.4174 99.2282] 0 [23.3031 23.3934] + [126.8561 141.2388]

3rd ++ [79.4174 100.1229] 0 [23.1282 23.3934] 0 [126.1383 126.8561]

5th −⇒ 0 [72.748 79.4174] 0 [23.3934 24.0187] 0 [126.5575 126.8561]

8th − [69.3263 79.4174 ] 0 [23.2022 23.3934] −⇒ 0 [119.1147 126.5575]

Table 5.9: Fault Isolation Stage 1 at Thirty Percent Offset

Fault Isolation, Stage 2

Heating Fluid Temperature Measured Mix Temperature Measured Volume

P (TJ ) = [ TJ0 TJmax ] or P (TT ) = [ TT0 TTmax ] or P (VT ) = [ VT0 VTmax ] or

P (TJ ) = [ TJmin TJ0 ], ◦C P (TT ) = [ TTmin TT0 ], ◦C P (VT ) = [ VTmin VT0 ], m3

Anomaly Pattern Size Pattern Size Pattern Size

4st −− [58.3150 79.4174] 0 [23.1692 23.3934] 0 [126.3843 126.8561]

6th 0 [78.0660 79.4174] 0 [23.3934 23.5368] 0 [125.8870 126.8561]

7th ++ [79.4174 111.2284] 0 [23.3934 24.0695] 0 [126.0907 126.8561]

10th ++ [79.4174 104.6838] ++ [23.3934 28.7420] 0 [126.4515 126.8561]

Table 5.10: Fault Isolation Stage 2 at Thirty Percent Offset

Fault Isolation, Stage 3

Heating Fluid Temperature Measured Mix Temperature Measured Volume

P (TJ ) = [ TJ0 TJmax ] or P (TT ) = [ TT0 TTmax ] or P (VT ) = [ VT0 VTmax ] or

P (TJ ) = [ TJmin TJ0 ], ◦C P (TT ) = [ TTmin TT0 ], ◦C P (VT ) = [ VTmin VT0 ], m3

Anomaly Pattern Size Pattern Size Pattern Size

1st −− [51.3361 79.4174] 0 [23.4659 23.3934] 0 [124.6005 126.8561]

9th −− [59.4132 79.4174] 0 [23.4245 23.3934] + + + + + [126.8561 206.4055]

Table 5.11: Fault Isolation Stage 3 at Thirty Percent Offset
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3 Summary

The above three isolation stages are shown in Table 5.12. The ♥ indicates the

successfully isolated anomalies. The figures are attached in Appendix B.

Fault Isolation Stages

Anomaly From Hour 2.1 - Stage 1 From Hour 2.5 - Stage 2 From Hour 3.0 - Stage 3

1st ♥
2nd ♥ ♥ ♥
3rd ♥ ♥ ♥
4th ♥ ♥
5th ♥ ♥ ♥
6th ♥ ♥
7th ♥ ♥
8th ♥ ♥ ♥
9th ♥
10th ♥ ♥

Table 5.12: Fault Isolation Stages at Thirty Percent Offset
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Chapter 6

Sequential Fault Diagnosis in the

JCSTR System

Here, we consider situations when two anomalies occur sequentially. At hour t1, the

first anomaly occurs, and some time later, at hour t2, the second anomaly occurs. The

set point of the measured volume is dVsp = −18 m3, and the set point of the measured

mix temperature is dTsp = −3.35 ◦C. We use Neuro-Fuzzy models to detect the time

of these two anomalies, and also isolate both of these two anomalies after they occur.

Note that −10 percent set points were used here, again to check robustness.

6.1 Detection of Sequential Faults

In Figure 6.1, the plus variables indicate the Neuro-Fuzzy Model in normal conditions

and the star variables indicate the process in faulty conditions. In the following two

examples, at hour 2, the first anomaly occurs, and at hour 3.5, the second anomaly

occurs in sequence.
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(a) Anomalies F1 Then F3 (b) Anomalies F1 Then F7

Figure 6.1: The Detection Stage Case

Figure 6.1 (a) shows that two anomalies occur sequentially. The first anomaly is

the low mix inflow disturbance which occurs at hour 2. The second anomaly is the

low inlet temperature disturbance, which occurs at hour 3.5. The initial transients

are caused by the −10 percent set point change at t=0, and are thus ignored.

1. After hour 2, the first output, heating fluid temperature, decreases below the

normal condition. After hour 3.5, the first output increases a little, due to the

second anomaly, but it is still below the normal condition.

2. After hour 2, the second output, measured mix temperature, increases a little

above the normal condition and returns to normal condition. After hour 3.5,

there is a small transient; it seems the second anomaly has very little effect on

the state of the measured mix temperature variable.

3. After hour 2, the third output, measured volume, decreases below the normal

condition and then gradually returns to normal condition. After hour 3.5, the

third output stays normal. It is not affected by the second anomaly, since an
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inlet temperature disturbance does not excite the volume dynamics.

In Figure 6.1 (b), the first anomaly is the low mix inflow disturbance, which occurs

at hour 2, and the second anomaly is the faulty temperature sensor, which occurs at

hour 3.5.

1. At hour 2, the first output, heating fluid temperature, decreases below the

normal condition. At hour 3.5, the first output suddenly increases greatly and

rises above the normal condition, due to the second anomaly, and then gradually

decreases below the normal condition again.

2. At hour 2, the second output, measured mix temperature increases a little,

decreases again, and quickly returns to normal condition. At hour 3.5, the

second output suddenly decreases far below the normal condition, increases

above normal and then returns to normal. It seems the second anomaly affects

this variable significantly.

3. At hour 2, the third output, measured volume, decreases below normal condition

and then gradually returns to normal condition. At hour 3.5, the third output

stays normal. The second anomaly does not affect this variable.

In the detection stage, from hour 0 to hour 2, the process and Neuro-Fuzzy model

are in normal condition, so there is no anomaly in the system. Based on the fault-

free Neuro-Fuzzy model NF0, we detected the first anomaly just after hour 2, then

after hour 3.5, another anomaly is detected. The next step after hour 2 is to start

monitoring NF1−NF10 models to perform the isolation stage, and prepare to detect

and isolate the second anomaly at hour 3.5. Other results are attached in Appendix C.
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6.2 Isolation of Sequential Faults

In this section, we will see how the Neuro-Fuzzy model can isolate the sequential faults

after they occur. In Figure 6.2, the plus variables indicate the NF model output in

normal conditions NF0, the circle variables indicate the appropriate Neuro-Fuzzy

model outputs of sequential faults (NFk or NFk,j, please see below) and the solid

variables indicate the system process outputs in faulty conditions. The solid vari-

ables are used to determine whether NF faulty models have good performance. The

first anomaly occurs at hour 2, the second anomaly occurs at hour 3.5.
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Figure 6.2: Sequential Faults Isolation Stage

From hour 2 (just after detection), we switch to the first bank of NF faulty mod-

els NFk, k = 1, 2, ..., 10, in order to isolate the first anomaly and detect the second

one. From hour 3.5 (just after the second detection), we switch to a second bank

of NF faulty models NFk,j, j = 1, 2, ..., 10, where the index k is determined by the

first anomaly isolated. We use these Neuro-Fuzzy models to isolate the second fault.

