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Abstract

Modeling and simulation of hybrid systems is an important procedure in control sys-
tem design and applications. A few commercial software tools offer a decent solution
for this need. However, the algorithms are not efficient, even inaccurate, for some
complicated dynamical systems. In this thesis, a new approach is introduced for the
modeling and simulation of hybrid systems. A modeling and simulation environment
is built within MATLAB. It utilizes a medium order variable step size numerical inte-
gration algorithm and an advanced state event handler to solve ordinary differential
equations. It also includes a rigorous time event handler for discrete-time parts of
the system. It is a general, accurate and efficient tool for modeling and simulation of

hybrid systems. Some examples to show these advantages are given in this thesis.
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Chapter 1

Introduction

1.1 Dynamical Control System Simulation

Modeling and simulation of dynamical control systems is a well established technical
discipline. The corresponding activity is widespread throughout the scientific and
engineering fields. Most dynamical control systems include nonlinear and computer-
controlled subsystems. For example, computer-controlled dynamical systems include
modern automobiles, appliances, automatic teller machines and so on; in higher tech-
nology areas they encompass flexible manufacturing systems, robots, intelligent ve-
hicles and highway systems, spacecraft, flight dynamics and control, chemical and
materials process control, automated drug administration and health monitoring sys-

tems, to name only a few more recent applications.

Modeling and simulation of a dynamical system may be used to predict the behavior



of a device that is in the early design stages of the development. It may also be used
to refine the design of a system, which has been prototyped or is targeted for redesign,
or to perform experiments that are difficult or impossible to execute in the real world,
such as studying failure modes in a flight control system or nuclear reactor control

logic.

Computer-controlled dynamical systems have significantly advanced in recent decades.
They have been developed and implemented in many areas. The physical components,
such as airframe, robot and chemical process, may not be much more complicated, but
the discrete-time components and computer control software have been developed to
a more complex and higher level. These developments have resulted in a large surge
of interest in “hybrid systems”, as the modern class of computer-controlled dynamical

systems has come to be called.

1.2 Hybrid Systems

The term “hybrid systems” is not yet sufficiently well understood in the literature
to mean one and only one specific article. A precise definition of the term “hybrid
system” must be provided before we sets out to define and implement a modeling and

simulation environment for such systems.

Based on the literature related to hybrid control systems, we can give a definition

for the term “hybrid systems” as follows: Hybrid systems are systems described,



either during the whole period under investigation or during a part of it, by a fixed
or variable set of differential equations where at least one state variable or one state

derivative is not continuous over a simulation run [2].

In a more straightforward way, the term “hybrid systems” can also be expressed
as: Hybrid systems are composed by interconnecting continuous-time components
(cTCs), discrete-time components (DTCs), and logic-based components (LBCs) in some

arbitrary configuration [16].

CTCs can be expressed using Ordinary Differential Equations (ODEs). DTCs can be
expressed using Difference Equations (DEs). LBCs have no “generic form” in mathe-
matical terms. In fact, the term “DTC” mentioned previously can be considered to be
a special case of an LBC in some sense (e.g., both are realized in software). However,
we use DTCs for well-defined and commonplace discrete-time numerical algorithms as

DEs and LBCs for the components that are primarily logical or symbolic in nature.

1.3 Motivation

Modeling and simulation of hybrid systems is a challenging and complex task, which
has been gaining attention. Hybrid systems have became more and more common
and important in the real life. “Controlling with a digital computer is of growing
importance in many fields. The use of computers as a control device is attractive

mainly because of offering flexibility of the control programs and the decision-making



capability of digital systems which can be shared with control functions to meet
other system requirements [14].” Furthermore, modern hybrid control systems always

consist of a continuous plant under the control of a discrete-time system [12].

The problem is that “much of the work in modeling and simulation is being done
today with outmoded and possibly dangerous tools” [16]. Most commercial software
packages describe continuous-time systems using ODEs that are the functions of state
variable and time (e.g., the ‘S-function’ in SIMULINK). To introduce a notation, a

continuous-time system is expressed as:

T = f(t,z,u)

y=g(t,z,u)

where z is the state variable, t is the time, u is the input to the system, and y is the
system output. This modeling and simulation technology may be dangerous if the
derivative function f is different when the system is running in different modes. The
simulation software is not able to identify different stages correctly only from ¢, x and

u. Mode identification failure will cause an incorrect simulation result.

Moreover, the simulation software without the mechanism for handling the mode
change mentioned above could be inefficient for some dynamical systems (e.g., a DC

motor that has “stiction” or friction with sticking when velocity passes through zero).

All the trends illustrated above establish a requirement for a rigorous and efficient



modeling and simulation environment for hybrid systems. A lot of research in this

field has been done in the past few decades, but more remains to be done.

In 1979, Mr. Francois Edouard Cellier developed a simulation method for hybrid sys-
tems [2]. The method provided a algorithm for the state event handling. However,
this method was applied in Fortran in the early stage, so the user needs strong pro-
gramming skills. Thus, few people use this method today when commercial software

has become popular.

In 1993, Dr. Taylor creates a standard hybrid systems modeling language (SHSML),

which provided a rigorous means for modeling and evaluating hybrid systems [15].

Tsybatov, V. and Vittikh, V. created “General Modeling System (GMS)” and “Nat-
ural Simulation Language (NSL)” [23], which are still in the conceptual stage. Also,
Petri Nets (PN) is a powerful tool presented in the paper written by Rezai, M. in 1995
for the modeling of systems exhibiting concurrency and synchronization characteris-
tics [10]. Symbolic and interval methods for simulation of hybrid dynamic systems
are presented by Nedialko S. and Mohrenschildt [8]. Other related research can be
found in [7, 6, 5, 11, 22, 13]. The research mentioned above does not concentrate on

rigorous state event handling. So, those approaches did not solve the problem.

Recently, Dr. Taylor began to develop a rigorous modeling and simulation environ-
ment within MATLAB [18]. It can be considered as an implementation of “Hybrid

System Modeling Language (HSML)” [16] which is also created by Dr. Taylor as an



extension of SHSML. Since programming in MATLAB is very common for most engi-
neers, such environments become more and more user-friendly, and it is efficient due
to the use of advanced algorithms. So far, the environment development is still an on
going project [17]. The main disadvantage of the environment in [17] is that it cannot
handle discrete-time components. Thus, it cannot be used for hybrid systems. This
thesis is a continuation to extend the environment to be capable of handling hybrid
systems based on Dr. Taylor’s previous research, which included a “road map” for

this research [18, 20, 21].

The goal of this project is the creation of a rigorous, portable and “user-friendly”
environment for modeling and simulating hybrid systems. This will encompass both
physical processes with discontinuities and discrete-time control algorithms. Such
an environment is the key for research and development activities in hybrid control:
If hybrid systems cannot be simulated correctly, then all attempts to verify system

designs and behavior are open to question.



Chapter 2

Background Review

Before introducing the environment developed by this thesis, we will briefly review

several related formulations and algorithms.

2.1 Continuous-time System Model Formulation

Most physical systems are modeled as continuous-time systems, since they can be

described using Ordinary Differential Equations (ODEs).
T = fc(xcaucat)

Ye = gc(xca Ue, t)



where z. is the state vector, y. is the output vector, u. is the continuous-time input

signal, and ¢ is the time.

2.2 Discrete-time System Model Formulation

Discrete-time systems can be normally represented using Difference Equations (DEs).

Tar = fk(Id,k—l ) Uk—1)

Ydr = gk(Id,k, Uk)

where x4 is the discrete state vector, k is the index corresponding to the discrete

time point ¢, ya is the output vector, and uy is the input of discrete-time system.

2.3 Algorithms to Solve ODEs

Simulating continuous-time systems involves solving their ODEs for a given initial
condition xy(tg) and input w.(t),t > to. From a mathematical point of view, solving
ODEs can be done analytically by performing Laplace Transform on linear ODEs.
However, for general nonlinear systems analytic solution is not possible, so a computer
solves ODEs in a different way. It involves a series of numerical integration steps. Each

point in the trajectory is calculated from the derivatives that are provides by the ODEs.

The algorithms for solving ODEs include the Euler algorithm, the modified Euler



algorithm, the Runge-Kutta algorithm and so on. The Runge-Kutta algorithm is a
medium order method. It is known to be a very accurate and well-behaved algorithm

for a wide range of problems.

The Runge-Kutta family of algorithms provides a method to solve a differential equa-

tion numerically (i.e., approximately). Considering a single variable problem

= f(t,x)

with initial condition x(0) = xy. Assume z,, is the value of the variable at time ¢,.
A Runge-Kutta formula takes z,, and t,, and calculates an approximation for x, . at
a brief time later, t,,41 = t, + h. It uses a weighted average of values of f(¢,z) at

several times within the interval (¢,,t, + h). One standard formula [9] is given by

h
Tp+1 = Tp + g(kil + 2]62 + 2k‘3 + k?4)

where
kl = f(tmmn)
h h
k’z = f(tn —+ 5, X, + 5]61)
h h
ks = f(t, + 57 n + §k2)

k4 = f(tn + h, Ty + hkg)



To run the simulation, the computer simply starts with zy and find x; using the above

formula, then it uses x; to find x5 and so on.

The integration step size h should be small enough to ensure the calculation accuracy.
The smaller the step is, the more accurate the result is and the more time it will take.
If h is given before the integration process and fixed during the process, the algorithm
is called a fixed step size algorithm. If A can be varied by the algorithm during the
integration process, it is called a variable step size algorithm. The fixed step size
algorithm is easy to perform, but it has some disadvantages, which include that it is
not accurate enough when the system has a fast behavior and more time consuming
when the system has a slow behavior. Therefore, for different ODEs (systems), the
step should be different depending on how fast the system changes. Even in one
system, the step size may need to change from time to time to optimize the balance

between the accuracy and the execution time.

