
Intelligent Control and Asset Management of Oil

and Gas Production Facilities

by

Atalla F. Sayda

M.Sc.EE., University of New Brunswick, 2002
B.Sc.EE., Damascus University, 1996

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

In the Graduate Academic Unit of Electrical and Computer Engineering

Supervisor: James H. Taylor, Ph.D., ECE/Control Systems

Examining Board: name1, Ph.D., dept., Chair
name2, Ph.D., ECE
name3, Ph.D., ECE

External Examiner: name, Ph.D., department, university

This thesis is accepted

Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

January, 2008

c©Atalla F. Sayda, 2008

Dedication

To my family

ii

Abstract

Driven by the technical demand of the offshore oil and gas industry in Atlantic

Canada, a joint venture among several Atlantic Canadian universities, and local and

national companies was established in order to advance wireless systems technology

in the oil and gas industry, and to assess the feasibility of an intelligent control

and asset management system built on a wireless sensor network. As part of this

research project, our team at the University of New Brunswick (UNB) is developing

an intelligent control and asset management system (ICAM system) to manage the

massive information flow from offshore oil rigs. The objective of this PhD thesis is to

design the ICAM system architecture, to analyze its multi-faceted requirements, and

to verify and validate its performance and logical behavior in normal and abnormal

process situations.

The conceptual model of the ICAM system was defined along with its architec-

ture, functional description and general logical behavior. A development plan to

design such a complex system and the appropriate development tools were decided.

The artificial intelligence (AI) requirements of the system were analyzed in terms

of knowledge representation and processing, and the appropriate AI paradigm. The

communication requirements were also analyzed after conducting a thorough review

of middleware (i.e., communications) technologies. The structure, implementation

and deployment of the system agents were defined based on the suggested system

requirements.

iii

A simple prototype of the ICAM system was designed in terms of the middleware

layer, the intelligent supervisory agent of the system, and the reactive agents of the

system prototype. The verification and validation of the system were demonstrated,

where several scenarios were applied to the system to analyze its performance in real

time and its logical behavior. The oil production facility simulation model, upon

which the system’s verification and validation have been demonstrated, was devel-

oped. A system performance analysis was conducted to detect any computational

bottlenecks. Although the system prototype design has limitations, simulation re-

sults have demonstrated an effective system logical behavior and performance in real

time.

iv

Acknowledgement

I would like to express my gratitude and regards to professor James H. Taylor, my

research supervisor, his encouragement, friendship, patience, and invaluable sugges-

tions during the course of this research have played a vital role.

This work would not have achieved any success without the support of the Natural

Sciences and Engineering Research Council of Canada (NSERC). The support of

Gensym Corporation and their great staff was a corner stone to the success of this

project. I would also like to thank Verari Systems, Inc. for their great help and

support.

This research project is also supported by Atlantic Canada Opportunities Agency

(ACOA) under the Atlantic Innovation Fund (AIF) program. I gratefully acknowl-

edge that support and the collaboration of the Cape Breton University (CBU) and

the College of the North Atlantic (CNA).

I extend my appreciation to my research partners, Ms. Maira Omana, Ms. Pilar

Moreno, Mr. Mazyar Laylabadi, Ms. Jing He and Ms. Liqiang Wang for their great

work, contributions, and invaluable help.

I would also like to express my appreciation to the faculty and staff of the Depart-

ment of Electrical and Computer Engineering at the University of New Brunswick

for their patience and continuous encouragement.