Table 6.1 and Table 6.2 show the isolation stages of the sequential faults, using the
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Neuro-Fuzzy models. For the three output variables, each variable is defined by two

values, and corresponding patterns are denoted by ‘0’, ‘−’, ‘−−’, ‘+’, etc., as before.

Sequential Fault Isolation Stage, F1 Then F4

Heating Fluid Temperature Measured Mix Temperature Measured Volume

P (TJ ) = [ TJ0 TJmax ] or P (TT ) = [ TT0 TTmax ] or P (VT ) = [ VT0 VTmax ] or

P (TJ ) = [ TJmin TJ0 ], ◦C P (TT ) = [ TTmin TT0 ], ◦C P (VT ) = [ VTmin VT0 ], m3

Anomaly Pattern Size Pattern Size Pattern Size

1st −− [61.0641 96.6733] 0 [30.2185 30.6767] −⇒ 0 [151.8216 161.7959]

4th −−− [54.4783 96.6733] 0 [30.1683 30.2185] 0 [161.7959 162.2172]

Table 6.1: Sequential Faults Isolation Stage, F1 Then F4

Sequential Fault Isolation Stage, F1 Then F10

Heating Fluid Temperature Measured Mix Temperature Measured Volume

P (TJ ) = [ TJ0 TJmax ] or P (TT ) = [ TT0 TTmax ] or P (VT ) = [ VT0 VTmax ] or

P (TJ ) = [ TJmin TJ0 ], ◦C P (TT ) = [ TTmin TT0 ], ◦C P (VT ) = [ VTmin VT0 ], m3

Anomaly Pattern Size Pattern Size Pattern Size

1st −− [61.0641 96.6733] 0 [30.2185 30.6767] −⇒ 0 [151.8216 161.7959]

10th + [96.6733 104.1228] + + + [30.2185 43.4662] 0 [161.7959 162.2112]

Table 6.2: Sequential Faults Isolation Stage, F1 Then F10

For the sequential anomalies in Figure 6.2 (a), the first anomaly is isolated at hour

2.5 (after large transients have decayed): the heating fluid temperature decreases, the

measured mix temperature increases and returns to normal, and the measured volume

decreases and then returns to normal condition. Table 6.1 shows the patterns and

sizes of the three outputs for the first anomaly. This anomaly is low mix inflow dis-

turbance, the first anomaly of the ten anomalies. At this time we monitor the model

NF1 to detect any further faults that might occur. Immediately after hour 3.5 the sec-

ond fault is detected and we switch to the bank of NF models NF1,1, NF1,2, ..., NF1,10.
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At hour 3.6, Figure 6.2 (a) shows that the three output variables begin to change

due to the second anomaly. The heating fluid temperature decreases again, the mea-

sured mix temperature does not change, and the measured volume does not change.

Table 6.2 shows the pattern and size of the second anomaly, which matches the pat-

tern of model NF1,4, so we isolate the anomaly as high inlet temperature disturbance,

the fourth anomaly of the ten anomalies. The patterns and sizes of the other NF1,j

models, j 6= 4 do not match, so the isolation is clear. These two anomalies have

different patterns and sizes, so we can isolate this sequential faults after they occur.

For the sequential anomalies in Figure 6.2 (b), the first anomaly is isolated at hour

2.5: the heating fluid temperature decreases, the measured mix temperature increases

and quickly returns to normal, and the measured volume decreases and then returns

to normal condition. Table 6.2 shows the pattern and size of the first anomaly. This

anomaly is low mix inflow disturbance, the first anomaly of the ten anomalies. Again,

at this time we monitor the model NF1 to detect any further faults that might occur.

At hour 3.6, Figure 6.2 (b) shows that the three output variables begin to change

due to the second anomaly. The heating fluid temperature increases above the normal

condition, the measured mix temperature increases gradually above the normal con-

dition, and the measured volume does not change. Table 6.2 shows the pattern and

size of the second anomaly, which matches the pattern of model NF1,10, so we isolate

the anomaly as faulty heating fluid inflow valve fault, the tenth anomaly. These two

anomalies have different patterns and sizes, so we can isolate these sequential faults

after they occur. Some other results are included in Appendix C.
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Chapter 7

Neuro-Fuzzy Identification for
Arbitrary Fault Size

7.1 Introduction

There are 10 different anomalies considered previously of known size. Low mix inflow

and high mix inflow disturbances are the same type of anomaly, although they have

different signs, we combine them into one anomaly, F1: Mix Inflow Disturbance. Low

inlet temperature and high inlet temperature disturbances can be combined as F2:

Inlet Temperature Disturbance, and low heating fluid temperature and high heating

fluid temperature can be combined as F3: Heating Fluid Temperature Disturbance.

The other four anomalies are unchanged, so there are seven anomalies listed in the

following:

1. F1: Mix Inflow Disturbance

2. F2: Inlet Temperature Disturbance

3. F3: Heating Fluid Temperature Disturbance

4. F4: Faulty Temperature Sensor Fault
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5. F5: Faulty Volume Sensor Fault

6. F6: Faulty Outflow Valve Fault

7. F7: Faulty Heating Fluid Inflow Valve Fault.

In previous chapters, we considered anomalies of specific known size. Here we

show how to deal with anomalies of unknown magnitude. We use the Neuro-Fuzzy

model to generate symptoms that can be used to identify the seven anomalies by

applying different fault size changes. We consider ten fault size cases: ±0.2, ±0.4,

±0.6, ±0.8, and ±1.0. Each anomaly is applied with those 10 fault sizes, and we use

the NF model to produce their symptoms. This creates a mapping of symptom size

versus anomaly size that can be used with a pattern matching algorithm to solve the

isolation problem for arbitrary anomaly sizes.

7.1.1 Identifying the Faults

In Figure 7.1, the star variables indicate the symptoms of F2: Inlet Temperature

Disturbance, the circle variables indicate the symptom of F7: Faulty Heating Fluid

Inflow Valve Fault, and the plus variables indicate the NF model in normal condition.