Thus, most simulation software uses variable step size algorithms instead of fixed step
size algorithms. The common examples of the variable step size algorithms include
“ode45” and “ode23” routines in MATLAB. The solver “ode4b” applies variable step
size integration algorithm based on the Runge-Kutta-Fehlberg formula. It adjusts
step size by calculating the error. It is a very efficient and accurate solver for most

of non-stiff systems and systems with continuous dynamics.

10



2.4 Difficulty of Modern Simulation

Although the solvers like “ode45” are perfect for most continuous systems, they are
not efficient for nonlinear systems with discontinuities and with discrete-time com-
ponents. Nonlinear systems and discrete systems have sudden changes in the system

behavior. The routine ‘ode45’ is invoked in the following form:
[T,X] = ODE45(‘ODEFUN’,TSPAN,XO0)

With TSPAN = [T0 TFINALJ, it integrates the system of differential equations

T = f(t,x)

from time TO to TFINAL with initial conditions X0. The ODEs are written as a
MATLAB function in a file named ‘ODEFUN.m’. It still does not answer the problem
mentioned in Section 1.3, if the derivative function f does vary depending on the

system modes.

A major difficulty in simulation is handling the sudden changes (discontinuities).
The sudden changes are called events, and two different cases can be distinguished

according to the nature of their occurrence [4].

State Fvents: The events which are produced when the continuous subsystem state
reaches some switching condition are called State Events. For example, a system with

a relay is a nonlinear system. The sudden change happens when the output of the

11



relay switches. When the input of an ideal relay varies crossing zero, the output of

relay will change the sign immediately. The switching of a relay is a state event.

Time Events: The events which occur at a given time, independently of what happens
in the continuous state, are called Time Events. An example could be a system with
a digital controller, which is a DTC. The output of a DTC is not continuous either;

the sudden change exists at every sampling point.

The previous environment of Dr. Taylor and Kebede [17] can handle state events but
not time events. In this thesis, a new mechanism is added for the time event handling

so that it is effective for the hybrid systems, as suggested and planned in [18, 20, 21].

12



Chapter 3

Software Framework Design

3.1 High-level Design

At the highest level, simulation software is designed as three parts. The basic frame-

work is shown in Figure 3.1.

o - State Variables,
Initial Condition elc Time, etc. -~
> >
Running Script Simulator System Model
Simulation Result  Derivative etc.
< <

Figure 3.1: The basic framework of the software

The Simulator is the core of the entire simulation environment. It should be able to
handle both ODEs and DEs. The algorithm used to solve ODEs is based on the MATLAB

routine ‘ode45.m’, which is a variable step medium order integration solver that works

13



very well for continuous ¢TCs. In previous work [17], a state event handler had been
added to make the Simulator more efficient for state event handling. In this thesis
project, a time event handler has been added so that the Simulator can handle time
events (i.e., solve DEs). With both the state event handler and the time event handler,
the Simulator is efficient for hybrid systems. The development of the Simulator is the

main task of entire software design.

The running script is normally a short program in MATLAB. It is written by the user.
The necessary contents of the running script include specifying the simulation time,
the initial conditions, the system model name and other required parameters. Users
can give commands in the running script to perform any other operations such as

plotting variables after simulation, depending on their requirements.

The system model is a MATLAB function that represents the dynamical system. It
is also created by the user and must be composed under certain rules so that the
Simulator can recognize the system. It plays the same role as the block diagram
in SIMULINK. To be convenient, several model templates are given in the software
package. Users can build the system model based on an appropriate model template.
The main contents that users need to specify are the initialization part, the ODEs for

CTCs, the DEs for DTCs if they exist, the state reset part and so on.

Before each system simulation process starts, the running script passes the system
model name, the simulation time, the initial conditions, etc. to the Simulator. Then,

the Simulator begins the simulation process. During the simulation process, data is

14



continually transferred between the Simulator and the system model. These data
flows are shown in Figure 3.2. After finishing the simulation process, the Simulator
returns the result to the running script. Finally, post-simulation operations (e.g.,

plotting figures) that are defined by users in the running script will be performed.

! -
X >
m -
L K
L y_d’k_ — >
te
——————— >
| _ _ndic _ _ ]
Simulator System
(ode45_sth.m) X Model
< r
X
« _ T _ _
<« _ _Yak_ _ _
t
< — — e(new) _
P sysout |

Figure 3.2: The interface between the solver and the system model

Figure 3.2 indicates the interface between the Simulator and the system model, where
t is the time, z is the state vector for cTCs, m is the mode vector, x4 is the state

vector for DTCs, y, is the output vector for DTCs, t. is the DTC execution time, ndtc

15



is the flag variable for invoking DTCs, ¢ is the switching function for state event
handling and r is the CTC state reset vector. The parameters indicated by solid
lines are mandatory for all system models. The parameters indicated by long-dashed
lines are optional parameters that are only necessary for systems that contain DTCs.
The variable sysout that is indicated by a short-dashed line is called the user-defined
output variable; it is used to record any system internal values the user may want
to access; it is optional whether or not DTCs are included. It can be a vector and is

optional for any system.

The interface structure is designed based on the “New MATLAB model component
input/output structures”, which was created by Dr. Taylor and Mr. Kebede [18, 20,
21]. The new components in the interface are the flag variable ndtc, the DTC output

vector y, and the user-defined output variable sysout.

3.2 System Model Framework Design

In order for the Simulator to be able to recognize and run the system model, the sys-
tem model must be composed in a rigorously defined form. Therefore, it is necessary

to design the system model framework before the Simulator design.
In previous work, the model was designed as two main parts:
e Initialization (e.g., setting the correct modes)

e Calculations for the simulation process (e.g., derivatives, switching functions,

16



reset values)

Variable mode is used to indicate which stage the ¢TC model is in for the current
integration step. It is a critical variable used to handle the state events. The state
event handling will be introduced specifically in Chapter 4. The initialization part
returns the initial switching function phi(¢). The variable mode is initialized as

mode = sign(phi).

In order to show the relation between mode and phi, an example is given as follows:

Figure 3.3 shows the behavior of a relay with deadzone, where y is the relay output

Ay
K —
5 5 >
— |k

Figure 3.3: A relay with deadzone

and x the is the relay input. In this example, variable mode can be used to represent
the on/off stage of the relay. When y = — K, the relay is reversed, mode = —1, and
the switching function of the relay is phi = x + ¢, i.e., the relay will switch when x
passes through the value —¢. Similarly, when y = K, the relay is on, mode = 1, the
switching function of the relay is pht = x — §. Finally, when —§ < x < ¢ the relay
is off and mode = 0. The initialization section sets phi based on the initial condition
o so the mode is consistent.

17



In the calculation part, the system model calculates the derivatives and the switching
function. This part has two sections. One is used in regular integration process. The

other one is used to determine what to do when state events happen.

Since the new software has DTC handler (time event handler), there should be another
calculation part in the system model exclusively for DTC updating. Therefore, the

new model framework was designed as:

1. Initialization

2. Calculation for cTcs for the simulation process
a. Derivative and switching function evaluation

b. State reset at state events

3. Calculation for DTCs for the simulation process

The initialization and calculation for CTC parts have the same structure as the pre-

vious model framework. The calculation for DTC part is used for DTCs update.

A system model template that corresponds to Figure 3.2 is included in the software

package, as shown below:

function

[xdot,phi,reset,xdp,yd,tep,sysout]=system_model(t,x,mode,xd,yd,te,ndtc)

hinitialization, executed with mode=[] (empty)

18



if isempty(mode) == true,
phi = ?7; % determined by x(t0)
xdot = [];
reset = [];

xdp = 7;

tep = 7; % cannot be smaller or equal to tO
sysout = ?7; %Auxiliary system output evaluation
return;

end

%CTC derivative, switching function and reset calculation

rf = max(abs(imag(mode)));

if rf == 0, 7 set derivative and switching function when mode is real
xdot = 7;
phi = 7;

reset = [];

xdp = xd;
yd = yd;
tep = te;

else 7% set CTC state reset value when mode is complex

xdot = [];

19



reset = 7;
xdp = xd;
yd = yd;

tep = te;

end

% update DTCs ready to be executed
for n = 1:length(ndtc)

if ndtc(n) == true,

tep(n) = 7;

xdp(?) = 7;

yd(n) = 7;
end

end

sysout=7; %Auxiliary system output evaluation

3.2.1 Initialization

In the first section, the initialization part, ¢ (phi) is the only mandatory parameter

that needs to be returned back to the Simulator. The variable ¢ is the switching

20



function corresponding to the initial condition. For example, considering a second
order system, which has three different stages, mode = 1 refers to stage A, mode = —1
refers to stage B and mode = 0 refers to motion on the switch line, as shown in Figure

3.4. Since there is only one switching function S no matter which state the simulation

S(x,t,mu)=0

Figure 3.4: A simple example to show the relation between initial mode and ¢

starts in, phi should be assigned to the switching function S.

o= S(t,x,m,u)

If the initial point is in stage A, ¢ should be a positive number; if the initial point
is in stage B, ¢ should be a negative number; if the initial point is on the switching

line, ¢ = 0.

If a system has DTCs, the variables for DTCS zqp11 (2dp), Ya i (Yd), tetnew) (tep) need

to be assigned also. The values of x4; and y4 are derived from the initial conditions

21



(x40) of the DTCs and the initial inputs (ug0) to the DTCs. The next execution time

tep for the DTC(s) should also be assigned.

3.2.2 c¢TC model evaluations

In the second part, the CTC state derivatives, switching functions and state resets are
calculated. &, ¢ and reset need to be assigned. If a system has DTCs, xdp, yd and

tep should be written in the exact form as shown in the template.

This part consists two independent sections. The first section is used for derivative
and switching function evaluation; the second section is used for reset value evaluation.
When mode is not complex, i.e., imag(mode) = 0, the first section is executed. When
mode is complex, i.e., imag(mode) # 0, the second section is executed. The simulator

makes mode complex to signal the model that it is time to reset the states, if necessary.