v

Table of Contents

Dedication ii

Abstract iii

Acknowledgments v

Table of Contents x

List of Tables xi

List of Figures xv

Symbols and Nomenclature xvi

1 Introduction 1

1.1 Asset Management for Process Industries 1

1.2 Intelligent System for Automated Plant Asset Management 2

1.3 Challenges in Developing Automated Plant Asset Management Systems 4

1.4 Thesis Context and Organization . 6

2 Literature review 8

2.1 The FORMENTOR Research Project 8

2.2 Advanced Process Analysis and Control System (APACS) 10

2.3 The Pilots Associate (PA) Program 12

vi

2.4 Abnormal Situation Management (ASM) 13

2.4.1 Hybrid Distributed Multiple Expert Framework

(DKIT) . 13

2.4.2 Integrated Operator Decision Support System (Op-Aide) . . . 15

2.4.3 Abnormal Event Guidance and Information System (AEGIS) . 17

2.5 Advanced Decision Support System for Chemical/Petrochemical Man-

ufacturing Processes

(CHEM-DSS) . 18

2.6 Integrated System Health Management

(ISHM) . 20

2.7 Distributed Architecture for Monitoring and Diagnosis (DIAMOND) 21

2.8 Multi-Agent-Based Diagnostic Data Acquisition and Management in

Complex Systems (MAGIC) . 21

2.9 Other Related Work . 22

2.10 Petroleum Applications of Wireless Systems (PAWS) 23

3 ICAM System Conceptualization: Architecture and Functional De-

scription 27

3.1 Conceptual Model of the ICAM System 27

3.2 System Functional Description and Architecture 30

3.2.1 The Perception Subsystem . 33

3.2.2 The Reactive Layer . 33

3.2.3 The Deliberative Layer . 38

3.2.4 The Self-reflective Layer . 41

3.2.5 The User Interface Layer . 41

3.2.6 The Action Subsystem . 42

3.3 ICAM System Conceptual Behavior Model 42

3.4 ICAM System Development Plan . 48

vii

4 Conceptual ICAM System Implementation Requirements 50

4.1 Artificial Intelligence (AI) Requirements for the ICAM System 50

4.1.1 ICAM system supervisory agent implementation 51

4.1.2 Knowledge representation of the supervisory agent 53

4.1.3 Knowledge processing in the supervisory agent 56

4.2 Communication Requirements for the ICAM System 58

4.3 Refined MPI Communications Requirements for the ICAM System . 61

4.4 Reactive Agent Software Implementation 63

4.5 Conceptual ICAM System Deployment Requirements 66

5 ICAM System Prototype Design 70

5.1 The ICAM System Prototype . 70

5.2 The Middleware Layer Design . 72

5.3 The Supervisory Agent Design . 77

5.3.1 ICAM system ontology design 78

5.3.2 The supervisory agent rule-base design 81

5.4 Design of Reactive Agents . 83

5.4.1 The pilot plant agent design 83

5.4.2 The statistical pre-processing agent design 87

5.4.3 The model identification agent design 89

5.4.4 The fault detection, isolation, and accommodation agent design 91

5.5 ICAM System Prototype Deployment Scheme 93

6 ICAM System Prototype Verification and Validation 95

6.1 Scenario 1: Faulty Water Volume Sensor in The Three-Phase Separa-

tor Sub-Process . 97

6.1.1 The pilot plant agent behavior 98

6.1.2 Behaviors of the statistical preprocessing and model ID agents 102

viii

6.1.3 The FDIA agent behavior . 106

6.1.4 The supervisory agent behavior 109

6.1.5 Network activity . 113

6.2 Scenario 2: Faulty Gas Outflow Valve in the Two-Phase Separator

Sub-Process . 116

6.3 Scenario 3: Drift Fault in the Two-Phase Separator Liquid Level Sensor122

6.4 Performance Analysis . 127

6.4.1 Complete ICAM system performance analysis 130

6.5 ICAM System Prototype Limitations 135

6.5.1 Scenario A: ICAM system behavior during faults with fast dy-

namics . 135

6.5.2 Scenario B: Oil-well production decrease 140

7 Conclusions and Future Work 145

7.1 Summary and Conclusions . 145

7.2 System Limitations, Design Challenges, and Future Work 150

Bibliography 153

A Modeling and Control of Three-Phase Gravity Separators in Oil

Production Facilities 167

A.1 INTRODUCTION . 167

A.2 Three-phase gravity separation process description 169

A.3 Three phase gravity separator mathematical modeling 170

A.3.1 The aqueous phase . 172

A.3.2 The oil phase . 177

A.3.3 The gas phase . 178

A.4 Separator model validation . 179

A.5 Simulation results . 182

ix

A.6 Conclusions . 189

Vita 190

x

List of Tables

3.1 Conceptual structure of behavioral message 45

6.1 Oil production facility instrumentation faults 96

6.2 Scenario 1: Pilot plant agent supervisory frame 110

6.3 Scenario 1: Statistical preprocessing agent supervisory frame 111

6.4 Scenario 1: Model ID agent supervisory frame 112

6.5 Scenario 1: FDIA agent supervisory frame 113

6.6 Scenario 2: FDIA agent supervisory frame 120

6.7 Scenario 3: FDIA agent supervisory frame 124

6.8 The pilot plant agent performance profile 128

6.9 The statistical agent performance profile 128

6.10 The model ID agent performance profile 129

6.11 The FDI agent performance profile 129

6.12 The supervisory agent performance profile 130

6.13 Limitation scenario A: FDIA agent supervisory frame 139

6.14 Limitation scenario B: FDIA agent supervisory frame 144

xi

List of Figures

2.1 PAWS Project schematic diagram . 26

3.1 Agent architecture . 29

3.2 Human cognition and affect (H-Cogaff) architecture [85] 30

3.3 ICAM system architecture . 32

3.4 Fault detection and isolation (FDI) scheme 34

3.5 ICAM system conceptual behavior model 44

4.1 ICAM system supervisory and reactive agents architecture 52

4.2 Knowledge representation structure in the ICAM supervisory agent . 54

4.3 Layers of the supervisory agent knowledge 56

4.4 ICAM system reactive agent deployment structure 64

4.5 Reactive ICAM agent implementation flow chart 65

4.6 ICAM system deployment scheme . 69

5.1 ICAM system prototype . 71

5.2 ICAM system prototype MPI communications sequence 75

5.3 ICAM system prototype G2 communications sequence 76

5.4 ICAM system prototype representation in the G2 supervisory agent . 78

5.5 ICAM system ontology . 80

5.6 ICAM system prototype event sequence 82

5.7 Oil production facility P&ID . 84

xii

5.8 The pilot plant simulation agent flow chart 86

5.9 The statistical pre-processing agent flow chart 88

5.10 The model identification agent flow chart 90

5.11 The FDIA agent flow chart . 92

5.12 ICAM system prototype deployment scheme 94

6.1 Oil production facility P&ID . 97

6.2 Scenario 1: Two-phase separator liquid volume logged by the pilot

plant agent . 99

6.3 Scenario 1: Two-phase separator pressure logged by the pilot plant

agent . 99

6.4 Scenario 1: Three-phase separator water volume logged by the pilot

plant agent . 100

6.5 Scenario 1: Three-phase separator oil volume logged by the pilot plant

agent . 100

6.6 Scenario 1: Three-phase separator pressure logged by the pilot plant

agent . 101

6.7 Scenario 1: Two-phase separator liquid volume logged by the statis-

tical pre-processing agent . 103

6.8 Scenario 1: Two-phase separator pressure logged by the statistical

pre-processing agent . 103

6.9 Scenario 1: Measured plant outputs and simulated model outputs

logged by the model ID agent . 104

6.10 Scenario 1: Plant inputs logged at the model ID agent 105

6.11 Scenario 1: Three-phase separator water volume logged by the FDIA

agent . 106

6.12 Scenario 1: FDIA agent diagnostic signals 107

6.13 Scenario 1: FDIA agent fault display 108

xiii

6.14 Scenario 1: FDIA agent fault accommodation parameters 109

6.15 ICAM system prototype network architecture 114

6.16 Scenario 1: ICAM system prototype network activity 116

6.17 Scenario 2: Two-phase separator pressure logged by the FDIA agent . 117

6.18 Scenario 2: FDIA agent diagnostic signals 118

6.19 Scenario 2: FDIA agent fault display 119

6.20 Scenario 2: ICAM system prototype network activity 121

6.21 Scenario 3: Two-phase separator liquid volume logged by the FDIA

agent . 123

6.22 Scenario 3: FDIA agent diagnostic signals 125

6.23 Scenario 3: FDIA agent fault display 125

6.24 Scenario 3: FDIA agent fault accommodation parameters 126

6.25 Execution cycles of ICAM system agents (overlapped) 132

6.26 Execution cycles of ICAM system agents (non overlapped) 133

6.27 ICAM system prototype network activity 134

6.28 Limitation scenario A: Three-phase separator pressure logged by the

FDIA agent . 136

6.29 Limitation scenario A: FDIA agent diagnostic signals 137

6.30 Limitation scenario A: FDIA agent fault display 138

6.31 Limitation scenario A: Three-phase separator pressure logged by the

pilot plant agent . 138

6.32 Limitation scenario B: Two-phase separator liquid volume logged by

the FDIA agent . 141

6.33 Limitation scenario B: FDIA agent diagnostic signals 142

6.34 Limitation scenario B: FDIA agent fault display 143

6.35 Limitation scenario B: Two-phase separator pressure logged by the

FDIA agent . 143

xiv

A.1 Three phase horizontal separator schematic. 170

A.2 Main separated component streams in three-phase gravity separator . 171

A.3 Oil separation hydrodynamics under normal operation conditions . . 173

A.4 Oil separation hydrodynamics under high water outflow condition . . 175

A.5 Unseparated hydrocarbon fluid volume under high water outflow con-

dition . 176

A.6 The oil production facility schematic diagram 181

A.7 Incoming hydrocarbon fluid and its molar composition 183

A.8 Two-phase separator process variables change during the incoming

stream upset . 184

A.9 Two-phase separator liquid discharge molar composition 185

A.10 Three-phase separator process variables change during the incoming

stream upset . 187

A.11 Three-phase separator produced water and oil compositions 188

xv

Symbols and Nomenclature

µw Water viscosity

Φ Longest oil droplet path angle

τ Aqueous phase retention time

θ Sector angle of the cross sectional area

Ñ(s), D̃(s) Left coprime factors

ε Volume fraction of unseparated hydrocarbon

Ac Cross-sectional area of the aqueous phase

dm Oil droplet diameter

Fg1 Flashed gas flow

Fg2 Dissolved gas flow

Fgout Gas discharge outflow

Fh1 Separated hydrocarbon fluid flow

Fh2 Unseparated hydrocarbon fluid flow

Fin Oil-well fluid inflow

Foout Oil discharge flow

xvi

Fo Oil flow

FWout Aqueous phase outflow

Fwat Water outflow

FW Dumped water outflow

h Oil-water interface height

J(s) Transformation matrix

L Separator length

L1 Virtual separator length

Mwg, Mwo Gas and oil molecular weights

Mwh, Mww, Mwin Hydrocarbon, water, and oil-well fluid molecular weights

Ngas Number of gas moles in the gas phase

P (s) Rational transfer function matrix

p(s) Generalized parity vector

Pvi
Vapor pressure of component i

R Separator radius

SGg, SGo Gas and oil specific gravities

SGh, SGw Hydrocarbon fluid and water specific gravities

SGh, SGw, SGin Hydrocarbon, water, and oil-well fluid specific gravities

T Absolute separator temperature

ud Desired control inputs

xvii

vh Oil droplet horizontal rising velocity

Voil, Vgas Oil phase and gas phase volumes

vv Oil droplet vertical rising velocity

Vwat Volume of the aqueous phase

xi Mole fraction of the component i in the liquid phase

y Sensor outputs

yi Mole fraction of the component i in the vapor phase

Zg, Zo, Zw Gas, oil, and water molar fractions

AI Artificial intelligence

ANFIS Adaptive neuro-fuzzy inference system

ASM Abnormal situation management

BB Blackboard

CBR Case-based reasoning system

CFD Computational fluid dynamic

CVA Canonical variate analysis

DCS Distributed control system

DNS Domain name space

DSS Decision support system

FDIA Fault detection, isolation, and accommodation

FSM Finite state machine

xviii

GDA G2 diagnostic assistant

GPS Generalized parity space

GSI G2 standard interface

GUI Graphical user interface

HCPN Hierarchical colored petri net

HPCC High performance computing and communication

ICAM Intelligent control and asset management system

KB Knowledge base

LAN Local area network

MAS Multi-agent systems

MOM Message-oriented middleware

MPI Message passing interface

NetBIOS Network basic input/output system

OLE Object linking and embedding technology

OPC OLE for process control

PAWS Petroleum applications of wireless systems

PCA Principal component analysis

PRBS Pseudo random binary signal

QTA Qualitative trend analysis

RMA Remote memory access protocol

xix

RPC Remote procedure call

RTD Residence time distribution

SDG Signed directed graph

SOAP Simple object access protocol

TCP/IP Transmission control protocol/Internet protocol

UDP User datagram protocol

WINS Windows name resolution service

xx

Chapter 1

Introduction

1.1 Asset Management for Process Industries

Recent technological advances have resulted in increasingly complicated processes,

systems and products that pose considerable challenges in their design, analysis,

manufacturing and management for successful operation and use over their life cy-

cles. In the process industries, for example, the maintenance and management of

complex process equipment and processes, and their integrated operation, play a

crucial role in ensuring the safety of plant personnel and the environment as well as

the timely delivery of quality products. Given the size, scope and complexity of the

systems and interactions, it is becoming difficult for plant personnel to anticipate,

diagnose and control serious abnormal events in a timely manner. In a large process

plant, there may be as many as 1500 process variables observed every few seconds,

leading to information overload. Furthermore, the measurements may be insufficient,

incomplete and/or unreliable due to a variety of causes such as noise, sensor biases

or failures. In addition, the emphasis on quick diagnosis aggravates the situation by

causing psychological strains on plant personnel [103].

When an abnormal event occurs it may take considerable time to diagnose its

causal origin, and to take the appropriate actions to bring the process back to a

1

normal, safe operating state. This may have significant economic, safety, and envi-

ronmental impact. Unfortunately, abnormal event management is controlled manu-

ally in most process plants, which complicates their management and control. When

it comes to operating process plants under normal conditions, manual management

may also contribute to poor product quality and high cost. Managing process plants

effectively under normal and abnormal situations define the asset management con-

cept.

“Asset management is a systematic process of effectively maintaining, upgrading,

and operating process assets. It combines engineering and economic principles, and

provides the tools to facilitate a more organized and flexible approach to making

decisions necessary to achieve high profitability. Maximum profitability is gained by

maximizing adaptation and efficiency, minimizing unscheduled outages, and partial

output, eliminating industrial injuries, and minimizing risk to the environment” [1].

Asset management may be viewed as the unifying element between production plan-

ning, quality and process control, safety maintenance, effectiveness and profitability.

Oil companies, power and water utilities and other industries have recognized that,

despite all their cost-cuttings, reorganizations, new technology, productivity and

quality initiatives, the picture is fragmented. Inefficiency and conflicting objectives,

lack of coordination and missed opportunities are still plentiful. Hence, it is cer-

tainly healthier and better suited to apply asset management to a complex process

or manufacturing environment.

1.2 Intelligent System for Automated Plant Asset
Management

Asset management and control of modern process plants involves many tasks of

different time-scales and complexity, including:

• data reconciliation and fusion, where data are collected, filtered and combined

2

to detect and remove consistencies, reduce effects of error sources, and estimate

parameters and variables not directly available,

• fault detection, isolation, and accommodation (FDIA), in which data are in-

terpreted to derive the operational status of the external plant and the health

of the control system,

• process model identification and optimization, in which process models are

identified on a timely basis to allow adaptation to the non-linear and dynamic

nature of complex process plants, and

• supervisory control, which coordinates all other asset management tasks, and

tunes or reconfigures the control system if necessary to improve process oper-

ations.

The automation of these complementary tasks within an information and intelli-

gent control infrastructure will reduce maintenance expenses, improve utilization

and output of manufacturing equipment, enhance safety, and improve product qual-

ity [103, 73, 25, 76]. Many research studies, which proposed different combinations

of systems theoretical and artificial intelligence techniques to tackle the asset man-

agement problem, have delineated a set of required features [103]:

• integrating different problem solving paradigms, knowledge representation schemes

and search techniques,

• maintaining global databases of process data and knowledge,

• reasoning about process operations without requiring accurate models,

• coping with data explosion and the need for effective compression and inter-

pretation,

3

• understanding, and hence representing, process behavior at different levels of

detail, and

• keeping the role of an operator primary and active in the operating environ-

ment, which is managed with the assistance of on-line intelligent systems.

These requirements are similar to those proposed for intelligent supervisory control

systems. For example, a proposed system for producing metal-matrix composite

materials incorporated a central database of process data and knowledge, process

planning via case-based reasoning, on-line learning, automated process optimization

and model identification, robust control algorithms – all under the direction of an

expert system coordinator [92].

1.3 Challenges in Developing Automated Plant
Asset Management Systems

Although automated asset management systems have great impact on complex pro-

cess plants in terms of higher profitability and better management, the development

of such systems is very difficult and exhibits many challenges [103, 63, 64, 100, 101,

102, 57]:

• Diversity of solution techniques, where several approaches are available to per-

form the main tasks of an automated asset management system: For example,

fault detection and isolation can be performed using model-based quantitative

and qualitative fault diagnosis techniques as well as non-model-based methods.

Similarly, supervisory control can be performed using several AI techniques

such as rule-based expert systems and case-based reasoning. These techniques

are diverse in nature and use certain assumptions about the process and perfor-

mance requirements. Hence, determining the best approaches for performing

the individual tasks of asset management is difficult. Moreover, the chosen ap-

proaches may not meet the goals of the overall system. Having these techniques

4

integrated in one intelligent system may seem the only solution. However, the

analysis of the accuracy, consistency and stability of such integrated systems

is even more difficult.

• Diverse sources of knowledge, which stems from the incomplete and scattered

nature of process knowledge such as process manuals, operational expertise,

process models, and historical data: Techniques to integrate the knowledge

sources into a form that can be used effectively in an intelligent system are of

a great necessity. The ontology based knowledge organization approach is an

example of such techniques.

• Uncertainty in process models and measurements, which may affect the per-

formance of a complex asset management system: Most of the system’s tasks

depend on accurate process measurement and models. Noisy sensor measure-

ments, process disturbances, and the highly non-linear dynamics of chemical

processes in general can be a significant source of the failure of the entire sys-

tem. Systematic analysis of such uncertainties and their effect on the system

performance is required.

• Widely varying time scales of the different system tasks and the abnormal

situations which may happen in the plant: Some abnormal situations might

develop over a few minutes, while others might develop over hours and days.

Likewise some tasks of the asset management system might execute in few

milli-seconds, such as the data reconciliation task while other tasks may take

minutes and hours to make decisions such as the supervisory control task.

• Implementation for large scale industrial plants, which has effect on the system

software architecture, real-time hardware, field testing and validation, user

interface and operator training and acceptance.

5

1.4 Thesis Context and Organization

Driven by the technical demand of the offshore oil and gas industry in Atlantic

Canada, a joint venture between several Atlantic Canadian universities, the National

Research Council of Canada, and local and international companies was established

in order to advance wireless systems technology in the oil and gas industries and to

assess the feasibility of an intelligent control and asset management system built on

a wireless sensor network. The petroleum applications of wireless systems (PAWS)

project scope is to develop a control and information management system which

consists of two subsystems [91]. The first subsystem is a wireless sensor network

which will alleviate the need for data cables in offshore oil rigs and improve flexibility

for adding and reconfiguring sensors. The second subsystem intelligently manages

the massive data flow from oil rigs or refinery processes and interprets it so as to

help operators make more appropriate decisions during abnormal events and, through

intelligent control, improve process economics.