The values plotted show the deviations caused by anomalies ranging from -100 per-

cent to 100 percent in the three outputs monitored for symptom evaluation. Table

7.1 shows the symptoms of F2 and F7 anomalies for ten fault size cases (these cases

are combined in the figures and tables to save space). As before, each “symptom” is

defined by two values.

In this Figure, the X axis indicates ten different fault sizes from −1.0 to +1.0, and

the Y axes indicate the three output symptoms that are produced by the NF models
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Figure 7.1: Output Variable Patterns for F2 and F7
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corresponding to these ten fault size cases. As before, they are called “pattern sizes”,

for a range of fault sizes rather than a fixed fault size. Corresponding to each fault size,

its “pattern size” is represented by three pairs of values, which are shown in Table 7.1.

For the heating fluid temperature variable, Figure 7.1(a) and Table 7.1 show its

pattern sizes; F2 and F7 have different pattern sizes for all fault sizes. For the mea-

sured mix temperature variable, Figure 7.1(b) and Table 7.1 show its pattern sizes;

F2 and F7 have similar pattern sizes at fault sizes ±0.2, ±0.4, and +0.6, but have

different pattern sizes for other fault sizes. For the measured volume variable, Figure

7.1(c) and Table 7.1 show its pattern sizes; F2 and F7 have similar pattern sizes for

all fault sizes.

These observations show that we need to consider the three output variables to

isolate the two anomalies. As the heating fluid temperature has totally different pat-

tern sizes for F2 and F7 for all fault size cases, we can isolate F2: Inlet Temperature

Disturbance and F7: Faulty Heating Fluid Inflow Valve Fault. Some other results are

attached in Appendix D.
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Fault Isolation Stage for F2 and F7

Heating Fluid Temperature Measured Mix Temperature Measured Volume

P (TJ ) = [ TJ0 TJmax ] or P (TT ) = [ TT0 TTmax ] or P (VT ) = [ VT0 VTmax ] or

P (TJ ) = [ TJmin TJ0 ], ◦C P (TT ) = [ TTmin TT0 ], ◦C P (VT ) = [ VTmin VT0 ], m3

Anomaly Fault Size Pattern Size Fault Size Pattern Size Fault Size Pattern Size

F2 -0.2 [130.1909 132.7838] -0.2 [32.8694 33.6885] -0.2 [126.0776 126.0445]

F2 -0.4 [130.1909 134.7964] -0.4 [31.7103 33.6885] -0.4 [126.0445 126.0804]

F2 -0.6 [130.1909 135.7571] -0.6 [30.3517 33.6885] -0.6 [126.0445 126.0704]

F2 -0.8 [130.1909 136.9463] -0.8 [28.7868 33.6885] -0.8 [125.9414 126.0445]

F2 -1.0 [130.1909 137.3262] -1.0 [27.8875 33.6885] -1.0 [125.9975 126.0445]

F2 0.2 [121.7667 130.1909] 0.2 [33.6885 34.3623] 0.2 [126.0445 126.0513]

F2 0.4 [113.5679 130.1909] 0.4 [33.6885 34.8769] 0.4 [126.0178 126.0445]

F2 0.6 [105.1324 130.1909] 0.6 [33.6885 35.4049] 0.6 [125.9773 126.0445]

F2 0.8 [97.8745 130.1909] 0.8 [33.6885 35.9842] 0.8 [126.0445 126.1425]

F2 1.0 [89.4537 130.1909] 1.0 [33.6885 36.5718] 1.0 [125.9821 126.0445]

F7 -0.2 [126.8499 130.1909] -0.2 [33.0051 33.6885] -0.2 [126.0445 126.0611]

F7 -0.4 [121.5481 130.1909] -0.4 [31.9813 33.6885] -0.4 [126.0112 126.0445]

F7 -0.6 [112.8213 130.1909] -0.6 [30.2849 33.6885] -0.6 [126.1042 126.0445]

F7 -0.8 [92.0940 130.1909] -0.8 [26.0341 33.6885] -0.8 [125.9017 126.0445]

F7 -1.0 [10.2109 130.1909] -1.0 [10.0619 33.6885] -1.0 [125.9563 126.0445]

F7 0.2 [130.1909 133.1452] 0.2 [33.6885 34.3217] 0.2 [125.8826 126.0445]

F7 0.4 [130.1909 134.0199] 0.4 [33.6885 34.5756] 0.4 [125.9560 126.0445]

F7 0.6 [130.1909 136.3253] 0.6 [33.6885 34.7037] 0.6 [126.0445 126.0595]

F7 0.8 [130.1909 137.5921] 0.8 [33.6885 35.0510] 0.8 [126.0232 126.0445]

F7 1.0 [130.1909 138.3256] 1.0 [33.6885 35.1985] 1.0 [126.0445 126.0948]

Table 7.1: Fault Isolation Stage for F2 and F7
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7.2 Fault Size and Type Identification

7.2.1 Objective

In this section, we assume we know the pattern sizes for the seven anomalies for 10

fault sizes, based on offline simulation. The objective is to determine the type and

size of an unknown anomaly using the interpolation method.

7.2.2 Fault Size and Type Identification
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Figure 7.2: The Pattern Figure of One Symptom

1 Interpolation Stage:

As shown in Figure 7.2, from the negative side to the positive side of the X axis,

there are 10 bins, each bin corresponding to two fault sizes. The fault sizes for

the first bin are −1.0 and −0.8, the fault sizes for the second bin are −0.8 and
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−0.6, and so forth; again, these pattern sizes are known from offline simulation.

Once the data or pattern of an unknown anomaly is determined, we can use

the interpolation method to determine its corresponding type and size. For

a given pair of values of an unknown fault, the normal value is the same,

TJ0 = 130.1909 ◦C, TT0 = 33.6885 ◦C, VT0 = 126.0445 m3, only the minimum or

the maximum value is used to interpolate into each bin to get its corresponding

fault size.

Matlab has a command interp1 which is used for interpolation. For our case, we

use XI = interp1(Y, X, Y I,′ linear′), to find XI: the value of the underlying

fault size X at the points in the vector Y I. The vector Y specifies the points

at which the value X is given, and ‘linear’ indicates that the method is linear

interpolation. In our case, X indicates the known 10 fault sizes which are from

−1.0 to +1.0 and Y indicates the known datum corresponding to the known

fault sizes X. Y I indicates the known datum corresponding to the unknown

fault size XI, we can use the interpolation method to get the unknown fault

size XI. For example, if Y I is 42 in Figure 7.2 then interp1 returns the value

XI = −0.88.