Variable mode is transferred from the Simulator. It does not become complex until
a state event is caught. Therefore, as long as no state event happens, only the first
section is executed. In this section, the state derivative vector & should be assigned
to the proper value; and, the switching function ¢ corresponding to the current state
and mode should be assigned. Variable reset can be assigned to any number or empty

since it will not be used by the Simulator.

When a state event happens, the Simulator converts mode to a complex number to
activate the second part to check if there is a reset value. In the second part, if the

system has a reset value, reset should be assigned to an appropriate value. Variable
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¢ can be assigned to any number except 0, unless the state event is an on-boundary
event (this will be introduced in more detail in Chapter 4). Variable & can be assigned

to any number or empty since it will not be used by the Simulator.

3.2.3 DTC model evaluations

The third part is used for DTC update. The variable ndtc is a vector used to indicate
which DTCs need to be updated. The length of ndtc equals to the number of DTCs.

The elements of ndtc are set to 1 if the corresponding DTCs need to be updated.

According to the system model template, if the Nth DTC should be updated, ndtc(N) =
1. Then tep(N) should be assigned to the next execution time for this DTC, and the
DTC output yd(N) should also be assigned to the output value. The DTC state vector
xdp should also be assigned. However, the index number(s) of zdp is (are) uncertain,

which should be specified by the user, as explained below (Section 5.1).

State variables and the derivatives, =, x4, © and z4541 are column vectors. Their
lengths equal to the summation of the order of each ¢TC or DTC. For example, if
a system has two CTCs — one is a second order CTC, and the other one is a third
order cTC, the length of x and & should be five; if a system has three DTCs — two
are first order DTCs, and the other one is a second order DTC, the length of 4 and
Z4,+1 should be four. The output of DTCs y,, and ¢, are also column vectors, whose
lengthes equal to the number of DTCs. Variable mode could be a vector, whose length

depends on how many switching functions the system has.
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A more detailed description of composing a hybrid system model will be given in

Chapter 7.
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Chapter 4

State Event Handling

The state-event handler is designed to permit more accurate and efficient integration
for cTcs that may have discontinuous behavior such as relays switching and me-
chanical components engaging/disengaging [18]. Without a state-event handler, the
difficulty is that there always exists overshoot when the integration step reaches the
switching points of discontinuities. Then the integration step size will be reduced and
the solver will calculate the error using a specific formula to determine if this revised
step size is acceptable. This process will be repeated until the error is smaller than
the tolerance (by default tol = le — 6). So, the switching point for a discontinuity is

detected by the error calculation and the accuracy depends on the error tolerance.

Using the error calculation to detect a switching point produces two major problems:
first, the switching point may be found after many times of step size reduction. In

this situation the simulation process becomes very slow since much simulation time is
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consumed around the switching point. Second, the actual switching point can not be
located accurately enough. Therefore, for example, the detected switching point in
each limit cycle of a relay system may be not exactly determined, so the limit cycle

will not be accurate.

Furthermore, without the state-event handler, a third problem arises: For some sys-
tems, the state variable need to be reset after state event happens. For example,
considering a bouncing ball system, the absolute velocity of the ball is reduced right
after the ball hits the floor due to the energy loss in the rebounding process. It is
impossible to reset the state variable using traditional ODE solvers (e.g., ‘ode45.m’

or ‘odel5.m’ etc. in MATLAB) and most existing software does not permit this.

There are three types of nonlinearities that are unpredictable (it is unknown when the
discontinuous behavior will happen before running the system). The events caused
by such nonlinearities are generated when the system state variables reach certain

switching conditions. These types are:

e Switch-Type Nonlinearities

e State-Changing Nonlinearities

e Structure-Changing Nonlinearities
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4.1 Handling Switch-Type Nonlinearities

The switch-type nonlinearities are most simple nonlinearities. The common examples
include Coulomb friction and the relay, which are modeled by a change in sign of a
friction term when the angular velocity passes through zero or making or breaking a
connection when a voltage crosses a threshold value, respectively. Substantial errors
in simulation may occur if such events can not be “captured” correctly [16], producing
results that may be quite misleading when stability is marginal and which might even

be confused with chaotic behavior in some cases.

The switch-type nonlinearities could be more complicated than above examples. In
general a switching event can be formulated in terms of an arbitrary switching func-
tion:

¢ - S(:L‘c,t,m,U)

and the switching boundary is:

S(ze,t,m,u) =0

where z. is the CTC state vector and m is the mode variable. For convenience, we

define a variable sgn is the sign of S (i.e., sgn = sign(S)).

To handle such an event, the simulation software must be able to catch the points
of sign changes in S. When such changes occur, the software should adjust the

integration step that resulted in the sign change until the event has “just happened”
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(S = 0). It is important that there can not be any switching event in each integration
step. After the software adjusted the integration step and got the point that could
be an intersection of the system trajectory and the switching function, the mode
variable m should be reassigned to be equal to sgn on the other side of the switching

boundary.

X; S(x,t,ilyfz,u):O
A (S>0) /
/
7
.~ B (§<0)
Paag \
/ X,
/
/
! System Trajectory

® Accepted Integration Points

O Unaccepted Integration Points

O Captured State Event

Figure 4.1: The example to show how state event handler works

The example shown in Figure 4.1 can be used to illustrate the process of handling
switching type nonlinearities. In Figure 4.1, the dash dot line is the switching bound-
ary S(z.,t,m,u) = 0 and the solid line is the system trajectory. The switching
boundary divides the state plane into two regions A and B. In region A, S > 0 and in

region B, S < 0. We suppose the system trajectory begins in region A. The trajectory
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is smooth in that region and integration is accurate and efficient. After several inte-
gration steps (represented by the solid squares), the trajectory tries to cross over the
switching boundary and the Simulator gets the next integration step (represented by
the empty square) where the switching function S becomes negative. The Simulator
watches the sign change in the switching function for each integration step before
each point is accepted. When the switching function changes sign, the Simulator will
discard the trial point (the empty square) due to the state event occurrence. Then,
the Simulator will find the exact switching point (represented by the circle) using a
root-finding algorithm. After locating the switching point, the simulation will restart

with the mode variable mode = —1 in region B.

When a state event occurs, in order to find the exact switching point, a “zero-finding”
algorithm is involved. The algorithm employed in the state event handler is the same

as the algorithm used in the root-finding function “fzero” in MATLAB.

The algorithm is called “Brent’s Method” [1]. Brent’s method is a root-finding al-
gorithm which combines root bracketing, interval bisection, and inverse quadratic

interpolation. It is sometimes known as the van Wijngaarden-Deker-Brent method.

Brent’s method uses a Lagrange interpolating polynomial of degree 2. Brent claims
that this method will always converge as long as the values of the function are com-
putable within a given region containing a root. Given three points x{, x5 and x3,

Brent’s method fits x as a quadratic function of y, then uses the interpolation formula:
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v = Sa)lly — fla2)les [y = fle)lly — fles)len [y = J(@s)lly — f(@)]o
[f(ws) = f@)][f (ws) = fla2)] [ (21) = f(@)l[f (21) = flas)] * [f(22) = flas)][f (w2) — f(21)]

xr =

Subsequent root estimates are obtained by setting y = 0, giving

where
P=S[T(R—T)(x3 —x2) — (1 — R)(x3 — x1)]
Q=T-1)R-1)(S-1)
with
R=
5=t
r=1

The zero-crossing is located using the algorithm illustrated above. The event itself
will not be executed until the zero-crossing point finding process completes and an

“accepted” next point on the switching surface is found.

Therefore, each integration step must always be taken with the same value of sgn.
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In other words, the ¢TC model must be formulated so that it has a continuously-
varying derivative during each step. The state event handler is used to instantiate

any discontinuity.

4.2 Handling State-Changing Nonlinearities

The examples of state-changing nonlinearities include a motor that is coupled to
a load through a gear train with backlash. Then there are three modes of opera-
tion: ‘disengaged’, 'engaged-turning-CW’, ‘engaged-turning-CCW’. When the mode
is ‘disengaged’ there are two uncoupled second-order ODE sets describing the unre-
lated motions of the motor and the load; when they are ‘engaged’ we have 6, = 0,, £
where 0 is one-half the backlash gap, and 6, = 6,,. The most direct way to handle
such model is to use separate models for two mechanical parts, including all torques

acting on the motor and load, and add constraint equations:

K. (6,— 0, F6) =0

K.-(6,—0,)=0

where K, = 0 if gears are disengaged and K, = 1 if gears are engaged.

This approach can handle a wide variety of nonlinear effects, especially for the systems

with mechanical components.
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4.3 Handling Structure-Changing Nonlinearities

Besides of the two types of nonlinearities discussed above, there is a third type of
discontinuity. The continuous-time dynamic equations produce derivative vector fields
that are directed into the switching boundary of such type nonlinearities on both
sides. This condition indicates that the trajectory being evolved cannot simply cross
the boundary. Therefore, another dynamic model which governs the motion on the
boundary is required. This situation represents a structural change that may be

fundamentally more difficult to handle than the state-changing case.

In order to solve these type of nonlinearities, variable mode should be able to be set
as 0 when system trajectory hits the boundary and such structure-changing event
occurs at the same time. This is the most straightforward way for the software to
indicate system model that the system trajectory is currently on the boundary and

the dynamic model particularly for the boundary should be evolved.

When the system trajectory remains on the boundary, variable ¢ should be assigned
as ¢ = 0 until the trajectory can leave the boundary. The Simulator will consider the

moment of ¢ changing from 0 to a non-zero number as a state event.