As part of the PAWS project, our team is developing an intelligent control and

asset management system (ICAM system) to manage the massive information flow

from offshore oil rigs [91]. The objective of this PhD research is to design the ICAM

system architecture, to analyze its multi-faceted requirements, and to build, verify

and validate the performance and logical behavior of a prototype ICAM system in

several environmental situations. The remainder of the thesis is organized as follows:

A literature review of the intelligent asset management systems in industry and

academia is conducted in chapter 2. The ICAM system research project as part of a

bigger research program called petroleum applications of wireless systems (PAWS)

is also introduced in chapter 2.

The conceptual model of the intelligent asset management system is defined,

based on the human cognition-affect framework in chapter 3. The system architecture

and its functional description are also discussed in chapter 3, as is the general logical

6

behavior of the system based on Durffee’s informal theory of coordination. Finally, a

development plan and the appropriate tools are surveyed and selected in this chapter

for designing and implementing such a complex system.

The artificial intelligence (AI) requirements of the system are analyzed and dis-

cussed in chapter 4 in terms of knowledge representation and processing, and the

appropriate AI paradigm. The communication requirements are also analyzed and

discussed in chapter 4 after conducting a thorough review of middleware (i.e., com-

munications) technologies. Among the middleware technologies the Message Passing

Interface (MPI) technology was chosen, and the MPI communication requirements

were further analyzed and refined. The structure, implementation and deployment

of the system agents are also discussed in chapter 4.

A simple prototype of the system is designed and discussed in terms of the mid-

dleware layer, the intelligent supervisory agent of the system, and the reactive agents

of the system prototype in chapter 5. The deployment scheme of the system is also

thoroughly discussed in chapter 5.

The verification and validation of the system are demonstrated in chapter 6,

where several scenarios were applied to the system to analyze its performance in

real-time and its logical behavior. The research findings are summarized in chapter

7, and future system enhancements are also suggested. Finally, the oil production

facility simulation model, upon which the systems verification and validation are

based, is described and discussed in appendix A.

7

Chapter 2

Literature review

The automation of asset management has been recognized by academia and industry

as a vital research area, which many research programs and industrial projects were

initiated to investigate. Some projects focused on managing the process during

normal operation while others gave abnormal situation management a higher priority.

In this chapter, a survey of such research and industrial projects will be presented;

here eight of the most relevant ones are reviewed.

2.1 The FORMENTOR Research Project

FORMENTOR, which is a joint venture of major European companies, namely

Aerospatiale Protection Systemes (France), Cap Gemini Innovation (France), Det

Norske Veritas (Norway) and the Institute for Systems Engineering and lnformat-

ics of the Joint Research Centre of the Commission of the European Communities

(Italy), is supported by the EUREKA program of cooperative international R&D

projects with a budget of 33.4 million Euros. The research program, which lasted

from 1986 to 1996, “aimed to develop real-time plant supervision software systems

to support operators in their decision-making process by enabling them to make

effective use of all this information, and avoid disturbances and any loss of produc-

tion” [108]. BP-Chemicals, one of the FORMENTOR consortium industrial part-

ners, provided a butadiene plant as a test-bed to validate the final decision support

8

system [108, 46]. The main technical features of the system are [108]:

1. A goal tree-success tree (GTST), which is a representation of the

functional model of the process. A GTST for a process relates high

level safety and production objectives of the process to the functions

carried out by its components. All the objectives of the process

are described in terms of sub-objectives which may also be further

refined. The state of each node in the GTST is either deduced based

on the state or its sub-nodes or set by the output of the process fault

diagnosis.

2. The multi-layer model (MLM) used to represent the functional com-

ponents of the plant in a hierarchical way to provide a global overview

of the plant state and to guide the action planning process. The

MLM describes the structural and behavioral model of the plant

as a hierarchy of components and their interrelationships. At the

lowest level, the basic components of the process are described in

terms of simple mathematical formulas, which do not capture the

actual interactions among the variables in the component.

3. Two distinct but complementary reasoning modules for diagnosis,

both based on this multi-layer structure. The first module, the

Heuristic Causal Reasoning module, identifies known problems, looks

up the known solutions, and then adapts the implementation of

these high-level solutions to the plant state. The other, the Model-

Based Reasoning module, uses the MLM to detect significant dis-

crepancies between expected and real plant behavior and then to lo-

cate the malfunctions which could explain these discrepancies. The

results of the diagnosis are posted onto the appropriate nodes in the

GTST. The GTST model is used to assess the consequences of the

9

violation of the subgoals and to determine the corrective actions.

In FORMENTOR the object oriented approach was used to implement the sys-

tem, which in turn consisted of a collection of modules to perform the different

tasks, a communication system, and a global controller to control the activities of

the modules. The disadvantages of such a system can be summarized as follows:

1. The use of simple mathematical formulas to represent the behavioral models

of the plant components, where the complex interactions among the plant

variables are not captured.

2. The absence of a model identification module to address the dynamic and

varying nature of chemical plants.

3. Fault diagnosis is largely qualitative, which leads to lack of resolution.

4. Fault mitigation is also qualitative and based on the current state of the system,

making the system only reactive.

2.2 Advanced Process Analysis and Control Sys-
tem (APACS)

The APACS project was designed to introduce intelligent agents into a modern

nuclear operating environment. APACS was a PRECARN project supported by

the Canadian government and Precarn Associates, undertaken by Ontario Hydro,

CAE Electronics, the University of Toronto, Stelco Canada, Shell Canada, Hatch

Associates and PRECARN Associates Inc, and developed by a team of more than

10 software designers and engineers. The 9.7 million-Canadian-dollars, five-year

project began in the fall of 1990 and was completed in the fall of 1995 [106, 65].

“The goal of the APACS project was to develop a generic framework for building

an intelligent system that assists human operators of power plants in noticing and

diagnosing failures in continuous processes” [105].

10

The APACS system consists of three layers: the agent layer which implements

the system functionality; the knowledge broker layer which manages communica-

tion between the agents; and the information repository layer which stores the sys-

tem common knowledge. The agents of the APACS system perform the following

tasks [106]:

1. The data acquisition agent receives data from the plants main con-

trol computer.

2. The tracking agent continuously updates the data links between the

agent system and the actual plant sensor positions, making sure that

good communication between agents and the feed water system is

constantly maintained.

3. The monitoring agent analyzes the feedwater sensor values and feed-

water alarms and then produces symbolic descriptions of the plants

behavior.

4. The human-computer interface (HCI) agent displays the APACS

status to the plant operators and serves as the user interface.

5. The diagnostic agent takes the output from the monitoring agent

and attempts to generate a qualitative causal explanation that will

eventually be useful to the human operators.

6. The verification agent operates a faster-than-realtime numerical,

model-driven simulator to measure the correlation of the diagnostic

agents output against the simulators ideal values.

The entire APACS system was implemented in C++ using Expersofts XShell

(an extended C++ syntax for declaring distributed objects) as its communica-

tion environment and CLIPS (a rules-based inferencing environment constructed by

11

NASA) [106]. The APACS project had some of the FORMENTOR project disad-

vantages such as the absence of a model identification agent, the qualitative nature of

the fault diagnosis task, and the absence of a fault mitigation (i.e., accommodation)

agent.

2.3 The Pilots Associate (PA) Program

The first research program to address the asset management problem in the US was

the Pilots Associate (PA) program, which is a joint effort of the Defense Advanced

Research Projects Agency and the US Air Force, managed by the Air Force’s Wright

Laboratory. The program began in February 1986 as an application demonstration

for DARPA’s Strategic Computing Initiative. A primary goal of the PA program

was to enhance combat fighter pilot effectiveness by increasing pilots’ situational

awareness and decreasing their workload. DARPA wanted to advance the programs

technology base, principally in the area of real-time, cooperating knowledge-based

systems. The Air Force wanted to explore the potential of intelligent systems applica-

tions to improve the effectiveness and survivability of post-1995 fighter aircraft [86, 6].

“The Pilots Associate concept developed as a set of cooperating, knowledge-

based subsystems: two assessor and two planning subsystems, and a pilot interface.

The two assessors, Situation Assessment and System Status, determine the state of

the outside world and the aircraft systems, respectively. The two planners, Tactics

Planner and Mission Planner, react to the dynamic environment by responding to

immediate threats and their effects on the pre-briefed mission plan. The Pilot-Vehicle

Interface subsystem provides the critical connection between the pilot and the rest

of the system” [6]. Another project, which followed the PA program to address the

asset management problem in attack helicopters, is the Rotorcraft Pilots Associate

(RPA) program. The goal of the US Army funded RPA program was to develop and

demonstrate in flight an advanced, intelligent associate system in a next-generation

12

attack/scout helicopter [61].

2.4 Abnormal Situation Management (ASM)

The PA and RPA projects paved the way for other projects to develop and automate

the asset management process for the process industry in the United States. AEGIS

(Abnormal Event Guidance and Information System), which was developed by the

Honeywell led Abnormal Situation Management (ASM) Consortium in the United

States, is a very important project [11]. The AEGIS project proposes a comprehen-

sive asset management framework from an industrial view point. AEGIS built on

the experience of military aviation research projects, especially the Pilots Associate

(PA) and the Rotorcraft Pilots Associate (RPA) [10]. It is really worth consider-

ing the project and its current status, since it is supported by major oil and gas

companies (i.e., Shell, Exxon, Chevron, BP, and Nova Chemicals) allied with Hon-

eywell and other automation industry key leaders. Furthermore, it is considered a

research imperative to learn from it, in terms of experience, stages being successfully

accomplished, limitations, and failures incurred during the course of the project.

The research program life span started from 1994 and will end in 2008, where the

program was funded by the National Institute of Standards and Technology (NIST).

The program focused on the development of a proof of concept system called AEGIS

(Abnormal Event Guidance and Information System).

2.4.1 Hybrid Distributed Multiple Expert Framework
(DKIT)

The diagnostic toolkit (DKIT) project was initiated as the first step in the design

and development of the AEGIS system. The DKIT hybrid framework addressed

the use and integration of multiple fault diagnosis techniques to meet the challenges

of complex, industrial-scale diagnostic problems [63, 64]. The principle of DKIT is

black-board collective problem solving, in which several modules are integrated [63]:

13

• Diagnostic experts: a collection of one or more fault diagnostic mod-

ules including a signed directed graph (SDG) technique, qualitative

trend analysis (QTA), and probability density function based sta-

tistical classifier.

• A blackboard: a placeholder for various process states. This is

implemented as pigeon holes, each of which corresponds to a well

defined process state.

• A scheduler, which consists of a monitor that keeps track of new

events or states that are posted on the blackboard; a switchboard

which directs the information to relevant subscribers, and a mecha-

nism for conflict resolution between the different diagnostic modules.

• A plant Input-Output Interface, which acts as a channel for all di-

agnostic modules to receive relevant process measurements.

• An operator interface for presenting diagnostic results to the op-

erator. Diagnostic results are presented in the form of individual

methods’ results, combined results, individual method confidence,

supporting trends for a fault hypothesis, propagation paths for a

fault.

• A process equipment library to represent the external process.

The DKIT system was fully implemented in the G2 expert system shell, and was

validated on a simulation model of fluid catalyst cracking unit (FCCU). The DKIT

framework demonstrated the feasibility of a complex fault diagnosis system, and was

further enhanced through the development of the OP-AIDE system, which will be

discussed in the next section.

14

2.4.2 Integrated Operator Decision Support System (Op-
Aide)

To address the qualitative fault analysis of previous projects (i.e., the FORMENTOR

and APACS systems), an integrated operator decision support system, called Op-

Aide, was developed based on the DKIT system architecture to assist the operator

in quantitative diagnosis and assessment of abnormal situations [100, 101]. Op-Aide

consists of six modules (or knowledge sources) and an Op-Scheduler that coordinates

them. It provides the interface between different modules in the system and functions

as a centralized data base for all the modules. The results of these modules are posted

onto it, where they can be accessed by the other modules in the system [101]:

• Data Acquisition Module, which acquires on-line data from the plant

and makes them available to other modules. The on-line data are

compressed using B-Splines-based data compression algorithm and

then stored in a historical archive.