There are seven faults, and each fault has three outputs, so all faults together

have 21 figures. The number of faults are denoted by j, j = 1 : 7, and the

number of output variables are denoted by i, i = 1 : 3. The output variables

are heating fluid temperature, measured mix temperature, and measured vol-

ume temperature. The known data (pattern sizes) are expressed as Yij, so Yij

indicates the pattern size of the ith output variable for the jth fault. The Yij
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datum is interpolated into all the figures and corresponding values of Xij are

obtained. If for some fault j, X1j = X2j = X3j, then we declare that anomaly

and fault size are the diagnosis result. If they are different, this fault j is not

the underlying anomaly. To account for data and computer accuracy, the match

cannot be exact, so we set two thresholds, θ1 = 0.98 and θ2 = 1.02. If the ratio

of pattern sizes for any two output variables is between θ1 and θ2, we can regard

them as a match. This is the fault type and size we are seeking.

7.2.3 Interpolation Results

To illustrate this process for an unknown anomaly, the following patterns for the three

output variables were provided as a “blind test”:

• heating fluid temperature:[130.1909 147.2763] ◦C

• measured mix temperature:[33.6885 34.9419] ◦C

• measured volume:[126.0231 126.0445] m3

The following is the diagnosis result:

The following fault is isolated, as the three output variables have the same size:

The number of the fault = 3

The size of TJ = 0.14981

The size of TT = 0.15

The size of VV = 0.15
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In this result, ‘The number of the fault = 3 ’ indicates j = 3, ‘The size of TJ =

0.14981 ’ indicates X13 = 0.14981, ‘the size of TT = 0.15 ’ indicates X23 = 0.15, and

‘the size of VV = 0.15 ’ indicates X33 = 0.15. The ratio of pattern sizes for any two

output variables is X13

X23
= 0.9987, X13

X33
= 0.9987, and X23

X33
= 1.0. All the ratios are

between θ1 and θ2; we can regard them as a match, so the third fault, in which the

fault size = 0.15 is what we seek.

7.3 Neuro-Fuzzy Model Practical Application

7.3.1 Objective

The Neuro-Fuzzy model NF0 provided a good steady-state input/output map, as

shown in section 5.3, which enables it to adapt to different conditions. Using the

Neuro-Fuzzy models for a real world plant by using only the fault-free model to iden-

tify all the faults can eliminate the difficulty of having to train a bank of NF models

for all fault scenarios using plant data. Training many NF models from plant data is

impractical, the approach described here is feasible.

7.3.2 Producing Pattern Data Using the JCSTR Model

In Figure 7.3, the faulty data u(t) produced by the JCSTR system simulation model

are applied to the Neuro-Fuzzy fault-free model, which is denoted by ‘NF0 Model’.

The anomaly F4: Faulty Temperature Sensor Fault is given as an example to show the

method and results. In Figures 7.4, the circle variables indicate the output symptoms

produced using the Neuro-Fuzzy faulty model, the star variables indicate the output

symptoms produced using the Neuro-Fuzzy fault-free model, and the plus variable
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Figure 7.3: Pattern Data Produced by the JCSTR Model

indicates NF model in normal condition.

In Table 7.2, NF4 indicates the NF faulty temperature sensor model, and NF0

indicates the NF fault-free model. The results show that they have very similar pat-

tern sizes. Thus, using the Neuro-Fuzzy fault-free model, we can still develop the

pattern sizes which we need to identify the anomalies. This approach is also tested

successfully on the actuator, which is attached in Appendix D.
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Fault Isolation Stage for Fault-free Model NF0 and Faulty Model NF4

Heating Fluid Temperature Measured Mix Temperature Measured Volume

P (TJ ) = [ TJ0 TJmax ] or P (TT ) = [ TT0 TTmax ] or P (VT ) = [ VT0 VTmax ] or

P (TJ ) = [ TJmin TJ0 ], ◦C P (TT ) = [ TTmin TT0 ], ◦C P (VT ) = [ VTmin VT0 ], m3

NF Model Fault Size Pattern Size Fault Size Pattern Size Fault Size Pattern Size

NF4 -0.2 [130.1909 137.4885] -0.2 [28.1407 33.6885] -0.2 [126.0445 126.0913]

NF4 -0.4 [130.1909 137.6755] -0.4 [21.0861 33.6885] -0.4 [125.9895 126.0445]

NF4 -0.6 [130.1909 137.6915] -0.6 [14.3610 33.6885] -0.6 [125.9163 126.0445]

NF4 -0.8 [130.1909 137.6677] -0.8 [7.5943 33.6885] -0.8 [126.0445 126.0867]

NF4 -1.0 [130.1909 137.6796] -1.0 [0.0855 33.6885] -1.0 [126.0445 126.0899]

NF4 0.2 [101.6876 130.1909] 0.2 [33.6885 40.8116] 0.2 [126.0107 126.0445]

NF4 0.4 [75.0056 130.1909] 0.4 [33.6885 47.6371] 0.4 [126.0253 126.0445]

NF4 0.6 [50.6876 130.19091] 0.6 [33.6885 53.7948] 0.6 [126.0174 126.0445]

NF4 0.8 [30.1266 130.1909] 0.8 [33.6885 60.0501] 0.8 [125.9824 126.0445]

NF4 1.0 [11.6876 130.1909] 1.0 [33.6885 67.7864] 1.0 [125.8639 126.0445]

NF0 -0.2 [130.1909 138.3555] -0.2 [28.5322 33.6885] -0.2 [126.0445 126.1258]

NF0 -0.4 [130.1909 139.5521] -0.4 [21.7367 33.6885] -0.4 [126.0445 126.1185]

NF0 -0.6 [130.1909 139.3562] -0.6 [14.6028 33.6885] -0.6 [125.8754 126.0445]

NF0 -0.8 [130.1909 138.7673] -0.8 [8.0678 33.6885] -0.8 [126.0445 126.1139]

NF0 -1.0 [130.1909 138.9756] -1.0 [0.5365 33.6885] -1.0 [126.0445 126.1021]

NF0 0.2 [ 99.1389 130.1909] 0.2 [33.6885 41.6589] 0.2 [126.0445 126.1203]

NF0 0.4 [74.0199 130.1909] 0.4 [33.6885 47.0218] 0.4 [126.0445 126.0534]

NF0 0.6 [52.5622 130.1909] 0.6 [33.6885 52.6854] 0.6 [126.0445 126.0452]

NF0 0.8 [29.2541 130.1909] 0.8 [33.6885 61.5897] 0.8 [125.9842 126.0445]

NF0 1.0 [10.5892 130.1909] 1.0 [33.6885 68.0182] 1.0 [125.9412 126.0445]

Table 7.2: Fault Isolation Stage for NF0 and NF4
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7.3.3 Producing Pattern Data Using Sensor and Actuator