4.4 State Reset

Following example shows some other issues that should be concerned in the process

of state event handling design. In this example [19] we have two uncoupled systems
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of the form:

ZL;l = X9
Ty = —sign(r)

and similarly for x3, x4, 3 = —x4, 24 = —sign(z3) with state events defined by

51:]}1

Sy = 13

and a reset definition akin to the bounce of a ball with coefficient of restitution 0.8,

z(ty) = [a1(t;) 08za(t,) ws(ty) 0.8z4(t,)]"

The system trajectory is shown in Figure 4.2, where the initial condition is

z(0)=1[0.25 0 —0.25 0]F

This system presents two problems: first, there are two independent nonlinearities
(relays) and the state events for every relay happen simultaneously if the initial con-
ditions for x3, x4 are the same as those for x1, xs; second, the state variables need to
be reset after a state event happens. The complete model for this example is listed

in Appendix D.
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twin_ball_reset (two "relays" with state reset); simultaneous SEs

-025 -02 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Figure 4.2: The twin relays system

To address the first problem, variables mode and ¢ should be designed as vectors,
whose elements can represent each independent state event respectively. For the
example discussed above, variables mode and ¢ should be two-dimensional vectors.
The Simulator checks each element of ¢ and catches the first occurring state event or

simultaneously occurring state events.

For the second problem, a reset handling part is necessary when state events occur.
This part could be designed as a fundamental procedure when any state event is
detected. Two major tasks are useful in this part: First, ¢ can be assigned as 0 if

the nonlinearities are structure-changing type; second, state variable z.(t}) can be
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assigned to the reset value.

4.5 State Event Handler Flow

Figure 4.3 shows the flow of the state event handler in the Simulator. Note that
this figure only shows the main procedures of the state event handler, i.e., those
procedures that are not related with the state event handler are not shown in this

figure, although they may take place in the flow.

According to the flow chart, the Simulator calculates the trial point x_trial and the
corresponding switching function phi_trial after it gets an accepted point. Then it
checks if sign(phi) = sign(phi_trial) to determine if a state event has happened. If
sign(phi) = sign(phi_trial), no state event happened; the trial point is accepted and
the Simulator calculates the next trial point for iteration. If sign(phi) # sign(phi_trial),
state event(s) is(are) detected. Then the Simulator locates possible switching point(s)
using the zero-finding algorithm and finds the earliest one(s). The earliest switching
point(s) is (are) stored by the Simulator as a new trial point. Next, the Simula-
tor transfers a complex mode to the system model to check the reset section. If
phi_reset = 0, the state event is an on-boundary state event. If reset # [ |, the reset
value is evaluated and stored in the output data. Finally, the Simulator updates the
variable mode, and accepts the trial point. Then it begins to calculate the next trial

point, and proceeds as above.
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Get the accepted point and
corresponding phi

'

Calculate the trial point and get the

corresponding phi_trial

Yes

sign(phi) = sign(phi_trial) ?

No

Locate possible switching point(s) using
zero-finding algorithm

'

Check every possible state event and find the first

one(s) and store the corresponding point

Check reset section
phi_reset =0 ?

'

Duplicate current point in the output
and set state variable to reset value

Check reset section
reset =[] ?

>
A 4

Update mode

Figure 4.3: State event handler flow
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Chapter 5

Time Event Handling

Time events are mainly generated by digital devices involved in the system. Such
events happen at certain predictable times, which are generally independent of the

CTC states.

The strategy to handle time events is more straightforward than that for state events.
Most commercial modeling and simulation software uses a similar scheme roughly as

follows:

e Before obtaining a new trial point, identify the upcoming event times for each

DTC, and find t,,.,;=time of the earliest DTC execution.

e Prepare to perform integration for CTCs using an appropriate numerical inte-
gration algorithm that could be a variable step size algorithm by checking if

t + h is greater than t,..; if so, set h = t,..; — t.
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Perform integration with the new revised integration step to obtain the next

point.

If a state event occurs before ¢,,.,; then handle it and simulate the ¢TCs until

t = thext-

Process the corresponding DTC(s).

Restart the evolution of the CcTC states.

5.1 Identification of DTCs and DTC State Variables

In the design of a time event handler, a fundamental problem needs to be solved.
For cTCs, all state variables of every CTC can be stored together in one state vector,
because all the cTCs can be handled at the same time. However, each DTC has its
own sampling frequency that could be different from others. Therefore, the Simulator
cannot execute all DTCs at the same time. But it is better to use only one state vector
to represent all the state variables of every DTCs since it is unadvisable to set a state
vector for each DTC. So, the problem is that it is necessary for the Simulator to

identify which elements in the DTC state vector correspond to which DTCs.

For example, consider a system including three DTCs, the first DTC is second order,
the second DTC is third order and the third DTC is first order. The column vector x4
is used to represent all DTC state variables in the Simulator. The relations between
the vector xd and each DTC are shown in Figure 5.1. However, the Simulator cannot

38



2nd order DTC 3rd order DTC Ist order DTC

\N

xd:[xd1 xd, xd, xd, xd, x6

Figure 5.1: The relation between DTC state vector and every DTCs

identify the relation without certain information.

An auxiliary variable xdh is employed to carry the relation information. The vector
xdh can be either a row vector or a column vector. The length of xdh is equal to the
number of DTCs included in the system. Each element in zdh indicates the number
of elements in the DTC state vector xd corresponding to each DTC. Therefore, the

following rules must be obeyed for xdh:

length(xzdh) = the number of DTCs

sum(xdh) = length(zd)

Considering the example discussed above, xdh should be:

xdh =12 3 1]

where the number “2” indicates the first two elements in xd corresponds to the first
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DTC; the number “3” indicates the following three elements in xd correspond to the
second DTC; the number “1”7 indicates the following one element in xd corresponds to
the third bTc. With the vector xdh, the Simulator will be able to identify the relation

between DTCs and DTC state vector xd so that it can handle each DTC separately.

5.2 Interface Design

The interface refers to the variables that are transferred among the Simulator, the
running script and the system model. In this section, we are only concerned with the

variables that are exclusively used for the DTC handling.

The key to designing the interface is to determine which variables should be used
in the Simulator to handle the time events. First of all, the DTC state vector zd is

necessary; it consists of all DTC states in a column vector form.

In the last section, the reason to involve a variable xdh is introduced. The variable
xdh should be used in the Simulator so that it can identify the relation between DTCs

and DTC state vector.

The time to execute each DTC is also critical information that the Simulator must
have. A vector te is employed to carry the information of the upcoming time to

update every DTC. The length of te equals the number of DTCs.

length(te) = the number of DTCs
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So, each element in the vector te corresponds to the execution time of each DTC,
and te is used by the Simulator to coordinate the time line of the entire simulation

process.

The DTC state vector xd is transferred to the system model to be used to update
DTCs when a time event happens. Another necessary variable that is passed to the
system model is the previous output of each bTc. We use a column vector yd to

represent the outputs of every DTC.

length(yd) = the number of DTCs

Each element in yd corresponds to each DTC in the system. The reason to involve yd

will be explained in the next section.

The last variable that is transferred from the Simulator to the system model is the
variable ndtc. It can be either a row vector or a column vector. The length of ndtc

is the same as the length of te and yd.

length(ndtc) = the number of DTCs

Each element of ndtc corresponding to each DTC can only be assigned the value 1
or 0. It is used to inform the system model which DTC(s) should be executed when
the Simulator invokes the system model. The elements that correspond to the DTCs

which should be updated will be set to 1 by the Simulator before it invokes the system
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model, and other elements remain 0.

Finally, the data sequence of the DTC outputs should be recorded by the Simulator.
Variable ydout is employed to record the DTC outputs. It is a matrix variable whose
size is:

size(ydout) = [n, m|

where n is the number of the recorded data points, and m is the number of DTCs. So,

each column of ydout records the output of a corresponding DTC.

The variables introduced above are used in the Simulator to handle time events
(DTCs). The initial condition of DTC states xd0 should be given to the Simulator
at the beginning of a simulation. Values for xd0 and xdh are transferred from the

running script to the Simulator.

Handling DTC involves solving DTC state equations:

Tak = fd(xd,kflaukfﬁ (5-1>

Yak = 9a(Tak, uk) (5.2)

Equation 5.1 can also be written in the following expression:

Tap+1 = fa(Tar, ur) (5.3)

Equation 5.3 and 5.2 are used in the system model. So, in the system model, x4
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and wuy should be given, and z4x4+1 and yqr are to be calculated. The Simulator
should transfer x4 to the system model, and u; should be calculated in the system
model before updating bTC(s). During the simulation process, xd (xqyx), yd, te and
ndtc are transferred from the Simulator to the system model. Then, after updating,
the system model returns new xdp (z45+1), yd (yax) and tep. The auxiliary vector
ndtc is generated only by the Simulator and does not need to be updated. When
the simulation process is completed, the outputs of every bDTC are recorded in ydout
that will be returned back to the running script to perform further calculations and
operations defined by users in the running script. The data flow of these variables is

shown in Figure 5.2.

xd >
yd
xd) g
te
xdh g
. . dout . ndie
Running Script <« Simulator xdp System Model
-«
tout
< yd
sysout <
-0 0 = tep
N —
_sysout _

Figure 5.2: The interface for time event handler

In Figure 5.2, the output variables yd and tep refer to the new yd and te respectively
after certain DTCs are updated. Variable zdp is the state variable at the next sampling

time. So, if zd refers to x4, xdp refers to xqx41. In other words, zdp is evaluated
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in the (k — 1)th interval, to be used as zd in the kth interval. The variable sysout is

optional. It is the user-defined output variable.

5.3 Solving Digital Filters

In the last section, we mentioned that the DTC output yd is necessary in the interface
between the Simulator and the system model. In this section, we show that yd may

be needed when DTCs include digital filters.