• Monitoring Module: This module monitors the process data for

the presence of abnormalities using a principal component analysis

(PCA) model of the process. If the residual of the PCA model is

consistently above its confidence limit over a wait time, then the

presence of an abnormality is indicated.

• Diagnosis Module, which identifies the root causes for the abnor-

malities. Multiple diagnosis methods are combined in a blackboard

architecture, namely, a diagnosis system that combines PCA and

signed directed graphs (PCA-SDG), and the B-Splines-based adap-

tive system for trend analysis.

• Fault Parameter Magnitude Estimation (FRAME) Module, which

estimates the magnitude and rate of change of the root causes. A

dynamic optimization is performed to estimate these values.

15

• Simulation Module, which performs a simulation to predict future

values of the process outputs. These outputs are then compared

against the process constraints to determine if any process con-

straints will be violated and the time at which they occur.

• Operator Interface Module, where the status of the process and the

results of the different modules are constantly communicated to the

operator through this module.

Op-Aide has been implemented using blackboard-based architecture in

Gensym’s expert system shell G2, matlab and C. The Op-Scheduler co-

ordinates the functioning of other modules using event and time driven

rules and procedures. The results of these modules are represented as

objects that are pushed back onto specified slots in the OP-Scheduler.

Most of the modules are implemented in G2 except for the FRAME and

simulation modules, which are implemented in matlab and C respec-

tively.

Although the OP-Aide project came to address the qualitative fault diagnosis

disadvantage in the FORMENTOR and APACS systems by introducing two com-

plementary quantitative fault diagnosis modules, it did not address the dynamic

nature of the chemical process by embedding a model ID module. Furthermore,

operating the situation assessment, which is achieved through the FRAME and sim-

ulation modules, is a semi-automatic process done at the request of the operator.

OP-Aide did not address the whole performance aspect when it comes to managing

large scale plants.

16

2.4.3 Abnormal Event Guidance and Information System
(AEGIS)

The Honeywell ASM Consortium adopted the Dkit architecture as its AEGIS pro-

totype, a next-generation intelligent control system for operator support [103]. The

AEGIS program successfully demonstrated the feasibility of collaborative decision

support technologies in the lab test environment, with a high fidelity simulation

model of an industrial manufacturing plant. As far as industrial environment testing

is concerned, the focus was on abnormality diagnosis and early warning, and assess-

ing and learning from experience, which resulted in effective operations practices and

supporting services.

The AEGIS research program team has achieved several goals and developed

a well established abnormal situation management awareness and culture through

massive consultation, research, and collaboration with oil and gas industry key lead-

ers. Achievements can be summarized in the following points as presented by the

director of advanced development at Honeywell, Mr. A. Ogden-Swift, during the

2005 advanced process control applications for industry workshop (APC 2005) [68]:

• significant user interface (UI) improvements,

• 35% reduction in alarm flooding by introducing a new alarm reconfiguration

philosophy,

• integration of operation procedures,

• equipment monitoring through intelligent sensor integration,

• fuzzy/PCA early error detection, and

• improved operator training.

Such achievements were deployed in the new generation of Honeywell’s Experion

distributed control system. Although the 12 year old AEGIS research program has

17

resulted in a well defined abnormal situation management problem in terms of best

practices, goals, and limitations, it did not address the following points, which aim

to minimize the workload on process operators:

• full automation of massive process data interpretation,

• full automation of process fault diagnosis and accommodation,

• incorporation of state of the art fault diagnosis techniques which were devel-

oped during the past 25 years of academic research,

• reduced manual system configuration by process operators (for example, the

operator has to choose the appropriate dataset for process model identifica-

tion), and

• intelligent techniques such as expert systems to assist operators in the decision

making process.

Only one technique was used for early fault detection, a statistical technique based

on principal component analysis (PCA). To enable this, the operator has to manually

adapt for operating point change by choosing the appropriate data set.

2.5 Advanced Decision Support System for Chem-
ical/Petrochemical Manufacturing Processes
(CHEM-DSS)

Another promising project is CHEM-DSS (Decision Support System for Chemi-

cal/Petrochemical Manufacturing Processes), which is an initiative of the European

Community (EC) Intelligent Manufacturing Systems consortium in collaboration

with Japan and Korea. ”The aim of the CHEM-DSS project is to develop and im-

plement an advanced Decision Support System (DSS) for process monitoring, data

and event analysis, and operation support in industrial processes, mainly in refining,

18

chemical and petrochemical processes. The DSS will be developed such as to be able

to interface with commercial plant database and process control software” [9].

The CHEM-DSS research project was initiated to compete and build on the two

main initiatives in the United States, namely, the Abnormal Situation Management

(ASM) Consortium led by Honeywell, and the Intelligent Control Program of NIST.

However there was no clear system architecture that demonstrates the behavior of

the integrated modules of the system during the course of the project (1998 - 2004).

The research instead focused on analyzing the properties of the individual techniques

of the system such as FDI, planning, artificial intelligence, signal processing, and

scheduling, and twenty-three software toolboxes were developed during the project

(from April 2001 to March 2004) [58].

The heart of the CHEM-DSS integration platform is G2, which integrates the

twenty-three software toolboxes. All developed software tools were integrated to a

communication manager (CCOM) based on the message-oriented middleware (MOM).

In this project the XMLBlaster open-source MOM was used to manage XML mes-

sages between the different tools. The data management and user interface function-

alities were implemented in the G2 environment [58].

Furthermore, “the toolboxes have been tested at pilot plants and industrial sites.

It was applied to partner facilities to ensure rapid technology transfer. The industrial

end-users provided different kinds of processes including a fluid catalytic cracking

pilot plant, a paper making process, a gasifier pilot plant, a steam generator, a blast

furnace and distillation process. End users can use the developed toolboxes to design

their own intelligent diagnostic system according to their requirements” [8].

19

2.6 Integrated System Health Management
(ISHM)

The ISHM (Integrated System Health Management) research program, which is de-

veloped by NASA for space applications, “focuses on determining the condition

(health) of every element in a complex System (detect anomalies, diagnose causes,

prognosis of future anomalies), and provide data, information, and knowledge to con-

trol systems for safe and effective operation. In the case of NASA, this capability is

currently done by large teams of people, primarily from the ground, but needs to be

embedded on-board systems to a higher degree to enable NASA’s new Exploration

Mission (long term travel and stay in space), while increasing safety and decreasing

life cycle costs of spacecraft (vehicles; platforms; bases or outposts; and ground test,

launch, and processing operations)” [23]. The ISHM research program, whose life

span started from 2003 and will end in 2009, was extended to address several appli-

cations including military/civilian space and aircraft systems in collaboration with

several companies such as Boeing and Honeywell [82, 22, 59, 45, 29, 13].

The ISHM architecture is based on the open systems architecture for condition-

based maintenance (OSA-CBM), which is an implementation of the ISO standard

13374. The ISHM system is deployed as a distributed module system with dif-

ferent functions including anomalies detection, overall systems state identification,

anomaly and failure effects mitigation, and systems elements condition evaluation.

The ISHM research project supported by NASA used the G2 environment as their

intelligent integration framework. In fact, six G2 servers are deployed to monitor

International Space Station (ISS) subsystems, including the mechanical, structural,

electrical, environmental and computational systems. The G2 servers continually

inspect and analyze data transmitted from space during missions [59, 21].

20

2.7 Distributed Architecture for Monitoring and
Diagnosis (DIAMOND)

The DIAMOND project was developed by the University of Karlsruhe in cooperation

with three industrial partners and one research institute within the framework of the

EU Esprit Program with a budget of one million Euros. The program started in 1999

and ended in 2001, where the program objective was to investigate the feasibility of

fault diagnosis system for industrial applications.

The DIAMOND system architecture is a set of distributed cooperating tasks.

Each task is associated with a specialized agent, namely the monitoring agent, which

is interfaced to the industrial application, a set of diagnostic agents to identify the

functional state of the plant, a conflict resolution agent to investigate whether the

diagnostic results are contradicting or completing each other, a facilitator agent to

manage networking and mediating between different agents, a blackboard agent for

storing the diagnoses, and a user interface agent for presenting the results to the

operator [19].

The DIAMOND system was implemented using the KQML-COBRA- (knowledge

query and manipulation language) based architecture, in which the different agents

are implemented as distributed COBRA objects.The system prototype was evaluated

while monitoring and diagnosing the watersteam cycle chemistry of a coal-fired power

plant [19].

2.8 Multi-Agent-Based Diagnostic Data Acquisi-
tion and Management in Complex Systems
(MAGIC)

MAGIC is developed by a joint venture of several European universities and com-

panies, namely Gerhard-Mercator Universitat, University of Kalsruhe, and Labora-

toire d’Automatique de Grenoble. The European Commission Information Society

21

of Technology (EC-IST) funded the project with a budget of 3.3 million Euros.

The MAGIC research program is a multi-agent system realization of an intelligent

fault diagnosis system. “The system aims at developing general purpose architecture

and a set of tools to be used for the detection and diagnosis of incipient or slowly

developing faults in complex systems. The early identification of potentially faulty

conditions provides the key information for the application of predictive maintenance

regimes” [47].

The distributed architecture for MAGIC is based on a multi-agents/multi-level

concept. The idea is that the task of the complex system’s diagnosis and operator

support is distributed over a number of intelligent agents which perform their in-

dividual tasks nearly autonomously and communicate via the MAGIC architecture.

Such an architecture can easily be distributed on existing monitoring and control

systems of large scale plants [47, 28]. The MAGIC system consists of several model-

based and cause-effect diagnostic agents and a process specification agent to specify

the process to be monitored and diagnosed. Depending on the process specifications,

the appropriate data and knowledge acquisition is performed by another agent. A

diagnostic decision agent and a diagnostic support agent propose a final diagnostic

decision, which is displayed with other information to an operator interface agent.

The MAGIC system prototype is developed for the metal processing industry [47, 28].

2.9 Other Related Work

Cinar et al. have successfully combined multivariate statistical data analysis with

expert systems for process fault diagnosis. Basically the multivariate statistical data

analysis module developed in matlab was converted into C code, and then linked

with a G2 expert system through a G2 standard interface (GSI) link [67, 89]. Cinar

et al. exploited only the G2 diagnostic assistant (GDA) capability (i.e., a graphical

design tool similar to Simulink/matlab). Thornhill et al. used the Computer Aided

22

Engineering Exchange (CAEX) IEC/PAS 62424 standard for representation of pro-

cess information in XML. The CAEX Plant Analyzer prototype incorporates process

knowledge by linking the plant topology and a simple reasoning engine developed in

Prolog with the results from plant disturbance signal-based analysis [110]. Chan et

al. designed a rule-based expert system for the management of petroleum contami-

nated sites, where a variety of methodologies and tools are employed and integrated,

e.g. IMT (Inferential Modeling Technique) for knowledge analysis, decision trees

and object-oriented methodology for knowledge representation, and fuzzy set theory

for uncertainty modeling. The system was implemented with the real time expert

system shell G2 [19, 30].

2.10 Petroleum Applications of Wireless Systems
(PAWS)

Having shown the current status of asset management research in both academia

and industry, we conclude that the AEGIS research program focused on the book-

keeping and human machine interaction tasks rather than a fully automated and

functional asset management holistic approach. Furthermore, the CHEM-DSS re-

search program did not give a clear picture of how the different techniques will be

integrated, and what software development tools/plans will be used to develop a pro-

totype of the system. A new research program PAWS (Petroleum Applications of

Wireless Systems) was initiated by a joint venture of Atlantic Canadian universities

and National Research Council of Canada (NRC) to benefit from the success and

limitations of the AEGIS, CHEM-DSS and other projects, to build on their experi-

ences, to complement their developed tasks, and to push the envelope by evaluating

and incorporating state of the art of fault diagnosis, artificial intelligence (AI) and

wireless sensor networks techniques [91]. This will be embedded in a fully auto-

mated system architecture, which will better support process operators and improve

23

operability [96, 70, 95, 50, 87, 78, 80, 71, 93, 52, 79, 72, 81, 94, 97]. The final devel-

oped system should be deployed and validated on a pilot plant which emulates an

offshore oil production facility, as illustrated in figure 2.1. This thesis presents the

requirements analysis, architecture, implementation plan and a prototype of such a

system.