Matrices

Figure 7.5: Pattern Data Produced by Actuator and Sensor Matrices System

In Figure 7.5, the faulty patterns are produced by appropriately setting the actu-

ator matrix or sensor matrix for each fault in the real plant. The K-Actuator Matrix

is used to model all the actuator faults: the diagonal elements are Ka1, ...Kak, where

k indicates the number of each actuator. If any Kai ( i ∈ 1, . . . , k) is not unity, the

kth actuator is faulty, e.g, Ka2 = 0.8 corresponding to a −20 percent fault in actuator

2. In our case, the K-Actuator Matrix corresponds to the five inputs. The K-Sensor

Matrix is used to model all the sensor faults in a similar way. The diagonal elements

are Ks1, ...Ksj, where j indicates the number of each sensor. In our case, j = 1, 2, 3

corresponding to the three output variables. The faulty pattern sizes are produced by

the K-Actuator Matrix and K-Sensor Matrix in series with the Neuro-Fuzzy fault-free

model and controller in a closed-loop configuration (Figure 7.5). The results should

show that it produces similar results with the former method, so we should not re-

quire numerous NF faulty models, we can just use the fault-free NF model. This

study remains to be done as future work.
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Chapter 8

Thesis Observations

8.1 Summary and Conclusions

1. The literature review of FDI using quantitative model-based approaches, quali-

tative model-based approaches, and process history-based approaches has been

outlined in this thesis.

2. The concept and construction of Neuro-Fuzzy systems have been systematically

explained.

3. For a JCSTR system, Neuro-Fuzzy models have been implemented to diagnose

single faults, and their robustness to setpoint change was tested. It is a new

approach that not only can diagnose the sensor and actuator faults, but also

can diagnose disturbances.

4. Neuro-Fuzzy models were also tested to diagnose sequential faults, which is a

novel approach.

5. The Neuro-Fuzzy model approach was extended to identify faults of arbitrary

size, extending robustness by developing nonlinear symptom mapping interpo-

lations, which is also a novel technique.

69



6. Finally, as another novel approach, deriving the Neuro-Fuzzy models NFk for

the real world plant by using only the fault-free model to identify all the fault

symptoms eliminated the problem of having to train a large bank of NF models

for all fault scenarios.

8.2 Future Work

The future work is to use the Neuro-Fuzzy fault-free model to identify the faults using

the faulty data produced by the K-Actuator Matrix and K-Sensor Matrix, as outlined

in section 7.3.3. It should produce similar results with the former method, so we need

not use many NF faulty models, just use the NF fault-free model.
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Appendix A

A Benchmark Model of a Stirred
Tank Heater

A.1 Objective

Consider a jacketed stirred tank heater reactor as shown in Figure A.1, where the

tank inlet stream is received from another process unit. The objective is to raise the

temperature of the inlet stream to a desired value and maintain volume in the tank

at a specific setpoint. A heat transfer fluid is circulated through a jacket to heat the

fluid in the tank. In some processes steam is used as the heat transfer fluid and most

of the energy transported is due to the phase change of steam to water. In other

processes a heat transfer fluid is used where there is no phase change. In this module

we assume that no change of phase occurs in either the tank fluid or the jacket fluid.

We also do not consider chemical reactions in this model.

A.2 Developing the Dynamic Model

1 In order to find the dynamic modeling equations of the tank and jacket tempera-

tures, we make the following assumptions:

• Constant volume and liquids with constant density and heat capacity.

• Perfect mixing in both the tank and jacket.
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Figure A.1: Jacketed Continuously Stirred Tank Reactor (JCSTR)

• The tank inlet flow rate, jacket flow rate, tank inlet temperature and jacket

inlet temperature may change (these are the inputs).

• The rate of heat transfer from the jacket to the tank is governed by the

equation, Q = UA(Tj − T ), where U is the overall heat transfer coefficient

and A is the area for heat transfer.

2 The following are the variables :

• A: Area for heat transfers

• Cp: heat capacity (energy/mass*temp)

• F : Volumetric Flow rate (volume/ time )

• ρ: Density (mass/volume)

• T : Temperature

• t: time

• Q: rate of heat transfer (energy/time)

• τ : heat transfer coefficient (energy/time*area*temp)

• V : volume
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3 The following are the subscripts:

• i: inlet

• j: jacket

• ji: jacket inlet

• ref : reference state

• s: steady-state

4 Equations:

• Material balance around tank: accumulation = inflow - outflow;

dV ρ

dt
= Fiρ− Fρ (A.1)

• Thermal energy balance around tank: accumulation = heat in inflow +

heat via heat transfer - heat in outflow.

dV ρCρ(T − Tref )

dt
= FρiCρ(Ti − Tref ) + Q− FρCρ(T − Tref )

Q = UA(Ti − T )

dT

dt
=

F

V
(Ti − T ) +

UA(TJ − T )

V ρCρ

(A.2)

• Energy balance in the jacket: accumulation =heat in inflow + heat via

heat transfer - heat in outflow:

d(VjρjCρj(Tj − Tref ))

dt
= FjρjCρj(Tji − Tref)−Q− FjρjCρj(Tj − Tref )

Q = UA(Ti − T )

dTj

dt
=

Fj

Vj

(Tji − Tj) +
UA(Tj − T )

VjρjCρj

(A.3)
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Equations A.1 to Equation A.3 represent the open loop nonlinear model

of the JCSTR heater.

5 The design parameters are the following:

Diameter of the reactor (m): Dr = 5

Reactor Height (m): Hr = 2Dr

Reactor volume (m3):

Vr =
pi

2
(D3

r)

Area for heat transfer (m2):

A =
9

4
pi(D2

r)

Heat capacity (j/kgK): Cρ = 4.1868 ∗ 1000

Mixture inflow (m3/s): Fin = 0.1

Mixture Outflow (m3/s): Fout = 0.1

Mixture Volume (m3): V = 180

Density (kg/m3): ρ = 997.95

Temperature of the mixture feed (K): Tin = 10 + 273

Temperature of the mixture (K): Tss = 34.7602 + 273

Heating water inflow (m3/s) : Fjin = 0.15

Heating water Outflow (m3/s): Fjout = 0.15

Heating water Volume (m3): Vj = 9

Temperature of the heating water feed (K): Tjin = 120 + 273

Temperature of the heating water (K): Tj = 103.4932 + 273

Heat Transfer coefficient (W/m2.K): U = 851.74

Temp proportional gain: Kpt = 0.033114

Temp integral gain: Kit = 4.5929e− 005

Volume proportional gain: Kpv = 0.0024

Volume integral gain: Kiv = 1.4621e− 006
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Appendix B

Complementary Results of Single
Fault Diagnosis in JCSTR System

B.1 The Detection Stage of the Neuro-Fuzzy Model

in the Nominal Case

In this case, the normal operating point of the volume and temperature are nominal

(dVsp = 0, dTsp = 0). We use the NF models to diagnose the single anomaly. In

Figure B.1 to Figure B.4, The plus variables indicate the NF model output under

normal conditions, and the star variables indicate the system process output in ab-

normal conditions. From the results, all the anomalies can be detected if they occur

one at a time.