Digital Filters are a common type of digital component. In the time domain, digital

filters can be modeled by difference equations as:

y(k) + Z ay(k —1) = ;) bu(k — 1) (5.4)

where y(k) is the output sequence and w(k) is the input sequence. Taking the z-

transform of both sides of Equation 5.4, we obtain:

N

Y(2)+ ) az7'Y(z) = Z: biz U (2)

=1

Then, the transfer function is:

. le\io biz_i
YN e

(5.5)
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It also can be expressed by a state space model:

z(k) = Az(k — 1) + Bu(k — 1) (5.6)

y(k) = Cz(k) + Du(k) (5.7)

where z(k) is the state variable, y(k) is the output sequence and u(k) is the input
sequence. As long as by in Equation 5.5 is not zero (by # 0), the parameter D in
Equation 5.7 will not be zero (D # 0). In this situation, the output of the digital
filter, y(k), depends not only on the state variable z(k) but also on the digital filter
input u(k). In order to meet our requirement that there is an implicit zero-order
hold (zoH) at the output of each DTC, yd must be remembered by the Simulator
during the time interval between any two adjacent sampling instants and transferred
to the system model. It is important to guarantee that yd does not change until the

corresponding DTC is executed.

To demonstrate this, consider an example shown in Figure 5.3:

— > Digital Controller D(z) ——®»{ ZOH |———® Integrator H(s)=1/s ——»

Figure 5.3: A simple system including a digital controller

where

1 —1.6152"1 +0.4379272

D(z) —
(8) = T 072071 - 0.606552
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u = sin(t)

The sampling frequency of the digital controller is 2 Hz, and the input to the integrator
is equal to yd. So in the cTC part of the system model, we have xdot=yd;. The

simulation result is shown in Figure 5.4.

L L L L L L L L L
0 1 2 3 4 5 [} 7 8 9 10
time

Figure 5.4: Simulation result with yd in the interface

However, if we do not have access to the variable yd in the interface, i.e., the output
of the zoH is not available, it must be calculated using Equation 5.7. When the
Simulator invokes the system model at a time between two adjacent sampling instants,
u(k) is thus replaced by wu(t) since u(k) is not accessible in the system model. So, in

the system model, we have

ud

sin(t);

C*xd+D*ud;

<
o}
I
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xdot = yd;

The corresponding simulation result is shown in Figure 5.5. Note that the output of
the digital controller, yd, is not constant between any two adjacent sampling instants.
This situation conflicts with our assumption that there is an implicit zero-order hold

at the output of each DTC.

time

Figure 5.5: Simulation result without yd in the interface

5.4 Time Event Handler Flow

A brief flow diagram of the time event handler is shown in Figure 5.6. It illustrates

how the time event handler works. In Figure 5.6, NV is the number of DTCs.
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b

Evolve CTCs
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Update DTCs

Figure 5.6: Time event handler flow
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Chapter 6

The Simulator

6.1 Previous Work Analysis

In earlier research of the modeling and simulation of hybrid systems, Dr. Taylor has
developed a general hybrid systems modeling language (HSML) [16]. It outlines de-
tailed algorithms for the state event handling and the time event handling. Recently,
Dr. Taylor and Mr. Kebede implemented HSML in MATLAB and created a fundamental
simulation environment that include modeling schemes and a numerical integrator.
However, only the state event handling algorithm is implemented in that environment,
which has been posted on the web!. So, the environment can only handle continuous
time systems. The time event handling algorithm has not been implemented. In order

to improve the environment so that it can handle hybrid systems, we must implement

Lwebsite URL: http://www.ee.unb.ca/jtaylor/HS_software.html

49



the time event handling algorithm as well, and we already have the road map of it

[18, 20, 21].

In order to add the mechanism for the time event handling, the structure of the
previous solver (named “ode45_101.m”) must be analyzed and extended. At the

highest level, the structure of “ode45.101” can be expressed as a pseudo code:

initialization;

integration loop;
determine the integration step size;
calculate the trial point;
check for any state event occurrence;
handle the state event(s) if any occurred;
save current data;

output data;

In the initialization part, some critical variables are initialized. These variables can
be distinguished into three different types, according to the source of initialization.
The first type of variables are initialized from the variables passed from the running
script. Examples include z0, t0, and the system model name. The second type of
variables are initialized directly by the Simulator. Examples include the Fehlberg
coefficients «, (3, v, the error tolerance and the initial step size etc. The third type
of variables are initialized by invoking the system model; a typical example is the
variable mode.
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After the initialization for the necessary parameters, the Simulator begins the inte-
gration loop. The integration loop will not be terminated until the simulation time
reaches the terminal simulation time ¢ final, or the elapsed time exceeds the user-
defined maximum elapsed time. The definitions of “Simulation Time” and “Elapsed
Time” are different: “Simulation Time” refers to the time of the system that is sim-
ulated, i.e., the system running time; “Elapsed Time” refers to the real time that the

computer takes when the simulation is running.

The first step in the integration loop is to determine the integration step size. Actu-
ally, this step is combined with the next step — “calculate the trial point”. When the
Simulator enters the integration loop, a trial point is calculated based on the initial
step size. Then, the error will be evaluated. If the error exceeds the error tolerance
that is defined by the user (or by default le — 6), the Simulator will abort the trial
point and go back to redetermine a new integration step. This process will be iterated

until the error corresponding to a trial point is smaller than the error tolerance.

After getting an acceptable trial point, the Simulator checks for state event existence.
The switching function ¢ corresponding to the trial point will be calculated by invok-
ing the system model. The ¢ corresponding to the trial point will be compared with
the one corresponding to previous accepted point. If there is a sign change, a state

event is detected. Otherwise, the trial point is accepted.

If there is a state event that is detected in the last part, the state event handler will

locate the exact switching time using the root-finding algorithm that is introduced
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in Chapter 4. The switching point will be the new accepted point in the system
trajectory. After locating the switching point, the Simulator checks the state event
handling section in the system model and update variable mode. If there is a reset
state, the switching point will be saved in the output sequence. Then, the current

accepted point will be replaced with the reset state.

The last step in the integration loop is storing the current accepted point into the

output data sequence.

The integration loop is terminated when the simulation process is completed. The

output variables will be returned to the running script.

6.2 New Solver Design and the Scope Feature

The time event handler should be inserted into the solver as in the following structure:

initialization;

integration loop;
determine the step size based on the integration error;
check time event schedule and revise step when necessary,;
calculate the trial point;
check for state event occurrence;
handle state event(s) if they occurred;

handle time events if they are scheduled;
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save current data;

output data;

The main strategy of the time event handler has been introduced in the last chapter.

A new feature that is similar to a SIMULINK scope was added in the new solver. In
some cases, users may need to access some variable in the system. The previous solver
only provides users the state variables of cTCs. After adding the time event handler,
the solver will also provide the output of each bTcC. This is often not enough for the
user’s requirements. Therefore, an additional variable sysout is added to address the

problem.

The variable sysout could be an N x M matrix, where N is the length of the output
data sequence and M is the number of the user-defined output variables. In the
system model, if users want to monitor M variables, a M dimensional vector should
be assigned to the corresponding variables. Then, the Simulator will put the vector
that is passed from the system model into sysout in each integration step. Examples

will be given in Chapter 8 to illustrate how to use this feature.

6.3 Pseudo Code of the Simulator

The pseudo code of the Simulator is listed below.

%initialization
time t=t0;
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maximum step size hmax=(tfinal-t)/16;
step size h=hmax/8;
CTC state variable x=x0;
DTC state variable xd=xdO;
integration step counter k=1;
store the first data into the output sequence;
call system model to get initial phi, te and xdp;
if there are user defined output variables,
call system model to get initial output vector;
store the output vector into sysout;
mode=sign(phi) ;

mdim=length (mode) ;

hintegration loop
while (t<tfinal),
if t+h>tfinal,
h=tfinal-t;
dtc_flag=0; %0 means no DTC should be updated;
if time event(s) may happen before t+h,
dtc_flag=1;
find the earliest time event t_early;

reduce step size h=t_early-t;
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save current x,t,phi into xold,told,phiold;
accept_flag=0; %0 means unacceptable.
call system model to get CTC derivative xdot, integrate to t+h;
calculate error variable delta;
calculate tolerance variable tau;
if delta<=tau,
t=t+h;
calculate x;
call system model with x to get new phi;
accept_flag=1;
calculate next step size h;
if accept_flag==1,
use zero-crossing algorithm
if there is any state event,
find the earliest state event, t_event and xc_tevent;
call system model to get reset value;
if x_reset is not empty,
save x,t into output sequence;
X=X_reset;
for im=1 to mdim,
if mode(im) changes,

if phi_reset==0,
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phi(im)=0;
mode (im)=0;
else
mode (im)=sign(phi(im));
if dtc_flag==1,
save current DTC state vector xd into output sequence;
for im=1 to length(xd),
if im corresponds to a DTC state variable that should be updated,
xd (im)=xdp (im) ;
call system model to get new xdp;
update corresponding xdp with new value;
store current data into output sequence;

%end
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Chapter 7

Composing a System Model

7.1 Basic Rules

The system model must be composed under certain rules so that the Simulator can
recognize and simulate the system correctly. Since the system model is a MATLAB
function, the invoking format is determined by the invoking function (the Simulator).
There are several formats that depend on users’ requirements and the invoking format

in the running script.

The standard system model invoking format is:

function

[xdot,phi,reset,xdp,yd,tep]l=system_model(t,x,mode,xd,yd,te,ndtc)

Input variables:
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t: simulation time

X: CTC state vector

e mode: mode variable used to handle state events

e xd: DTC state vector

e yd: DTC output vector

e te: DTC updating time

e ndtc: flag variable to inform which DTCs should be updated

Output variables:

e xdot: CTC state derivative vector

e phi: switching function

e reset: CTC reset state vector

e xdp: updated DTC state vector

e yd: updated DTC output vector

e tep: updated DTC execution time

All the input variables do not necessarily need to be used in the system model.
However, all the output variables must be assigned no matter if they are meaningful
in the system model or not, to avoid MATLAB error messages.
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A normal system model format is introduced in Chapter 3 (see “system model tem-
plate”). The basic framework is shown in Figure 7.1. The model can be mainly
divided into two parts that are independent and must be kept separate. One part is
the initialization part, and the other part is the calculation part. When the Simulator
invokes the system model, only one part is executed. The input variable mode is used
to determine which part should be executed. When mode = [ |, the initialization part

is activated. When mode # [ |, the calculation part is activated.