The pilot plant basically consists of three processes. The first is a two phase

separator in which hydrocarbon fluids from oil wells are separated into two phases

to remove as much light hydrocarbon gases as possible. The produced liquid is

then pumped to a three-phase separator, where water and solids are separated from

oil. Oil is heated in this process to remove as many suspended water droplets from

the oil phase as possible. The produced oil is pumped out and sold to refineries

and petrochemical plants if it meets the required specifications. Flashed light and

medium gases from the separation processes are sent to a gas scrubber where medium

hydrocarbon and other liquid remnants are separated from gas and sent back for

further treatment. Produced gas is then compressed and pumped out for sales (refer

to appendix A).

Figure 2.1 shows the different level and pressure control loops, which maintain the

produced oil at the required specifications. As the PAWS project scope suggests, all

the process control instrumentations will be hooked up to a wireless communication

system. Measured data are transmitted to the control room where the intelligent

control and asset management (ICAM) system interprets these data for better pro-

cess control and management. ICAM is composed of a group of servers and operator

work stations linked to each other through a high speed Ethernet network. The wire-

less sensor network is managed by a real time communication server. The database

server stores received data in its database after being preprocessed. A group of ap-

plication servers are the backbone of the ICAM system. The application servers run

the tasks of data preprocessing, model identification, fault diagnosis, fault mitiga-

24

tion and accommodation, human machine interaction, and supervisory control. Each

server is a computer cluster, which is a group of loosely coupled computers that work

together closely to achieve higher performance, availability, and load balance. This

will result in better internal coordination among the different ICAM servers.

25

T
w

o
-p

h
a

s
e

o
il

 s
e

p
a

ra
to

r

T
h

re
e

-p
h

a
s

e

o
il

 s
e

p
a

ra
to

r

G
a
s

S
c
ru

b
b

e
r

G
a
s

c
o

m
p

re
s

s
o

r

O
il
 w

e
ll

W
a

te
r

tr
e

a
tm

e
n

t

W
a
te

r

W
a
te

r

O
il
 &

 w
a
te

r
m

ix

W
a
te

r

O
il

P

P

P

T
o

 w
a

te
r

tr
e

a
tm

e
n

t

O
il
 s

a
le

s

G
a

s
 s

a
le

s

D
is

p
o

s
a
lP

W
ir

e
le

s
s
 d

a
ta

li
n

k

W
ir

e
le

s
s

 d
a

ta

li
n

k

W
ir

e
le

s
s

 d
a

ta

li
n

k

G
a
s

G
a
s

G
a

s

P
ip

e
 l

in
e

S
ig

n
a

l
li

n
e

D
a

ta
 l
in

e

L
C

L
 :

 L
e

v
e

l
c

o
n

tr
o

l
lo

o
p

L
C

L
 1

L
C

L
 2

L
C

L
 3

L
C

L
 4

P
C

L
 :

 P
re

s
s

u
re

 c
o

n
tr

o
l

lo
o

p

P
C

L
 1

P
C

L
 2

P
C

L
 3

P
C

L
 4

R
a

d
io

to
w

e
rE
th

e
rn

e
t

R
e

a
l
ti

m
e

C
o

m
m

u
n

ic
a

ti
o

n
 s

e
rv

e
r

A
p

p
li

c
a

ti
o

n
s

e
rv

e
rs

D
a

ta
 b

a
s
e

s
e
rv

e
r

W
o

rk
s

ta
ti

o
n

s

F
ig

u
re

2.
1:

P
A
W

S
P

ro
je

ct
sc

h
em

at
ic

d
ia

gr
am

26

Chapter 3

ICAM System Conceptualization:
Architecture and Functional
Description

3.1 Conceptual Model of the ICAM System

Several conceptual frameworks have been suggested for modeling complex intelligent

systems. In the past two decades, the most popular design framework was the expert

system, which has several advantages, namely, separation of knowledge and infer-

ence, ease of development and transparent reasoning under uncertainty. Moore and

Kramer [62] discussed the issues of expert system design for real-time process control

applications; an intelligent expert system (PICON) was designed and implemented

on several process plants to validate expert systems performance in real-time process

environments. Implementation results revealed several drawbacks, namely, lack of

learning mechanisms, knowledge base validation difficulties, and weak representation

power. There are several expert system survey papers to which one may refer for

further insight [55, 54].

Newell [66] introduced cognitive architectures as a more general conceptual frame-

work for developing complex intelligent systems, based on a human cognition view-

point. This approach assumes that human cognition behavior has two components,

architecture and knowledge. The architecture is composed of cognitive mechanisms

that are fixed across tasks, and basically fixed across individuals. These mecha-

27

nisms, which define the properties of this approach, involve a set of general design

considerations, namely, knowledge representation, knowledge organization, knowl-

edge utilization, and knowledge acquisition. Newell argued that these considerations

represent theory unification to model complex intelligent systems. Furthermore, this

allows model (knowledge) reuse and helps create complete agents opening the way

to applications. Soar and ACT-R, which are two of the most widely used cogni-

tive architectures, represent Newell’s approach and support most of the cognitive

mechanisms [77]. These architectures are based on different conceptual origins: Soar

arose from an artificial intelligence (AI) tradition, and ACT-R arose out of a more

experimental psychology tradition. The performance of both architectures in solv-

ing different problems points to a promising future for modeling complex intelligent

systems.

Multi-agent systems (MAS), which can be considered as an instantiation of dis-

tributed artificial intelligence, is another conceptual framework for modeling complex

systems. A MAS is defined as a loosely coupled network of problem solvers that work

together to solve problems, that are beyond their individual capabilities [16]. The

MAS platform emphasizes distribution, autonomy, interaction (i.e., communication),

coordination, and organization of individual agents. Agents in MAS can be defined

as conceptual entities that perceive and act in a proactive or reactive manner within

an environment where other agents exist and interact with each other based on

shared knowledge of communication and representation [109]. Each agent contains

processes for behavior generation, world modeling, sensory processing, and value

judgment together with a knowledge database, as shown in figure 3.1.

In the late 1980’s, the European Commission funded a major research project

called ARCHON, which was focused on the problem of getting a number of distinct

expert systems to pool their expertise in solving problems and diagnosing faults

in several industrial domains. ARCHON was recognized as one of the first real

28

industrial applications of MAS [44].

Agent

Sensory
processing

Behavior
generation

World modeling

Value judgment
Knowledge

base

Figure 3.1: Agent architecture

Sloman [85] introduced H-Cogaff, a human-like information processing architec-

ture, which contains many components performing different functions all of which

operate concurrently and asynchronously. The H-Cogaff architecture seems to rep-

resent a combination of the cognitive architecture and the MAS conceptual frame-

works. As illustrated in figure 3.2, Sloman’s architecture provides a framework for

describing different kinds of architectures and sub-architectures, and which, to a first

approximation, is based on superimposing two sorts of distinctions between compo-

nents of the architecture: firstly the distinction between perceptual, central and

action components, and secondly a distinction between types of components which

evolved at different stages and provide increasingly abstract and flexible process-

ing mechanisms within the virtual machine [84]. The reactive components generate

goal seeking reactive behavior, whereas the middle layer components enable decision

making, planning, and deliberative behavior. The modules of the third layer support

monitoring, evaluation, and control of the internal process in the lower layers.

Having reviewed the different conceptual modeling frameworks, it is our opinion

that Sloman’s H-Cogaff scheme is the best candidate, which would meet most of the

requirements of an ICAM system for complex process plants. The architecture of

the system and its functional modules will be discussed in subsequent sections.

29

Figure 3.2: Human cognition and affect (H-Cogaff) architecture [85]

3.2 System Functional Description and Architec-
ture

We propose to use a combination of top-down and bottom-up approaches for mod-

eling and developing an intelligent control and asset management system (ICAM

system). The top-down approach deals with high level abstractions and conceptual

tools, which facilitate capturing and modeling the structure and the behavior of the

system being developed. Bottom-up modeling refers to developing scenarios that

show in detail how the intelligent system should interact with users and complex

external environments [90].

Figure 3.3 illustrates the proposed architecture of the conceptual system, which

consists of four information processing layers and three vertical subsystems, namely,

perception, central processing, and action. The lowest horizontal layer above the

distributed control system (DCS) contains semi-autonomous agents that represent

different levels of data abstraction and information processing mechanisms of the

30

system. The middle two layers (i.e., the reactive and deliberative layers) interact with

the external environment via the DCS and thus the industrial process by acquiring

perceptual inputs and generating actions. The perceptual and action subsystems are

divided into several layers of abstraction to function effectively. This can be achieved,

for example, by categorizing observed events at several levels of abstraction, and

allowing planning agents to generate behavior (actions) in a hierarchically organized

manner.

The system layers interact with each other by means of bottom-up activation and

top-down execution. Bottom-up activation occurs when a lower layer passes control

to a higher layer because it is not competent to deal with the current situation. Top-

down execution occurs when a higher-level agent makes use of the functionalities

provided in a lower layer to achieve one of its goals. The basic flow of control in the

system begins when perceptual input arrives at the lowest level in the architecture.

If the reactive layer can deal with this input then it will do so, otherwise, bottom-

up activation will occur and control will be passed to the deliberative layer. If the

deliberative layer can handle the situation then it will do so, typically by making

use of top-down execution of reactive agents. Otherwise, it will pass control to the

meta-management layer to resolve any internal conflicts in the architecture or notify

the operator that it cannot do so. In the remainder of this section, the functionalities

of the agents in each layer will be discussed.

31

Distributed Control System

Industrial Process EnvironmentSensors

Deliberative Layer

Secondary Supervisory Agent
Fault Accommodation Planning

Main Supervisory Agent
Product Quality/Recipe Planning

Layer Blackboard Moderator

Actuators

Reactive Layer

Model Identification

Fault Detection & Isolation # 1 Layer Blackboard Moderator

Fault Detection & Isolation # 2

Fault Detection & Isolation # 3 Process Optimization

Perception

Subsystem

Data
Preprocessing

Data
Reconciliation

Database
Management

Data
Fusion

Action

Subsystem

Plan Primary
Scheduler

Plan
Secondary
Scheduler

Plan
Executer

Self Reflective Layer

System Meta Manager

Layer Blackboard Moderator

User Interface Layer

Figure 3.3: ICAM system architecture

32

3.2.1 The Perception Subsystem

In order to tackle the problem of data explosion in modern complex process plants,

the perceptual subsystem will process data in a hierarchical manner, and categorize

them into different levels of abstraction. The data stream is processed serially by dif-

ferent agents, where the first agent’s function is data acquisition and pre-processing.

Gross discrepancies such as outliers and missing data are detected and removed by

this agent. The data stream is then exposed to further statistical processing to es-

timate variances and detect changes in steady state. Such statistical information

is communicated to the central processing subsystem to permit it to adapt to new

situations. The next agent then reconciles process data in accordance with steady

state conservation laws (e.g., material balance) and the underlying process model.

The data reconciliation agent exploits the adaptive nonlinear dynamic data reconcil-

iation approach [93, 52]. The data are then archived in a database by the database

management system. The last agent in the perceptual subsystem, the data fusion

agent, aggregates the data to optimally determine operation critical variables. This

will help the planning layer assess the situation of the external environment and to

make appropriate decisions.

3.2.2 The Reactive Layer

Agents in this layer provide a direct response to events that occur in the environment.

Here we describe both agents built for the present ICAM system prototype as well

as those to be implemented in the future.