Figure B.1 (a) shows the effect of a high mix inflow disturbance which increases by

50 percent at hour 2. The heating fluid temperature increases to 5 percent, the mea-

sured mix temperature decreases to 15 percent, and the measured volume increases

to 8 percent. Thus all of the three output variables have changes.

Figure B.1 (b) shows the effect of a low inlet temperature disturbance which de-

creases by 50 percent at hour 2. The heating fluid temperature increases to 5 percent,

the measured mix temperature decreases to 8 percent, and the measured volume has

no change.
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Again, Figure B.2 and Figure B.4 show that the detection is successful for each

anomaly.
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Figure B.1: Anomaly Detection in Nominal Case
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Figure B.2: Anomaly Detection in Nominal Case
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Figure B.3: Anomaly Detection in Nominal Case
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Figure B.4: Anomaly Detection in Nominal Case
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B.2 The Detection Stage of Ten Percent Offset

Case

In this section, the operating point of the measured volume is decreased 10 per-

cent (dVsp = −18 m3), the measured mix temperature is also decreased 10 percent

(dTsp = −3.35 ◦C), and we use the same Neuro-Fuzzy models to diagnose anomalies

under this level of offset. Figure B.5 to Figure B.8 illustrate that detection is suc-

cessful for each anomaly.

Figure B.5 (a) shows the effect of a high mix inflow disturbance which increases

by 50 percent at hour 2. The heating fluid temperature increases to 14 percent, the

measured mix temperature decreases to 6 percent, and the measured volume increases

to 10 percent. Thus all of the three output variables have changes.

Figure B.5 (b) shows the effect of a low inlet temperature disturbance which decreases

by 50 percent at hour 2. The heating fluid temperature increases to 14 percent, the

measured mix temperature decreases to 4 percent, and returns to normal condition

gradually, and the measured volume has no change.

Once more, Figure B.6 to Figure B.8 show that the detection is successful for each

anomaly.
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Figure B.5: Anomaly Detection at Ten Percent Offset
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Figure B.6: Anomaly Detection at Ten Percent Offset
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Figure B.7: Anomaly Detection at Ten Percent Offset
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Figure B.8: Anomaly Detection at Ten Percent Offset
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B.3 The Detection Stage of Thirty Percent Offset

Case
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Figure B.9: Anomaly Detection in Thirty Robustness Case

In this study, when the operating point of the measured volume is decreased 30

percent (dVsp = −54 m3), and the measured mix temperature is also decreased 30

percent (dTsp = −10 ◦C), and we use the same Neuro-Fuzzy models to diagnose

anomalies under this level of offset. Figure B.9 to Figure B.11 illustrate the detection

stage. As before, detection is successful for each anomaly.
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Figure B.10: Anomaly Detection in Thirty Robustness Case
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Figure B.11: Anomaly Detection in Thirty Robustness Case
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Figure B.12: Anomaly Detection in Thirty Robustness Case
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B.4 The Isolation Stage of Thirty Percent Offset

Case

Figure B.13 to Figure B.15 shows the first isolation stage. From hour 2.1, we can

isolate 2nd, 3rd, 5th, and 8th anomalies soon after they occur.

Figure B.15 to Figure B.17 illustrates the second isolation stage. From hour 2.5,

we can isolate the 4th, 6th, 7th, and 10th anomalies within half hour after they occur.

Figure B.17 illustrates the third isolation stage. From hour 3, we can isolate the

1st and 9th anomalies within one hour after they occur.
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Figure B.13: Anomaly Isolation Stage 1 at Thirty Percent Offset
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Figure B.14: Anomaly Isolation Stage 1 at Thirty Percent Offset
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Figure B.15: Anomaly Isolation Stage 2 at Thirty Percent Offset
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Figure B.16: Anomaly Isolation Stage 2 at Thirty Percent Offset
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Figure B.17: Anomaly Isolation Stage 3 at Thirty Percent Offset
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Appendix C

Complementary Results of
Sequential Faults diagnosis in
JCSTR System

C.1 Detection of the Sequential Faults
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Figure C.1: The Detection Stage Case

The following simulation results illustrate that we use the NF models to detect

the sequential faults.
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In Figure C.1, the plus variables indicate the Neuro-Fuzzy Model in normal condi-

tions and the star variables indicate the process in faulty conditions. In the following

two examples, at hour 2, the first anomaly occurs, and at hour 3.5, the second anomaly

occurs in sequence.

Figure C.1 (a) shows that two anomalies occur sequentially. The first anomaly is

the low mix inflow disturbance which occurs at hour 2. The second anomaly is the

high inlet temperature disturbance, which occurs at hour 3.5.

1. After hour 2, the first output, heating fluid temperature decreases below the

normal condition. After hour 3.5, the first output decreases again, due to the

second anomaly.

2. After hour 2, the second output, measured mix temperature increases a little

above the normal condition and quickly returns to normal condition. After hour

3.5, there is a small transient; it seems the second anomaly has very little effect

on the state of the measured mix temperature variable.

3. After hour 2, the third output, measured volume decreases below the normal

condition and then gradually returns to normal condition. After hour 3.5, the

third output stays normal. It is not affected by the second anomaly.

Figure C.1 (b) shows that two anomalies occur sequentially. The first anomaly is

the low mix inflow disturbance, which occurs at hour 2. The second anomaly is the

faulty outflow valve, which occurs at hour 3.5.

1. At hour 2, the first output, heating fluid temperature, decreases below the

normal condition. At hour 3.5, the first output suddenly increases greatly and

rises above the normal condition, due to the second anomaly.

2. At hour 2, the second output, measured mix temperature increases a little,
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decreases again, and quickly returns to normal condition. At hour 3.5, the sec-

ond output gradually decreases below the normal condition, due to the second

anomaly.

3. At hour 2, the third output, measured volume decreases below normal condition

and then gradually returns to normal condition. At hour 3.5, the third output

decreases to normal condition due to the second anomaly.

In the detection stage, from hour 0 to hour 2, the Neuro-Fuzzy model is in normal

condition, so there is no anomaly in the system. Based on the fault-free Neuro-Fuzzy

model NF0, by hour 2, we detected the first anomaly, then by hour 3.5, another

anomaly is detected.