Yes y y No

Initialization Reset

Value
Calculation

— =

DTC Updating

Normal
Calculation

Calculation

Figure 7.1: System model basic framework

In the initialization part, zdot and reset can be set to any value since they are
meaningless at the beginning. Their default values are set to empty for users in the
template so that users do not need to change them. The other four output variables

should be assigned to the correct initial values. The variable phi should be assigned
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to the switching function corresponding to the initial point. If the system has DTCs,

xdp and yd should be assigned referring to the DTC state variable equations:

zdp = fo(xa, uq)

yd = gq(Ta, uq)

where u4 is the input to the DTC when ¢t = t0 (£0 is the initial simulation time).
The variable te should be assigned to the first updating time(s) of the DTC(s) after

simulation starts.

In the calculation part, the cTC state derivatives are calculated. The cTC derivative
calculation part can also be divided into two independent sections. One section is used
for the normal calculation, and the other section is used for the reset value calculation.
The system model determines which section should be executed by checking if the
imaginary part of the variable mode is zero. If the variable mode has no imaginary
part (imag(mode) = 0), the normal calculation section is executed. If the variable
mode has a non-zero imaginary part (imag(mode) # 0), the reset value calculation
section is activated. In the cTC derivative calculation part, the variables xzdp and tep
are useless but cannot be omitted because every output variables should be assigned.
Furthermore, when DTCs are to be updated, these two variables should be initialized
to the same length vectors as zd and te respectively in this part. So, in the system

model template, two assignments xdp = xd, tep = te are set in the CcTC derivative
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calculation part. Users must not change them.

If DTCs exist in the system, the DTC updating part should be added at the end of the
system model. In this part, xdp, yd and tep can be set to the desired values. The
variable ndtc is used by the Simulator to inform the system model which DTCs should
be updated. The elements that are equal to 1 correspond to the DTCs that should be
updated. Users can use a loop, as shown in the template, to check each element of

ndtc and perform updating if ndtc(n) = 1.

If the system has no DTC(s), the DTC updating part can be omitted. In the initial-
ization part, xdp and yd can be set to empty and tep should be set to a value bigger
than the final simulation time. For example, if the simulation time is from 0 to 10

seconds, tep can be set to 100.

If the system has no components with modes, the variable phi can be set to a constant

value (e.g., phi = 1) when it is required to be assigned.

Other system model invoking formats include the compact format and the full format:

e The compact format is used when the system has no user-defined output or

DTCs. Under this circumstance, the compact invoking format is:

function [xdot,phi,reset]=system_model(t,x,mode)

All the variables related to DTC s are removed from the input/output interface.
This invoking format is convenient for users to compose a system model if
the system has no DTC, and is compatible with the previous continuous-time
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Simulator [17].

e Full format is used when the system has user-defined outputs. The full invoking

format is:

function

[xdot,phi,reset,xdp,yd,tep,sysout]=system_model(t,x,mode,xd,yd,te,ndtc)

A user-defined output variable sysout is added in the output variable group.
The variable sysout has to be assigned in the initialization part and in the

calculation part.

Which format is chosen is determined by the Simulator invoking format in the running

script:

e The normal Simulator invoking format is:

[tout,xout,ydout]=ode45_sth(ypfun,t0,tfinal,x0,xd0,xdh,tol,tend,trace)

When Simulator is invoked by above format in the running script, the standard

system model invoking format should be used in the system model.

e To use the compact system model invoking format, the Simulator invoking

format should be:

[tout,xout]=ode45_sth(ypfun,t0,tfinal,x0,tol,tend,trace)
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e To use the full system model invoking format, the Simulator invoking format

should be:

[tout,xout,ydout,sysout]=

ode45_sth(ypfun,t0,tfinal,x0,xd0,xdh,tol,tend, trace)

The only difference among the above three formats is the number of the output

variables when the running script invokes the Simulator.

7.2 System Model Composing Examples

7.2.1 Linear Open-loop System without DTC

This example is a simple linear open-loop system without DTC as shown in Figure

7.2. The input signal is u and the output signal is y.

—» H(s) ———»

Figure 7.2: System model example 1

100
s34+ 1752+ 80s + 100

H(s) =

The input signal is a square wave.
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For this system, we use the compact format to compose the system model. The

system model and the running script are shown in Appendix A.

7.2.2 Nonlinear Open-loop System without DTC

This system example is shown in Figure 7.3. It includes a relay with hysteresis which

—» G(s) [—» relay —» H(s) —»

Figure 7.3: System model example 2

has the behavior as shown in Figure 7.4.

=

Figure 7.4: A relay with hysteresis

In Figure 7.4, y is the relay output and z the is the relay input.
When y = — K, the switching function of the relay is ¢ = x — 9, i.e., ¢ crosses zero
when x = ¢, which is the switching condition.

When y = K, the switching function of the relay is ¢ = x + 9, by a similar argument.
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In this example, the input u is a square wave, d = 0.1 and K = 1, and

10
s+ 50

G(s) =

100
s34+ 2652 + 1255 + 100

H(s) =

We also use the compact format for this system since there is no DTC in the system.
The system model and the running script are shown in Appendix B. In this example,
we use two sub-system-models — ‘h1” and ‘h2’ to represent the blocks G(s) and H(s)
respectively. It is clear but not necessary for users to build the system model in this

way. The sub-system-models can be also combined in the main model.

7.2.3 Closed-loop System with DTC

This system is a closed-loop system with a digital controller as shown in Figure 7.5.

D(zgy ——% H(s) >

G(s) [«

Figure 7.5: System model example 3

65



1
s+1

G(s) =

1
2754+ 0.7274 —0.56273 — 0.4782=2 4+ 0.022~1 + 0.0762

D(z) =

The digital controller sampling time is 0.3 second. The input u is a step signal
whose step time is 1 second. The system model and the running script are shown in

Appendix C. In this example, sub-system-models are also employed.

7.2.4 System with Reset State Values

An example of a system with reset state values can be found in Section 8.1.

7.2.5 Hybrid Systems

An example of a close-loop hybrid system that consists a nonlinearity, CTCs and DTCs

can be found in Section 8.2.
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Chapter 8

Simulation Results and

Improvement

Compared with other simulation software (we use SIMULINK as our basis of compari-
son), the new simulation environment has two main advantages: firstly, the generality
is improved; secondly, the efficiency is improved. In this chapter, these two advantages

will be illustrated and some examples will be given to support the statements.

Moreover, the new software has another new additional feature — the ‘scope feature’
compared with the old version [17]. An example that utilizes this feature will be given

in the last section.
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8.1 Software Generality

The software generality means the range of the system types which can be simulated
using the software. The broader the range of systems that can be simulated using

the software, the higher generality it has.

In SIMULINK, generally, users build system models using the blocks that are provided
by SIMULINK in its library. The SIMULINK library provides a lot of blocks, each of
which can represent a particular kind of system component such as a continuous-time
transfer function, a discrete-time transfer function, a summation operator, a limiter,
a signal generator and so on. For most basic dynamical systems, these blocks are
general enough for users. When dealing with the components that are not included
in the SIMULINK library such as a relay with dead band and a cubic operator etc,
SIMULINK provides a special block that is called ‘S-function’ for users to define such

components by themselves.

However, the ‘S-function’ approach has limitations. The following system is an ex-

ample that can not be modeled using ‘S-function’.

In this example, we have two uncoupled systems that have the form:

flzxg

Ly = —sign(z:)
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and similarly for x3, x4, with state events defined by

81:271

SQII;g

and a reset definition akin to the bounce of a ball with coefficient of restitution 0.8,

z(ty) = [x1(t;) 08za(t,) ws(ty) 0.8z4(t,)]"

This example has been introduced in Section 4.4. Since the system has reset values
when state events happen, SIMULINK cannot handle such a system. However, with the
state event handler, our software is capable of handling such a system. The system

model is shown in Appendix D. The simulation result is also shown in Section 4.4.

8.2 Software Efficiency

With the time event handler, the new software can handle various hybrid systems
that include any kind of DTCs and logic based components. The time event handler
also makes it possible to improve the simulation efficiency for those hybrid systems
with nonlinear components taking the advantages of the advanced state event handler

in the new software.

Consider the hybrid system shown in Figure 8.1. This is a second-order model for a
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+ D(z)

F\PJ
A

Sign <

Figure 8.1: A DC motor driven by a digital controller with a negative feedback

separately-excited DC motor coupled via a gear-train to a load. The motor/load gear

ratio is N, K is the back emf coefficient, and K7 is the torque coefficient.

If the nonlinearity Boosign(y) is neglected, where y is the motor angular velocity, the

motor is a second order system which has the transfer function as:

Y NKr

U~ JpoLaS?+ (JegRa + BpoLa)S + BroRa + NKpNKr

with the parameters:

Kp=2
Kr = Kp
Ra=0.4
L4 =0.02
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N =10

Jog=Jo+ Nx N x J;

B.qg= Bs+ N x N x By

J1 =50
B, =20
Jy =170.0
By =80.0

The bode plot of the motor is shown in Figure 8.2.

Magnitude (dB)

Phase (deg)

Bode Diagram

-100

!
4
=

T T T T T T T T

P g

! I !

-180 =

10 10’ 10
Frequency (rad/sec)

Figure 8.2: Bode plot of motor system
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A digital compensator D(z) in employed to improve the system performance. The

digital compensator is:

4231

D(z)= =43

The sampling frequency of the digital compensator is 10 Hz. The step response of
the closed-loop system is shown in Figure 8.3. The digital compensator increases the
system bandwidth. Therefore, the time response becomes faster and the settling time

is reduced.