When an abnormal event occurs, several fault detection and isolation (FDI)

agents work concurrently and complementarily to generate different assessments.

The integration of several FDI agents in the system will result in a better perfor-

mance, as suggested by many FDI survey papers [103, 32, 41]. FDI basically consists

of two tasks, as shown in figure 3.4. The first task is fault detection, which indicates

33

that something is going wrong in the plant. The determination of the exact location

of the failure is the fault isolation task. Three different FDI techniques have been

evaluated, namely, a directional parity vector model-based FDI technique, a fuzzy

signed directed graph (SDG) model-based FDI technique, and a neuro-fuzzy data

history-based FDI technique as discussed below. These approaches are complemen-

tary in that they are based on entirely different world views, namely an analytic

model, a cause/effect net and heuristic reasoning.

Figure 3.4: Fault detection and isolation (FDI) scheme

The first FDI approach exploits the concept of generalized parity space (GPS) to

generate a set of directional residuals, from which process faults can be determined.

When a fault occurs, it will result in an activity of the parity vector along certain

directions or in certain subspaces. Therefore the fault isolation task involves deter-

mining which predefined direction the parity vector is most nearly aligned with. The

GPS concept was developed using the stable coprime factorization framework [104],

where any n×m proper rational transfer function matrix P (s) can be expressed in

terms of stable left coprime factors Ñ(s), D̃(s), desired control inputs ud, and the

34

sensor outputs y as follows:

P (s) = D̃−1(s)Ñ(s) =
y(s)

ud(s)
(3.1)

which implies that

D̃(s)y(s)− Ñ(s)ud(s) = 0 (3.2)

Under ideal conditions, when the plant is linear, noise- and fault-free, equation 3.2

holds. However, when a fault happens, this equation is violated showing inconsis-

tency between actuator inputs and sensor outputs with respect to the fault-free

model. Hence a generalized parity vector p(s) can be defined as

p(s) = J(s)[D̃(s)y(s)− Ñ(s)ud(s)] (3.3)

where J(s) is a transformation matrix that adds another degree of freedom to

achieve the desired FDI response specifications. A systematic approach to calcu-

late an optimal transformation matrix has been effectively developed, enhancing the

FDI properties and the scope in terms of the number of faults that can be iso-

lated [104, 70, 71, 69, 72]. Once the generalized parity vector is generated then its

magnitude and direction are compared to a threshold and direction set respectively

to isolate process faults. New adaptive thresholding schemes are under development,

to make the approach more robust to model inaccuracy and nonlinear effects. The

fault isolation assessment is then sent as a text message to the deliberative layer for

further processing. This agent is implemented and incorporated in the ICAM system

prototype.

A new fuzzy signed digraph (SDG) model-based FDI technique is another ap-

proach evaluated [107]. Signed digraphs, which have been widely used to model

the cause/effect behavior of process plants, consist of nodes representing the process

variables (and parameters) and signed directed arcs representing the cause/effect re-

lationship between these variables. Nodes assume values of (0), (+), (−) representing

35

nominal, above nominal, and below nominal values respectively, whereas arc signs of

(+1), (−1) indicate the values of the cause/effect change in the same or opposite di-

rection. If a fault happens, process variables deviate, resulting in a set of symptoms,

which constitutes the pattern of this fault. In order to decrease the execution time of

a conventional SDG-based FDI algorithm, an offline fault diagnosis rule base is devel-

oped from the SDG process model, as suggested by Kramer [48]. The use of a fuzzy

representation of real-valued functions in the rule base will reduce the granularity

of the qualitative process model, and will thus improve discrimination and decrease

the generation of spurious alarms [88]. This FDI technique has been implemented

and evaluated; however, further investigation and testing is required to decide which

inference technique could be used (e.g., backward chaining, forward chaining, fuzzy

inference) [107]. This agent would also send its fault isolation assessment to the

higher layer in case of process failure.

The third FDI project involves extending the adaptive neuro-fuzzy inference sys-

tem (ANFIS) methodology [39]. ANFIS is a data-driven modeling approach that

combines the reasoning capability of fuzzy logic and the learning capability of neural

networks. System knowledge is represented by rules, and the memberships of each

of the input signals are estimated using training data and a neural network model.

This step introduces nonlinearity in the estimated weights for all the postulated

rules. For each fuzzy rule, the output is computed using a linear model of the input

signals. The strength of this approach lies in its ability to use prior knowledge, and

to update membership functions that provide a better model for the desired output.

This makes the approach suitable for dealing with nonlinear processes [42]. In order

to evaluate this approach for fault detection and isolation, we are considering two

possibilities: The first is to use a two-stage FDI scheme, where the nonlinear process

is modeled using ANFIS and then a fuzzy inference system isolates process faults.

The other possibility would be a single ANFIS stage, which is trained to isolate faults

36

directly by means of different faulty process training data sets.

A model identification agent is also incorporated in the reactive layer, in order to

improve the knowledge available to the FDI agents about the external environment

(i.e., the plant), This agent will exploit an off-the-shelf model identification package

to produce a multi-variable model, which will predict changes in process variables

to estimate new process parameters (learning task), enhance the fault detection and

isolation task, and compensate for or accommodate faulty sensor signals (estimation

task). The different agent tasks are decided by the deliberative layer, depending on

the situation. For instance, if the operating point of the plant changes to meet new

required product specifications, the deliberative layer will use the model identification

agent to estimate the new process model parameters for further processing [50]. This

agent was built by the author and incorporated in the ICAM system prototype.

An optimization agent may also be embedded in the reactive layer to make the

best use of available equipment and raw materials. The agent receives product

quality plans and process operation constraints from the deliberative layer, and then

the agent formulates a new optimization problem to solve and come up with the

optimal raw material recipe to meet the new product quality. The new recipe is

then sent to the DCS system in the form of set-points and parameters for further

execution. The Optimizer may play the same role for faulty process situations,

whenever possible.

The integration of different agent assessments in a collaborative problem-solving

framework, and the interaction between the different agents in the architecture, ne-

cessitates the use of a mechanism to achieve such goals. One approach would be a di-

rect interaction between the system agents according to their data flow requirements.

Direct interaction promotes the use of private communication protocols. However,

this approach is inflexible because it does not address the dynamic scalability of the

system in terms of adding new agents or changing the internal architecture of any of

37

the system agents. Another approach is to use an indirect and anonymous commu-

nication among agents via an intermediary such as a blackboard repository [12]. A

blackboard agent could be embedded in the reactive layer to manage the interaction

and communication among its agents and the higher layers in the architecture to

achieve the utmost flexibility. The agent consists of the blackboard itself, which is a

global data repository containing input data, partial and complete solutions, plans,

and other data organized in a hierarchy to address the different levels of information

abstraction in the architecture. A control mechanism will make runtime decisions

about accessing the data in the blackboard. The blackboard agent allows other

agents to deposit their assessments, and notify them if some useful information is

available or not. This would meet the requirements of concurrency and autonomy

for high system performance. We think that merging the two approaches in a hybrid

one would combine their benefits. Every agent in the hybrid approach has its own

blackboard, through which other agents can interact directly. This would achieve

more autonomy for each agent and high system performance. The hybrid approach

was incorporated in the ICAM system prototype.

3.2.3 The Deliberative Layer

Proactive behavior is achieved in the system in its deliberative layer, which is re-

sponsible for governing the system’s actions in normal and abnormal circumstances.

Planning in this layer will not attempt to work in a vacuum. Rather, it will concep-

tually employ a library of pre-specified plans and a problem solving mechanism. The

artificial intelligence (AI) requirements of the ICAM system have to address differ-

ent issues such as coordinating the system’s internal behavior (i.e., how the different

agents interact) versus managing the external industrial environment. The choice of

the appropriate AI paradigm is very crucial to the high performance and real-time

requirements of the ICAM system. Different AI paradigms (e.g., rule based expert

systems, case-based reasoning (CBR) systems, neural nets (NN), etc.) have different

38

strengths and disadvantages.

When it comes to selecting an appropriate AI paradigm, we were at first attracted

by the case-based reasoning (CBR) approach, as it promised to meet the high per-

formance, learning and real-time requirements of the ICAM system [96, 95]. The

CBR paradigm is a novel problem-solving strategy and machine learning technique.

In principle, it solves problems by retrieving a “nearest neighbor” past problem from

its case base, evaluating any differences, and adapting the past problem solution to

handle the new circumstances. Every new problem that is handled successfully is

added to the case base; if the new solution is a failure that information is also stored.

While this approach is apparently systematic and easily automated, there are several

major drawbacks: (1) developing an algorithm to extract a “nearest neighbor” prob-

lem is domain-specific and may be very difficult, and (2) “adapting the past problem

solution to handle the new circumstances” is also much easier said than done. Al-

though many CBR programs were developed during the 80’s and mid 90’s [4, 53],

the CBR development process slowed greatly due to the problems mentioned above

(and others), so we are shifting to another paradigm.

A rule-based expert system combines a domain-specific knowledge base with an

inference engine that processes knowledge encoded in the knowledge base to respond

to conditions in the plant or to process operators’ decisions. An expert system

consists of the following components [33]:

1. User Interface: The means by which the expert system and the users commu-

nicate.

2. Explanation Facility: The system explains to the user the way it reasons.

3. Working Memory: A global data base where all the facts used by the rules are

stored.

4. Inference Engine: Makes inferences by deciding which rules are satisfied by

39

facts, prioritizing the satisfied rules, and executing the rule with the highest

priority.

5. Knowledge Acquisition Facility: An automatic way to introduce new knowledge

without the necessity of coding it.

Traditional rule-based expert systems have a few well-known drawbacks, such as

difficult knowledge acquisition, lack of a memory of tackled problems or previous

experience, poor inference efficiency, ineffectiveness in dealing with exceptions and

novel situations and lack of learning mechanisms, to name a few. However, the de-

velopment of new software standards and technologies for rule-based expert systems

continued to progress. Such development has enabled rule-based expert systems to

overcome many of their drawbacks, and to compete with the CBR AI paradigm.

In fact, if we can limit ourselves to “crisp” problems then the “nearest neighbor”

problem does not arise, and we can use rules to define a case base, and retrieve and

implement solutions. Semi-automated procedures can also be implemented to allow

operators or process engineers to enter new cases and thus implement a limited form

of learning.

The deliberative layer supervises the system through two rule-based reasoning

supervisory agents. The first agent is the main supervisor, which manages the sys-

tem during normal operation circumstances. The agent’s knowledge base contains

product quality profiles, their pre-specified raw material recipes, and the associated

process operating conditions. The other supervisory agent acts as a backup super-

visory agent to manage the system in case of faulty situations. Pre-computed fault

accommodation plans are stored in this agent’s knowledge base. These plans consist

of schemes for sensor/actuator reconfiguration and controller tuning/restructuring,

as well as fault propagation scenarios and recommended predictive maintenance pro-

cedures.

40

3.2.4 The Self-reflective Layer

This self reflective layer conceptually provides the ability to monitor, evaluate, and

control other agents in the architecture. For example, the deliberative layer is partly

driven by decisions made by the reactive layer and perception subsystem, so it may

unexpectedly acquire inconsistent information or goals. The same situation may oc-

cur in the action subsystem, which may not be able to meet the plan time frames

sent by the deliberative layer. The meta-management agent can notice and cat-

egorize such situations, and perhaps through deliberation or observation over an

extended time period develop a strategy to deal with these situations. Furthermore,

the meta-management agent coordinates other agents so as to make the whole sys-

tem performance more robust and coherent. It determines when other agents have

completed their work, what agent to invoke next, and assesses credibility of each

agent’s behavior by monitoring their internal states.