C.2 Isolation of the Sequential Faults

In this section, we will see how the Neuro-Fuzzy model can isolate the sequential faults

after they occur. In Figure C.2, the plus variables indicate the NF model output in

normal conditions, the circle variables indicate the Neuro-Fuzzy model outputs of se-

quential faults, and the solid variables indicate the system process outputs in faulty

conditions. The solid variables are used to determine whether NF faulty models have

good performance. The first anomaly occurs from hour 2 to hour 3.5, the second

anomaly occurs from hour 3.5 to hour 5.

Table C.1 and Table C.2 show the isolation stages of the sequential faults, using

the Neuro-Fuzzy models. For the three output variables, as before, each variable is

defined by two values, and corresponding patterns are denoted by ‘0’, ‘-’, ‘–’, ‘+’,

etc., as before.

For the sequential anomalies in Figure C.2 (a), the first anomaly is isolated at hour

2.5, the heating fluid temperature decreases, the measured mix temperature increases
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Figure C.2: Sequential Faults Isolation Stage

Sequential Fault Isolation Stage, F1 Then F3

Heating Fluid Temperature Measured Mix Temperature Measured Volume

P (TJ ) = [ TJ0 TJmax ] or P (TT ) = [ TT0 TTmax ] or P (VT ) = [ VT0 VTmax ] or

P (TJ ) = [ TJmin TJ0 ], ◦C P (TT ) = [ TTmin TT0 ], ◦C P (VT ) = [ VTmin VT0 ], m3

Anomaly Pattern Size Pattern Size Pattern Size

1st −− [61.0641 96.6733] 0 [30.2185 30.6767] −⇒ 0 [151.8216 161.7959]

3th −− [72.2108 96.6733] 0 [30.1571 30.2185] 0 [161.7959 162.1122]

Table C.1: Sequential Faults Isolation Stage, F1 Then F3

Sequential Fault Isolation Stage, F1 Then F8

Heating Fluid Temperature Measured Mix Temperature Measured Volume

P (TJ ) = [ TJ0 TJmax ] or P (TT ) = [ TT0 TTmax ] or P (VT ) = [ VT0 VTmax ] or

P (TJ ) = [ TJmin TJ0 ], ◦C P (TT ) = [ TTmin TT0 ], ◦C P (VT ) = [ VTmin VT0 ], m3

Anomaly Pattern Size Pattern Size Pattern Size

1st −− [61.0641 96.6733] 0 [30.2185 30.6767] −⇒ 0 [151.8216 161.7959]

8th −−− [53.1220 96.6733] 0 [30.0289 30.2185] 0 [160.0693 161.7959]

Table C.2: Sequential Faults Isolation Stage, F1 Then F8
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and quickly returns to normal, and the measured volume decreases and then returns

to normal condition. Table C.1 shows the pattern and size of the first anomaly. This

anomaly is low mix inflow disturbance, the 1st anomaly of the ten anomalies.

At hour 3.6, Figure C.2 (a) shows that the three output variables begin to change

due to the second anomaly. The heating fluid temperature increases, the measured

mix temperature does not change, and the measured volume does not change. Table

C.2 shows the pattern and size of the second anomaly, which matches the pattern of

model NF1,3, so we isolate the anomaly as low inlet temperature disturbance, the 3th

anomaly of the ten anomalies. These two anomalies have different patterns and sizes,

so we can isolate this sequential faults after they occur.

For the sequential anomalies in Figure C.2 (b), the first anomaly is isolated at hour

2.5, the heating fluid temperature decreases, the measured mix temperature increases

and quickly returns to normal, and the measured volume decreases and then returns

to normal condition. Table C.2 shows the pattern and size of the first anomaly. This

anomaly is low mix inflow disturbance, the 1st anomaly of the ten anomalies.

At hour 3.6, Figure C.2 (b) shows that the three output variables begin to change

due to the second anomaly. The heating fluid temperature decreases again, the mea-

sured mix temperature does not change, and the measured volume does not change.

Table C.2 shows the pattern and size of the second anomaly which matches the pat-

tern of model NF1,8, so we isolate the anomaly as faulty volume sensor fault, the 8th

anomaly of the ten anomalies. These two anomalies have different patterns and sizes,

so we can isolate this sequential faults after they occur.
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Appendix D

Complementary Results of
Neuro-Fuzzy Identification for
Arbitrary Fault Size

D.1 Identifying the Faults

In this section, we use the Neuro-Fuzzy model to identify the anomalies by applying

different fault size changes. The following results illustrate another example.

In Figure D.1 , the star variables indicate the symptoms of F1: Mix Inflow Dis-

turbance, the circle variables indicate the symptom of F6: Faulty Outflow Valve, and

the plus variables indicate the NF model in normal condition. Table D.1 shows the

symptoms of F1 and F6 anomalies for ten fault size cases (These cases are combined

in the figures and tables to save space). As before, each “symptom” is defined by two

values, which are shown in Table D.1.

For the heating fluid temperature variable, Figure D.1(a) and Table D.1 show its

pattern sizes. F1 and F6 have different pattern sizes for all fault sizes.

For the measured mix temperature variable, Figure D.1(b) and Table D.1 show

its pattern sizes. F1 and F6 have similar pattern sizes at fault sizes ±0.2, but have

different pattern sizes for other fault sizes.
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For the measured volume variable, Figure D.1(c) and Table D.1 show its pattern

sizes. F1 and F6 have different pattern sizes for all fault sizes.

We need to consider the three output variables to isolate the two anomalies. As

the heating fluid temperature and measured volume variables have totally different

pattern sizes for F1 and F6 for all fault size cases, we can isolate F1: Mix Inflow

Disturbance and F6: Faulty Outflow Valve.
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Figure D.1: Output Variable Patterns for F1 and F6
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Fault Isolation Stage for F1 and F6

Heating Fluid Temperature Measured Mix Temperature Measured Volume

P (TJ ) = [ TJ0 TJmax ] or P (TT ) = [ TT0 TTmax ] or P (VT ) = [ VT0 VTmax ] or

P (TJ ) = [ TJmin TJ0 ], ◦C P (TT ) = [ TTmin TT0 ], ◦C P (VT ) = [ VTmin VT0 ], m3

Anomaly Fault Size Pattern Size Fault Size Pattern Size Fault Size Pattern Size

F1 -0.2 [130.1909 110.9066] -0.2 [33.6885 35.0253] -0.2 [120.9763 126.0445]

F1 -0.4 [130.1909 91.4607] -0.4 [33.6885 36.5525] -0.4 [113.698 126.0445]