Closed-loop system step response
0.04 T T T

0.0351 - |

0.03 b

0.025 - / q

0.02- I 4

y (velocity)

0.015} ; .

0.01+ B

0.005 | - 7
/ —— response with compensator

/ — — response without compensator

I I I
0 0.5 1 1.5 2 25 3

Time (s)

Figure 8.3: Step response

The discussion illustrated above is under the condition of Boe = 0. The term By is
the nonlinear motor friction coefficient (often called “stiction”) that cannot be zero
physically. When this coefficient is not zero, the nonlinear component sign(x) is

involved.
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Assuming the friction coefficient By = 1500, we will simulate the close-loop sys-
tem and compare the simulation results using SIMULINK and the new software —
‘ode45_sth’. The simulation interval is set to 0 to 30 seconds. The aspects that
will be compared include the plot of the system output y versus the time ¢ and the

simulation elapsed time.

Note that the method employed for the simulation in SIMULINK is not building the
system model using the blocks in the SIMULINK library, but using an ‘S-function’.
The reason is that Simulator ‘ode45_sth’ and the system model composed for it are
programs in MATLAB file format. When ‘ode45_sth’ is running, firstly, it will be
compiled and translated into the source code of C — the programming language of
MATLAB and SIMULINK. This approach involves duplication of effort, as the program
and the system model has to be described twice — once in MATLAB file form, and then
again in C language form. The translating process takes a long time relatively in the
whole running process. In SIMULINK, if the system model is built using the blocks in
the library, the duplication of effort in rewriting the model in a programming language
is eliminated, because the “program” is the block diagram itself [3]. However, using
an ‘S-function’ in SIMULINK still involves the duplication of effort, as the system
model also has to be described twice — once in ‘S-function’ form, and then again in
C language form. Therefore, in order to have a fair competition, we will employ an
‘S-function’ to build the system model instead of using the blocks provided in the

SIMULINK library when we use SIMULINK approach.
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The input to the closed loop system is a sinusoid signal with a time delay 7y = 0.2.

It can be expressed as:

0, t <T
EQ Sln[Ol’ﬂ'(t - T())], t Z T()
where Ej is the amplitude of the sinusoid signal. We set £y = 100.

First, the SIMULINK approach is employed. The system model is built as shown in

Figure 8.4. The script of the ‘S-function’ — ‘decmotor’ is shown in Appendix E.

-l
File Edit Wiew Simulation Format Tools Help
D|@E§|%ﬁ|f"2|b llNormaI 'll@t“_ﬂlﬁ{f@
Cutd
| .
: b4 gz P domotor =I:I
Stepd i =01
FProduct Digital Contraller S-Function Scope
)
¥
Sine Wave
Ready 1100% | | nde45 S

Figure 8.4: The system model built in SIMULINK

The SIMULINK simulation process takes 247 seconds, and the output data length is
336603. The simulation result of output is shown in Figure 8.5. From the bottom plot
of Figure 8.5, we observe that there is a lot of chattering when the output is close to

zero. Actually, the output — motor velocity should be zero when there is not enough
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torque provided to the motor to overcome the stiction term. This circumstance
happens when the simulation time is about 0 ~ 0.94, 9.4 ~ 10.92, 19.4 ~ 20.92 and
29.4 ~ 30 seconds. In these periods, the motor is “stuck” due to the friction. The
solver of SIMULINK for this system has no state event handler. So, when the motor is
supposed to be “stuck” and the electric torque provided to the motor is not zero, the
solver has to make the integration step size very very small to make the error smaller

than the error tolerance.

Simulation result generated by SIMULINK
T T T

zoom in

I I 1
9.4 9.6 9.8 10 10.2 10.4 10.6 10.8
Time (s)

Figure 8.5: The simulation result generated by SIMULINK

Then, the new software is employed to simulate the same system. The system model

and the running script are shown in Appendix F. In this model, the variable mode is
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used to represent the motion of the motor:

1,  y > 0 (motor rotates clockwise)
mode = § 0, y =0 (motor stops)

—1, y < 0 (motor rotates counter-clockwise)

The switching function is different when the motor is in different stages.

v, mode # 0

phi = 0, mode = 0 and |T,| < Bac

sign(T.), mode =0 and |T.| > Bac

In the above equation, T, is the electric torque provided to the motor. When the
motor is moving, the state event happens when the sign of output y changes; When
the motor is still and the electric torque is not big enough to drive the motor, there
is no state event until the electric torque is big enough, at which time the state event

happens.

For this system, there is an on-boundary stage when the motor stops. In the reset
value setting section of the system model, phi should be set to zero when the motor

stops.

0, |T.| < Bac (the motor stops)
phi_reset =

NaN, else (other state events)

The simulation result is shown in Figure 8.6. The simulation process takes 2.4 seconds,
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and the output data length is 2077.

Simulation result generated by ode45_sth
T T T

0 5 10 15 20 25 30
Time (sec)

zoom in
o

9.4 9.6 9.8 10 10.2 10.4 10.6 10.8 11
Time (sec)

Figure 8.6: The simulation result generated by ‘ode45 sth’

In the bottom plot of Figure 8.6, there is no chattering when the motor is still.
Therefore, the simulating process using the new software and model is faster and

much more efficient.

8.3 Scope Feature

The scope feature has been mentioned in Section 6.2. It offers a way for users to
monitor any variable(s) in the system. It works like the ‘scope’ block in the SIMULINK
library. Furthermore, the ‘scope’ block cannot show the state variables that are not

the outputs of the plant, but the scope feature here is able to do this.

In the previous work [17], there are only two variables, the time variable ¢ and the
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state variable x, which are returned from Simulator to the running script. The output
of any plant in the system has to be calculated from ¢ and x using the state variable

equation of the plant:

y=g(t,z,u,m)

This method is feasible for those systems for which u of the plant is accessible and y
is independent on m, since m is unaccessible. However, in some cases, the input to
the plant, u, is difficult, even impossible, to calculate. This leads to the problem of

making the output of the plant unaccessible.

For example, consider the system shown in Figure 8.7. The ‘relay’ in the system has
the same behavior as shown in Figure 7.4. The relay switching threshold is 6 = £0.3.
The switching off point is -0.3. The output when the relay is on is 1; when the relay

is off it is -1. The system input signal is:

r = sin(t)

r u y
—> G(s) ——® Relay - H(s)

Figure 8.7: A system with scopes
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1
s+1

s+ 10

H(s) = s+3

Two scopes are placed at the output of the relay and the system respectively. The

state variable equation of the plant H(s) is:

Tr=-3rx+u

y="7r+u

where u is the output of the relay and y is the system output — they are the two
variables to be monitored. If the simulation result only has ¢ and z, v cannot be

directly obtained. The unknown u also causes y unaccessible.

With the scope feature of the new software, this problem can be solved. The values of
u and y are directly recorded in the user-defined output variable sysout. The system
model and the running script are shown in Appendix G. The simulation result plot

is shown in Figure 8.8.
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Simulation result of scope feature model
1.5 T T T T T
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Figure 8.8: The simulation result of the system with scopes
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Chapter 9

Conclusion and Future Work

In this project, a new simulation environment was created. Compared with the old

environment, it has the following improvements: It permits

e handling DTCs with the time event handler

e observing any variables in the system easily with the scope feature incorrectly

With these improvements, the new simulation environment can simulate a wide va-
riety of hybrid systems with greater generality than SIMULINK. With the advanced
state event handler developed previously, it is more efficient for those hybrid systems
which have mode-based nonlinear components. Moreover, it was designed to be as

user-friendly as possible.

This environment is a handy tool for the modeling and simulation of various hybrid

systems. However, there are also some disadvantages that should be improved in the

81



future work.

In the future work, the first step can be trying to convert the Simulator into executable
form (MEX-file) within MATLAB. This approach will eliminate the compiling process
for the Simulator when the user runs a simulation. Thus, it will make the simulation
faster. Another way can be focused on utilizing the algorithm of this software into
SIMULINK if it is possible to cooperate with MathWorks Inc. This approach can
improve the software efficiency again by eliminating the translating process from
MATLAB files to the source code of MATLAB. Another attempt could be cooperating
with other commercial software companies to design new program compilers and

graphic user interface to make the environment more efficient and user-friendly.
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Appendix A

The system model of a linear
open-loop system without DTC

The system model:
function [xdot,phi,reset]=model_1(t,x,mode)

num=100; den=[1 17 80 100];
[a,b,c,d]=tf2ss(num,den);

if isempty(mode) == true,
xdot = [];
phi = 1;
reset = [];
return;

end rf = max(abs(imag(mode)));

if rf == 0,
u = -square(t);
xdot = a*xx+bx*xu;
reset = [];
phi = 1;

else
xdot = [];
phi = Nal;

reset = [];
end
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the running script:

clear; close all; clc;

ti = 0;

tfinal = 10;

x0 = zeros(3,1);
[t,x]=0de45_sth(’model_1’,ti,tfinal,x0);
num=100;

den=poly([-2 -10 -5]);
[a,b,c,d]=tf2ss(num,den) ;
y=c*x’-d*square(t) ;
plot(t,y,t,-square(t))
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Appendix B

The system model of a nonlinear
open-loop system without DTC

The system model:
function [xdot,phi,reset]=model_2(t,x,mode)

rf = max(abs(imag(mode)));

if isempty(mode) == true,
u = -square(5%t);
[templ, temp2]=h1(x(1),u);
if temp2 < -0.1,

phi = -1;
elseif temp2 > 0.1,
phi = 1;
else
phi = -1;
end
reset = [];
xdot = [];
return;
end if rf == 0,
u = -square(5x%t);