3.2.5 The User Interface Layer

Process operators can interact with the system through its user interface layer, which

works concurrently at the top of the architecture. The user interface layer receives

different types of information from the different layers and subsystems, namely:

1. faulty components and their possible causes based on the different FDI agents’

assessments,

2. fault propagation scenarios based on the reasoning of the SDG based FDI

agent,

3. system recommendations in faulty situations such as instructions for control

loop restructuring/tuning, predictive maintenance plans, and other mitigating

measures,

4. product quality specifications and associated optimal raw material recipes, and

41

5. internal system diagnostics and other utility tasks such as process modeling

and intelligent data trend monitoring facilities.

Its most important obligations are to present process-critical information in a timely

manner, and prevent data- and work-overload for the operator.

3.2.6 The Action Subsystem

To complete our conceptual model, plans which are sent by the deliberative layer

would be executed by the action subsystem. The action subsystem consists of hi-

erarchically organized scheduling and execution agents. The main scheduling agent

decomposes main plans into sub-plans that have shorter time frames. This results in

better execution performance by alleviating the excessive computational burden on

the main scheduling agent. The sub-plans are further decomposed by a secondary

scheduling agent to simpler tasks in accordance with the sub-processes in the plant.

Finally, the subtasks are performed by their corresponding agents and the task out-

comes are communicated to the DCS for final execution.

3.3 ICAM System Conceptual Behavior Model

Rigorous coordination of the behavior of the ICAM system layers and agents is

crucial to success. A sound coordination scheme will allow us to assess its perfor-

mance, and to evaluate how the internal agents of the system interact when certain

internal/external events occur. Furthermore, it permits system behavior modeling

to simulate the most critical design characteristics such as concurrency, autonomy,

task distribution and parallelism, in order to guarantee robust and coherent per-

formance. Due the complexity of modern manufacturing plants, intelligent systems

(e.g., ICAM) have to be distributed, which makes the coordination of such systems

very difficult and challenging.

Durfee et al. [17] proposed an informal theory that integrates organizational be-

42

havior, long term plans, and short term schedules into one coordination framework,

and treats coordination as a distributed search process through the hierarchical space

of the possible interacting behaviors of the individual agents to find a collection that

satisfactorily achieves the agents’ goals. The theory emphasizes several topics such

as:

• hierarchical behavior representation to express different dimensions of behavior

at different levels of detail,

• metrics for measuring the quality of coordination between agents,

• distributed search protocol for guiding the exchange of information between

agents during the distributed search,

• local search algorithm for generating alternative behaviors at arbitrary levels

of abstractions, and

• control knowledge and heuristics for guiding the overall search process to im-

prove coordination.

Durfee also suggested that introducing a meta-level organization in the intel-

ligent system to manage coordination between agents, and separating knowledge

representation into domain-level and meta-level types, would enhance coordination

and make it more robust. Agents use domain-level knowledge to influence what

goals they pursue, and use meta-level knowledge to decide how, when, and where to

form and exchange behavioral models [15]. Durfee’s informal theory and suggestions

give the big picture of how agents should coordinate their activities within an intel-

ligent system or even a society of intelligent agents. So far we have addressed the

knowledge and organization separation issues by adopting the H-CogAff architecture

proposed by Sloman. ICAM interacts with the external world through its reactive

and deliberative agents, whereas the meta-level layer dictates the internal behavior

43

ICAM system

Meta manager

Deliberative BB

manager

Normal event

Supervisor

Abnormal event

supervisor

Reactive BB

manager

Plan executer

Action BB

manager

Primary plan

scheduler

Fault detection &

isolation # 2
Process optimizer

Model

identification

Perception BB

manager

Secondary plan

scheduler

Fault detection &

isolation # 1

Wireless sensor

network manager

Data statistical

pre-processor

Data

reconciliation

Dbase manager

User interface

manager

Manufacturing environment Actuators
Wireless

Sensors

Data flow Communication & control flow BB: Blackboard

Figure 3.5: ICAM system conceptual behavior model

of the system. Furthermore, domain-level knowledge is encoded in the deliberative

agents and the meta-level knowledge is encoded in the self reflective layer.

As illustrated by figure 3.5, the proposed conceptual behavior model of the ICAM

system was built upon our previous work in which we defined the architecture of

the system, its functional modules, and its coordination mechanisms [96, 95]. We

adopted Sloman’s H-Cogaff architectural scheme because it met most of our system

requirements [84]. The behavioral model was drawn as a page hierarchy to make

it compatible with hierarchical colored petri net (HCPN) terminology, which could

be used to analyze the logical correctness and the dynamic behavior of the system;

however, this has not been done. We follow the top-down approach to explain the

conceptual behavior model of the ICAM system.

44

The prime page in the model is called ICAM which contains all the subpages

of the system. Each subpage represents an independent agent which interacts with

others by means of communications (represented by thin bidirectional arrows). Other

agents may process data received from the plant directly (data flow is represented

by open thick unidirectional arrows). The meta manager is the main coordinator

of the whole system, which guarantees more robust and coherent performance. The

meta manager is basically a rule-based expert system, which codifies all possible

system behaviors and agent interactions as a behavior hierarchy in its knowledge

base. Agent behavior is represented in the behavior hierarchy by a single structure,

which will use the same message structure communicated between agents. This will

result in a better system performance. Table 3.1 illustrates the unified behavior

conceptual structure.

Field name Field content
Tag Message ID
From Sender
To Recipient

What Goals
How Plans
When Schedule

How long Task length
Why Meta

reasoning

Table 3.1: Conceptual structure of behavioral message

The meta manager may interact with other ICAM agents through a group of

distributed blackboard agents, which act as a post office. Each blackboard (BB)

agent would consist of a global data repository and a control mechanism, which pro-

cesses the different received messages and notifies other agent about newly available

messages. Once the meta manager receives a message from any of the BB agents, it

monitors the logical behavior by comparing the sender and the recipient identities

and status with its current state. Furthermore it assesses the dynamic behavior of

45

the system in this event by assigning a time out for the recipient to respond. Should

the recipient not respond within the preset time out, the meta manager proposes an

alternative internal action. Each BB agent broadcasts messages to the recipients and

to the higher level BB agents. The highest level BB agent would send the massage

to the meta manager for further processing.

The deliberative BB manager interacts with the lower level BB managers and the

two rule-based reasoning supervisory agents of ICAM. The main supervisor manages

the system during normal manufacturing operations. When a certain product speci-

fication is required, the main supervisor retrieves a set of plans that best match the

required quality specs. If the matching process is successful, the plan is sent to the

deliberative BB manager, which in turn communicates it to the action BB manager

for execution. If not, the closest matching plan is chosen and adapted by using

model-based optimization, in which the main supervisor collaborates with the model

identification and optimization agents to generate the optimal recipe and operating

conditions (e.g., pressure and temperature). This collaboration process is achieved

through the deliberative and reactive BB managers. The plan is then sent to the user

interface agent for further modifications by process operators if needed. Once the

plan has been approved it is then sent to the action BB manager for execution. The

actual quality specifications are monitored by the main supervisory agent, which will

add the plan to its “good” knowledge base should the actual and desired specifica-

tions match, or to the “bad” repository if they do not. This behavioral paradigm was

central to the intelligent processing architecture proposed in [92]. The meta manager

is acknowledged in every step, to guarantee a coherent internal coordination.

The second supervisor is a backup agent to manage the system in case of faulty

operations. When a fault happens (e.g., a sensor or actuator failure), the backup

agent receives fault assessments from the different fault detection and isolation (FDI)

agents through the reactive BB manager. Based on such assessments, the supervisor

46

retrieves the most closely matching case from its knowledge base. Consequently,

it alarms the user interface through the appropriate BB managers about the fault,

its possible causes, and recommended mitigating actions for operator feedback and

approval. The backup supervisor may interfere directly in critical situations in col-

laboration with the main supervisor and the meta manager. This would prevent the

system performance from deteriorating excessively and would keep it in an acceptable

state.

Four reactive agents respond directly to events as they are continuously updated

with new data about the external environment. Data from the external plant are

received by the statistical data monitoring agent, which preprocesses the data by

removing undesired discrepancies. Data are then reconciled with material balance

laws in the data reconciliation agent [93, 52]. The database manager then stores

processed data in its database. The perception BB manager connects these data

processing agents with the system. A model identification agent estimates new pro-

cess parameters to improve the system knowledge about the process, should it receive

a message from the perception BB manager to do so. The production efficiency is

improved by a process optimization agent, monitored by the main supervisor as dis-

cussed earlier. When abnormal events occur, several FDI agents may collaborate

with the backup supervisor and other BB managers to detect and isolate such faults.

The first agent to detect abnormal process variations is the statistical data monitor,

which alerts FDI and backup agents through appropriate BB managers. Again, the

meta manager is acknowledged at every step to ensure coherent coordination among

the agents.

Plans received by the action BB manager are sent to the main and secondary

scheduling agents where plans are decomposed into tasks with shorter time frames

and in accord with the sub-processes of the plant. Subtasks are then executed by the

execution agent. Massive data flow is handled by a wireless sensor network agent,

47

which manages real time communications between the control room and the offshore

oil facility. Process-critical information is pro-actively presented to process operators

in a timely manner through the user interface agent.

3.4 ICAM System Development Plan

Having discussed the architecture and behavioral model of the ICAM system, it is

crucial to prepare an implementation plan and choose the appropriate development

tools. The implementation plan is a preliminary one for prototyping and perfor-

mance analysis purposes. Industry consultation will determine the final system re-

quirements and deployment plan. Our conceptual implementation plan is composed

of the following phases:

1. ICAM system logical behavior analysis using the colored petri nets (CPN) ap-

proach: The CPN modeling approach combines Petri nets and programming

languages, which enables modeling concurrency, synchronization, and commu-

nication in systems. The module concept is hierarchical, allowing a set of

modules to be composed to form new modules. A CPN model can be used to

verify a number of dynamic properties of the system under consideration such

as liveness, boundedness, and fairness [49].

2. ICAM system deployment scheme using the message passing interface (MPI)

parallel programming model: The message passing model is a parallel program-

ming approach which posits a set of processes that have only local memory but

are able to communicate with other processes by sending and receiving mes-

sages [35]. MPI is a specification and a library which provides the infrastructure

for communications among several parallel computational processes.

3. Canonical variate analysis (CVA) integration for massive data flow processing:

Massive dataflow from industrial process should be preprocessed so as to re-

48

move any inconsistencies, to model the process, and to generate better process

measurements in accordance with mass balance laws. The canonical variate

analysis (CVA) approach is a well established statistical approach, which can

meet the dataflow preprocessing requirements mentioned earlier. This decision

was made as a result of a three day model identification workshop held at the

University of New Brunswick [50]. The integration of the CVA-based Adaptx

package with ICAM would result in robust data preprocessing and modeling

compared with other approaches.

4. Bottom-up ICAM system rapid prototyping using the matlab simulation envi-

ronment: A prototype has to be developed in order to have the ICAM system

requirements deployed in a real-world system. The ICAM prototype should

be deployed as distributed matlab computational modules, which run on a

network of several Windows XP workstations. The different computational

agents employ different approaches based on the agent’s task.

5. Interfacing with the College of North Atlantic (CNA) oil production pilot plant:

This step would be the ultimate platform for verifying the ICAM system design

decisions and for validating the ICAM system performance and logical behav-

ior in a real-world industrial environment. To accomplish this, we suggested

upgrading its equipment and instrumentation, especially the sensors. In addi-

tion to installing a LAN of workstations, we will use the matlab simulation

package including the OPC (object linking and embedding (OLE) for process

control) toolbox, which will act as an interface between the ICAM system and

the pilot plant. This would be very productive and would guarantee a good

development and utilization process for the CNA facility even after PAWS is

completed. This part of the plan assumed CNA will complete pilot plant up-

grades in a timely way. Otherwise, a pilot plant simulation model [80] should

be used as a backup platform (refer to appendix A).

49

Chapter 4

Conceptual ICAM System
Implementation Requirements

Having proposed a conceptual model, architecture, behavioral model, and imple-

mentation plan for the ICAM system, we define the autonomy, communications, and

artificial intelligence (AI) requirements of the different agents of such a system. We

also discuss the software implementation of the reactive and the supervisory agents.