F1 -0.6 [130.1909 72.2061] -0.6 [33.6885 37.6848] -0.6 [107.3168 126.0445]

F1 -0.8 [130.1909 52.4649] -0.8 [33.6885 39.8864] -0.8 [101.8772 126.0445]

F1 -1.0 [130.1909 43.6067] -1.0 [33.6885 44.2223] -1.0 [97.8262 126.0445]

F1 0.2 [130.1909 136.3023] 0.2 [31.4334 33.6885] 0.2 [126.0445 132.4546]

F1 0.4 [130.1909 136.9372] 0.4 [29.4955 33.6885] 0.4 [126.0445 137.1152]

F1 0.6 [130.1909 137.5039] 0.6 [29.4974 33.6885] 0.6 [126.0445 141.7853]

F1 0.8 [130.1909 137.291] 0.8 [29.2291 33.6885] 0.8 [126.0445 141.8658]

F1 1.0 [130.1909 137.5116] 1.0 [29.6192 33.6885] 1.0 [126.0445 141.5723]

F6 -0.2 [97.299 130.1909] -0.2 [33.6885 34.5268] -0.2 [126.0445 200.5301]

F6 -0.4 [97.8644 130.1909] -0.4 [33.6885 34.9905] -0.4 [126.0445 200.5769]

F6 -0.6 [97.6249 130.1909] -0.6 [33.6885 35.0284] -0.6 [126.0445 201.9522]

F6 -0.8 [97.3916 130.1909] -0.8 [33.6885 35.1977] -0.8 [126.0445 201.7956]

F6 -1.0 [97.3982 130.1909] -1.0 [33.6885 35.1683] -1.0 [126.0445 201.9857]

F6 0.2 [130.1909 144.5512] 0.2 [16.7401 33.6885] 0.2 [5.032 126.0445]

F6 0.4 [130.1909 144.1619] 0.4 [16.5693 33.6885] 0.4 [5.2079 126.0445]

F6 0.6 [130.1909 144.7405] 0.6 [16.4106 33.6885] 0.6 [5.4762 126.0445]

F6 0.8 [130.1909 144.7842] 0.8 [16.1144 33.6885] 0.8 [5.4103 126.0445]

F6 1.0 [130.1909 144.6244] 1.0 [16.335 33.6885] 1.0 [5.0811 126.0445]

Table D.1: Fault Isolation Stage for F1 and F6
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D.2 Neuro-Fuzzy Model Practical Application

D.2.1 Producing Data Using the JCSTR System

For a real world plant, we use the fault-free Neuro-Fuzzy models to identify all the

faults. This can eliminate the difficulty of having to train a bank of NF models for

all fault scenarios using plant data. The anomaly F7: Faulty Heating Fluid Inflow

Valve Fault is given as another example to show the method and results. Figures D.2,

the circle variables indicate the outputs symptoms produced using the Neuro-Fuzzy

faulty model. The star variables indicate the output symptoms produced using the

Neuro-Fuzzy fault-free model. The plus variable indicates NF model in normal con-

dition.

In Table D.2, NF7 indicates the NF faulty heating fluid inflow valve model, and

NF0 indicates the NF fault-free model. The results show that they have very similar

pattern sizes. Thus, using the Neuro-Fuzzy fault-free model, we can still identify the

anomalies.
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Figure D.2: Output Variable Patterns for F7
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Fault Isolation Stage for Fault-free Model NF0 and Faulty Model NF7

Heating Fluid Temperature Measured Mix Temperature Measured Volume

P (TJ ) = [ TJ0 TJmax ] or P (TT ) = [ TT0 TTmax ] or P (VT ) = [ VT0 VTmax ] or

P (TJ ) = [ TJmin TJ0 ], ◦C P (TT ) = [ TTmin TT0 ], ◦C P (VT ) = [ VTmin VT0 ], m3

NF Model Fault Size Pattern Size Fault Size Pattern Size Fault Size Pattern Size

NF7 -0.2 [126.8499 130.1909] -0.2 [33.0051 33.6885] -0.2 [126.0445 126.0611]

NF7 -0.4 [121.5481 130.1909] -0.4 [31.9813 33.6885] -0.4 [126.0112 126.0445]

NF7 -0.6 [112.8213 130.1909] -0.6 [30.2849 33.6885] -0.6 [126.1042 126.0445]

NF7 -0.8 [92.0940 130.1909] -0.8 [26.0341 33.6885] -0.8 [125.9017 126.0445]

NF7 -1.0 [10.2109 130.1909] -1.0 [10.0619 33.6885] -1.0 [125.9563 126.0445]

NF7 0.2 [130.1909 133.1452] 0.2 [33.6885 34.3217] 0.2 [125.8826 126.0445]

NF7 0.4 [130.1909 134.0199] 0.4 [33.6885 34.5756] 0.4 [125.9560 126.0445]

NF7 0.6 [130.1909 136.3253] 0.6 [33.6885 34.7037] 0.6 [126.0445 126.0595]

NF7 0.8 [130.1909 137.5921] 0.8 [33.6885 35.0510] 0.8 [126.0232 126.0445]

NF7 1.0 [130.1909 138.3256] 1.0 [33.6885 35.1985] 1.0 [126.0445 126.0948]

NF0 -0.2 [127.1545 130.1909] -0.2 [33.7770 33.6885] -0.2 [126.0445 126.1232]

NF0 -0.4 [120.3331 130.1909] -0.4 [32.2322 33.6885] -0.4 [126.0445 126.1773]

NF0 -0.6 [111.8213 130.1909] -0.6 [29.1643 33.6885] -0.6 [126.0445 126.2174]

NF0 -0.8 [93.0364 130.1909] -0.8 [25.7273 33.6885] -0.8 [126.0445 126.0573]

NF0 -1.0 [9.2182 130.1909] -1.0 [9.7511 33.6885] -1.0 [126.0445 126.1296]

NF0 0.2 [130.1909 132.3659] 0.2 [33.6885 34.3102] 0.2 [125.9598 126.0445]

NF0 0.4 [130.1909 133.6348 ] 0.4 [33.6885 34.6608] 0.4 [126.0445 126.1612]

NF0 0.6 [130.1909 135.4073] 0.6 [33.6885 34.9781] 0.6 [126.0445 126.1608]

NF0 0.8 [130.1909 137.0429] 0.8 [33.6885 35.2796] 0.8 [126.0445 126.1512]

NF0 1.0 [130.1909 137.8317] 1.0 [33.6885 35.5141] 1.0 [125.9191 126.0445]

Table D.2: Fault Isolation Stage for NF0 and NF7
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