[templ,temp2] = h1(x(1),u);
temp5=[x(2) ;x(3);x(4)];
[temp3,temp4] = h2(temp5,mode) ;
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xdot = [templ(1); temp3(1); temp3(2); temp3(3)];

if mode == 1,
phi = temp2+0.1;
elseif mode == -1,
phi = temp2-0.1;
end

reset = [];
else

xdot = [];

phi = Nal;

reset = [];
end

function [xdot,yl=h1l(x,u)
num = 10;

den = [1 50];
[a,b,c,d]=tf2ss(num,den);
xdot = a*x +bx*u;

y = c*x + d*u;

function [xdot,yl=h2(x,u)

num = 100;
den = [1 26 125 100];
x=x(:);

[a,b,c,d] = tf2ss(num,den);
xdot = a*xx + bx*u;

y = c*x +d*u;

xdot=xdot (:);

the running script:

clear; close all; clc;

ti = 0;

tfinal = 10;

x0 = [0;0;0;0];
[t,x]=0de45_sth(’mod2’,ti,tfinal,x0);
num = 100;

den = poly([-1 -5 -20]);

[a,b,c,d] = tf2ss(num,den);
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c = [0 c];
y=c*x’-d*square(t) ;
plot(t,y,t,-square(t))
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Appendix C

The system model of a close-loop
system with DTC

The system model:

function
[xdot,phi,reset,xdp,yd,tep]l=model_6(t,x,mode,xd,yd,te,ndtc)

Ts = 0.3;
if isempty(mode) == true,
xdot = [];
phi = 1;
reset = [];
tep = t+Ts;
xdp = [J;
yd = [1;
return;
end

rf = max(abs(imag(mode)));
if rf == 0,
xdot (1) = yd;
[xdot(2), yHs] = Hs(x(2),x(1));
xdot = xdot(:);
phi = 1;
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reset = [];

xdp = [J;
yd = [1;
tep = [1;
else
xdot = [];
phi = NaN;
reset = [];
xdp = [];
yd = [1;
tep = [J;
end
if ndtc == true,
if t>1,
u = 1-x(2);
else
u = -x(2);
end
tep = te+Ts;

[xdp,yd] = Hz(xd,u);
end

function [xdot,y] = Hs(x,u)
%Hs = 1/(s+1)

[a,b,c,d] = tf2ss(1,[1 1]);
xdot = a*x + b*u;

y = c*x + dx*u;

function [xplus,y] = Hz(x,u)

[1 0000 O0];

[1 0.7 -0.56 -0.478 0.02 0.0762];
[a,b,c,d] = tf2ss(num,den);

xplus =a*x + b*u;

num

den

y = c*x + d*u;

the running script:
clear; close all; clc;
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x0 = zeros(2,1);

xd0 = zeros(5,1);

[t,x,ydout] = oded45_sth(’model_6’,0,20,x0,xd0,5);
plot(t,x(:,1));

grid on;

figure

plot (t,ydout);

grid on;
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Appendix D

The system model of uncoupled
relays with reset value

function [xdot,phi,reset] = twin_ball(t,x,mode)

if isempty(mode),

for i=1:2,

if x(2*%i-1) == 0,
phi(i) = x(2%1i);

else phi(i) = x(2%i-1);
end

end

xdot = []; reset = [];

return

end icall = max(abs(imag(mode))); if icall == 0,

xdot (1) = x(2);
xdot (2) = -mode(1);
xdot (3) = x(4);
xdot (4) = -mode(2);

phi(1) = 100*x(1);
phi(2) = 100*x(3);
reset = [];

elseif icall == 1,

phi = -mode;
reset = Xx;
for i=1:2,

if abs(imag(mode(i))) == 1,
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reset(2*xi-1) = 0;
reset(2*xi) = 0.8xx(2%1);
end
end
xdot = [];
else
error(’bad value of mode’)
end
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Appendix E

The script of S-function ‘dtmotor’

in the system model for SIMULINK

function [sys,x0,str,ts] = dcmotor(t,x,u,flag,B_2C,xi)
% S—-function for separately-excited DC motor coupled via
% a gear-train to a load, plus a thermal model.

Jparameter initialization

J_1=15.0; % kgxm~2

B_1 = 2.0; % N*m*s/rad

% Constant flux model as in Nise

K_E = 2; % back emf coefficient, e_m = K_Exomega_m
K_T = K_E; % torque coeffic.; in SI units K_T = K_E
R_A = 0.4; % Ohms

L_A = 0.02; % H

% gear-train and load parameters

J_2 =70.0; % kgxm~2 ; 10% value in Nise...

B_2 = 80.0; % Nxm*s/rad (viscous) ; 10% value in Nise...
N = 10; % motor/load gear ratio; omega_l = N omega_2

% set equivalent MoI and friction coefficients
J_eq = J_2 + NxN*J_1; B_eq = B_2 + N*Nx*B_1;

switch flag
case 0 % for initialization
sys = [2,0,1,1,0,0,1];

x0 = xi(:)’;
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str = [];
ts = [0,0];

case {2,9} % for updating DTC or perform termination
sys = [1;

case 1 % calculation of derivative
xdot (1) = (u - R_A*x(1) - K_ExN*x(2) )/L_A;
xdot(2) = ( K_T*N*x(1) - B_eq*x(2) - B_2Cxsign(x(2)))/J_eq;
%xdot(3) = ( R_A*x(1)"2 - (x(3) - T_Amb)/R_TM )/C_TM;
sys = xdot(:)’;

case 3 % calculation for output, set y = x(2)
sys = x(2);

end
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Appendix F

The system model composed for
‘ode45 sth’

The system model:

function
[xdot,phi,reset,xdp,ydp,tepl=dcmotor_sth_model(t,x,mode,xd,yd,te,wdc)

B_2C=1500;

T =0.1; %DTC sampling period

A=0.1; B=1; C=-2.7; D=4;

% motor parameters, Nise, Ex. 2.23 p. 92 (4th Ed.)
J_1=15.0; % kgxm~2

B_1 2.0; % N*m*s/rad

% Constant flux model as in Nise

K_E = 2; % back emf coefficient, e_m = K_Exomega_m

K_T = K_E; % torque coeffic.; in SI units K_T = K_E

R_A = 0.4; % Ohms

L_A = 0.02; % H

% gear-train and load parameters

J_2 =70.0; % kgxm~2 ; 10% value in Nise...

B_2 = 80.0; % Nxm*s/rad (viscous) ; 10% value in Nise...
N = 10; % motor/load gear ratio; omega_l = N omega_2

% set equivalent Mol and friction coefficients
J_eq = J_2 + N¥N*xJ_1; B_eq = B_2 + N*N*B_1;
% define e_a as a step or square-wave input starting at T_O:
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Te = K_T*N*x(1); T_O0 = 0.2; E_0=100;
if t < T_O,
e_a = 0;
else
e_a = E_0*sin(0.1xpix(t - T_0));
end
%hinitialization
if isempty(mode) == true,
phi = x(2);
xdot = [];
reset = [];
xdp =
ydp =
tep =

- O O

return;
end

%CTC derivative calculation
rf = max(abs(imag(mode))); if rf == 0,
xdot (1) = ( yd - R_Axx(1) - K_ExNxx(2) )/L_A;
xdot(2) = ( K_T*Nxx(1) - B_eqg*x(2) - B_2C*mode)/J_eq;
xdot = xdot(:);
if mode == O,
if abs(Te) > B_2C,
phi = sign(Te);
xdot(2) = ( K_T*N*x(1) - B_eq*x(2) - B_2Cxphi)/J_eq;
else
phi = O;
xdot (2) = 0;
end
else
phi = x(2);
end
reset = [];
xdp = xd; ydp = yd; tep = te;
else 7, to set reset value
xdot = [];
if abs(Te) < B_2C,
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phi = 0;
else
phi = NaNl;
end
reset = [];
xdp = xd; ydp = yd; tep = te;

end

if wdec == 1,
u=( e_a - x(2));
xdp = Axxd+Bx*u;
ydp = Cxxd+D*u;
tep = te+T;

end

the running script:

clear; close all; clc;
%hscript to run dcmotor model
T_final = 30;

x0 = [0;0];
xd0 = 0;
tic;

[tout,yout,ydout]=ode45_sth(’dcmotor_sth_model’,0,T_final,x0,xd0);
toc;

figure

subplot(211) ,plot(tout,yout(:,2));

grid on;

xlabel (’Time (sec)’);

ylabel(’y’);

title(’Simulation result generated by ode45\_sth’);
subplot(212), plot(tout,yout(:,2));

grid on;

xlabel (’Time (sec)’);

ylabel(’Zoom in’);
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Appendix G

The system model composed for
the system with scopes

The system model:

function
[xdot,phi,reset,xdp,yd,tep,sysout]=scopemodel (t,x,mode,xd,yd,te,ndtc)

u = sin(t); relay_threshold = 0.3;

hinitialization
if isempty(mode) == true,
phi = -1;
xdot = [];
reset = [];
xdp = [];
yd = [1;
tep = 1000;

sysout = [-1, -1];
return;
end
%CTC derivative calculation
rf = max(abs(imag(mode))); if rf == 0,
xdot (1) = -x(1)+u;
xdot (2) = -3*x(2)+mode;
y = 7*x(2)+mode;
if mode == -1,
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phi = x(1)-relay_threshold;
elseif mode == 1,

phi = x(1)+relay_threshold;
else

disp(’mode is not right.’);
end
reset = [];

xdp = xd;
yd = yd;
tep = te;

sysout = [mode, y];
else Y to set reset value

xdot = [];
phi = NaN;
reset = [];
xdp = xd;

yd = yd;

tep = te;
sysout = [];

end

the running script:

clear; clc; close all;

hscript to run scope_model

tfinal = 10;

x0 = [0;0];
[t,x,xd,thescopel=ode45_sth(’scopemodel’,0,tfinal,x0);
figure;

subplot(211) ,stairs(t,thescope(:,1));
title(’Simulation result of scope feature model’);
ylabel(’Output of the relay’);

axis([0 10 -1.5 1.5]); grid on;

subplot(212) ,plot(t,thescope(:,2)); grid on;
ylabel (’Output of the system’);

xlabel (’Time (sec)’);
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