4.1 Artificial Intelligence (AI) Requirements for
the ICAM System

Among the industrial rule-based expert system shells, the G2 real-time expert system

shell from Gensym Corporation [31] is considered the most versatile real-time expert

system shell, as it integrates many software technologies and standards. The G2

platform uniquely combines real-time reasoning technologies, including rules, work

flows, procedures, object-oriented modeling, simulation, and graphics, in a single

development and deployment environment. G2 can transform real-time operations

data into automated decisions and actions, and can maintain an understanding of

the behavior of processes over time. This would enhance the whole ICAM system

performance, and enable the ICAM system to intelligently coordinate its internal

behavior and interact with the external industrial process as well.

The integration of the G2 expert system development environment with the

50

ICAM system would benefit from and build on the previous G2 integration attempts.

This would enhance the whole ICAM system performance, and enable the ICAM sys-

tem to intelligently coordinate its internal behavior and interact with the external

industrial process as well. The G2 development environment offers a goal-based rapid

prototyping design, in which requirements analysis, design, and development tasks

are done simultaneously and incrementally during the ICAM system development life

cycle. G2 also adheres to software development standards such as object-oriented

design, modularity, reusability, scalability, application programmer’s interface (API),

and user interface standards [31]. To meet such software requirements during the

design and development of the ICAM system supervisory agent, AI design require-

ments such as the supervisory agent structure and knowledge representation and

processing have to be determined.

4.1.1 ICAM system supervisory agent implementation

Modules are the building blocks of complex G2 applications. A modular knowledge

base (KB) consists of multiple G2 modules. The modules that make up an applica-

tion form a module hierarchy, which specifies the hierarchical dependencies between

modules [31]. Decomposing a large project into multiple small modules allows de-

velopers to divide and merge work. Modules can be structural or functional ones.

The structural modules contain classes or capabilities that need to be shared in large

applications; functional modules implement well defined goals. The ICAM system

supervisory agent, which potentially is a very complex artificial intelligence appli-

cation, forms a good candidate for the modularization design approach. While the

modularization design approach may add some overhead on the overall performance

of the agent, it effectively organizes knowledge, and simplifies the development and

deployment processes.

To meet the module reusability requirement, the guidelines for G2 application

development recommend use of a four layer, two-module architecture, in which the

51

graphical user interface (GUI) is in a separate module. Figure 4.1 illustrates the gen-

eral architecture of the ICAM supervisory agent, which accordingly has two modules.

The first module contains the agent’s core functionality implementation layer and

its application programmer’s interface (API) layer, which protects the internal data

structures in the core from corruption by other modules. The second module con-

tains the public graphical user interface (GUI) layer and its GUI implementation

layer, which interacts directly with the first module through its API layer. The

ICAM system supervisory agent interacts with the other reactive agents through

their external G2 links. The internal states of the ICAM system agents and the

external environment are communicated to enable the supervisory agent to reason

and make the correct and appropriate decisions for better system management.

Core module GUI module

Core functionality

implementation layer (private)

Application programmer's

interface (public)

Graphic user

interface (public)

GUI implementation

layer (private)

Inter-module

 calls

ICAM system supervisory agent

G2 Application

ICAM agent

Fault detaction

and isolation

G2 link

ICAM agent

Model

identification

G2 link

ICAM agent

Data statistical

pre-processor

G2 link

Figure 4.1: ICAM system supervisory and reactive agents architecture

52

4.1.2 Knowledge representation of the supervisory agent

The ICAM system supervisory agent may contain multi-faceted complex knowledge

such as the internal structure of the ICAM system and the structure of the external

environment (e.g., manufacturing plant topology, enterprise business structure). To

represent such complex knowledge, organizing the knowledge structure in the core

layer of the supervisory agent as a hierarchy of smaller modules would be the so-

lution, as shown in figure 4.2. Each module is represented in the G2 development

environment as a knowledge base (KB). Each KB represents an ontology of speci-

fied knowledge. An ontology is important for knowledge-based system development

because it can serve as a software specification, similar to the function of a soft-

ware architecture. Like a software architecture, an ontology provides guidance to

the development process. The former provides guidance to the development process

by specifying the interdependencies that deal with stages or aspects of a problem-

solving process. By contrast to software architecture, however, an ontology involves

not only the stages of a process, but also the taxonomy of knowledge types. The two

aspects are referred to as task-specific and domain-specific architectures [57]. The

modular knowledge base design approach supports objected-oriented design prin-

ciples, increases productivity, encourages code reuse and scalability, and improves

maintainability.

53

E
x

te
r
n

a
l

e
n

v
ir

o
n

m
e
n

t

in
st

r
u

m
e
n

ta
ti

o
n

 m
o

d
u

le

IC
A

M
 s

y
st

e
m

 a
g

e
n

ts

m
o

d
u

le

B
u

si
n

e
ss

m
a

n
a
g

e
m

e
n

t
m

o
d

u
le

IC
A

M
 s

y
st

em

su
p

e
r
v

is
o

r
y

 m
o

d
u

le

F
a

u
lt

 p
r
o

p
a

g
a

ti
o

n
 &

m
it

ig
a

ti
o

n
 m

o
d

u
le

C
o

n
n

e
c
ti

o
n

S
e
p

a
r
a
to

r

V
a
lv

e

S
e

n
so

r

In
st

ru
m

e
n

ta
ti

o
n

{a
b

st
r
a

c
t}

 T
w

o
-p

h
a
se

se
p

a
r
a

to
r

T
h

r
e
e
-p

h
a
se

se
p

a
r
a

to
r

G
a
s

sc
r
u

b
b

e
r

F
lo

w
 s

e
n

s
o

r

V
o

lu
m

e
se

n
so

r

P
r

e
ss

u
r
e

se
n

so
r

P
ip

e
M

o
d

e
l

ID
 a

g
e
n

t

S
ta

ti
st

ic
a

l

p
r
o

c
e
ss

in
g

 a
g

e
n

t

F
a

u
lt

 d
e
te

c
ti

o
n

 &

is
o

la
ti

o
n

a

g
e
n

t

O
p

ti
m

iz
a

ti
o

n

a
g

e
n

t

A
g

e
n

t

{a
b

st
r
a

c
t}

P
r
in

c
ip

a
l

c
o

m
p

o
n

e
n

t
a

n
a

ly
si

s

a
g

e
n

t

S
u

b
sp

a
ce

M
o

d
e
l

ID
 a

g
e
n

t

P
a

r
it

y
 v

e
c
to

r

b
a

se
d

 F
D

I
a

g
en

t

S
ig

n
e
d

 d
ig

r
a

p
h

s

b
a

se
d

 F
D

I
a

g
en

t

F
ig

u
re

4.
2:

K
n
ow

le
d
ge

re
p
re

se
n
ta

ti
on

st
ru

ct
u
re

in
th

e
IC

A
M

su
p
er

v
is

or
y

ag
en

t

54

The core (private layer) of the ICAM system supervisory agent has five modular

KBs, which are organized as a module hierarchy. Basic knowledge about the ICAM

system elements is represented in three lower level knowledge bases (i.e., ICAM sys-

tem agents’ KB, external environment instrumentation KB, and fault propagation

and mitigation KB). The first knowledge base organizes the different conceptual

agents of the ICAM system (e.g. fault detection and isolation agents, optimization

agent, etc ...). In contrast, the second knowledge base maps the external envi-

ronment physical instrumentation (e.g., valves, sensors, and other chemical process

equipment) into its class hierarchy. Instrumentation and process faults and their

mitigating actions are represented as classes in the third KB. Each basic element

(i.e., object) in these knowledge bases has properties to represent its physical or

conceptual characteristics; and has methods to represent its behavior. Elements are

further organized as a class hierarchy to exploit object-oriented standards such as ab-

straction, inheritance, and information hiding and encapsulation. An abstract class,

which hides its basic properties and methods, is first designed. More properties and

methods are added to the higher level classes in the class hierarchy, which inherit

from the abstract class.

The ICAM system supervisory knowledge base merges the knowledge from the

lower level modules into a three-layer knowledge base, where each layer represents a

subsystem of connected objects (i.e., classes), as illustrated in figure 4.3. The first

layer (i.e., the ICAM system structure layer) assembles the conceptual structure

of the ICAM system from the agent class hierarchy of the lower level knowledge

base. This layer is responsible for managing the internal behavior of the ICAM

system. Fault propagation and mitigating actions are assembled into object trees,

and mapped into the second layer, which manages the external environment during

abnormal situations. In fact, it isolates instrumentation faults, and presents their

propagation maps and their appropriate migrating actions to process operators. The

55

third layer (i.e., process topology layer) represents the external process topology,

where different process instrumentation objects are used from the instrumentation

knowledge base module. Other knowledge bases can be added to represent other

types of knowledge such as the enterprise business management module.

Process topology

Fault propagation map

ICAM system structure

FDI Model ID

Optimize

Fault 4

Fault 1

Fault 5

Fault 2

Fault 6

Fault 3

Actions

Figure 4.3: Layers of the supervisory agent knowledge

4.1.3 Knowledge processing in the supervisory agent

The G2 development environment offers several programming constructs for process-

ing data such as procedures, methods, and rules. Procedures, which are independent

of any class, define a general functionality, and can be invoked by rules, other pro-

cedures, and GUI actions. In contrast, methods, whose invocation and structure are

similar to procedures, define classes’ behavior. Methods structure the behavior of

different objects through method inheritance between different classes of the class hi-

56

erarchy. Procedures and method invocation can be single-threaded (i.e., sequential)

or multi-threaded (parallel). Rules, which are statements with antecedent and conse-

quent parts, represent expert decision-making power by reasoning over data or event

conditions (“facts”). Rules are invoked by forward chaining, backward chaining, or

scanning.

Forward chaining is a form of deductive reasoning, in which rules are invoked to

attempt to draw conclusions from existing facts. If the antecedent of a rule is true,

then its consequent part is executed to create new facts, thus causing a chain of

rule invocations in a rule base. Backward chaining is the process of determining the

value of a goal or a variable by looking for rules that conclude that goal. Backward

chaining follows two different search strategies. The breadth first search strategy

examines all rules that could determine the value of the current goal and sets their

antecedents as sub-goals before backtracking through other rules to determine the

validity of each sub-goal. In contrast, the depth first search strategy backtracks

through all of the rules in a knowledge base that could lead to determining the value

of a goal by a single rule. Scanning is another rule invocation method in which rules

are invoked automatically based on a fixed, user-defined frequency.

A G2 rule-based system maps out a multi-threaded path of execution, which is

potentially different each time the rule is invoked. For this reason, rule-based systems

are often more complex, harder to test, debug, and maintain, and less efficient than

procedure-based systems based on methods. Thus, rules should be used for specific

purposes such as general event detection and event detection based on data driven

processing and forward chaining [31]. Since the ICAM system knowledge is multi-

faceted and complex, its knowledge processing structure should be also distributed

and organized according to the class and/or module hierarchy of the supervisory

agent. For example, generic rules for event detection of a specific reactive agent

can be organized in the class associated with that reactive agent. Rules can also

57

be categorized to achieve certain functionality. For example, the fault propagation

and mitigation schemes (i.e., cases) can be implemented as a rule category. This

would narrow the scope of rules, where rules are only applied to their specified level

in the class hierarchy and/or the module hierarchy. Consequently, rules invocation

by forward chaining will be less prone to errors. The distribution of knowledge

representation and processing would meet most of the software requirements. This

would pave the way for managing complex process plants by dividing them into sub-

processes that can be managed by a separate ICAM system. A universal supervisor

can then manage the whole hierarchy of sub-processes efficiently.

4.2 Communication Requirements for the ICAM
System

Having proposed the ICAM system development plan [78], it is crucial to design the

agent structure to achieve specific autonomy requirements in terms of an overlapping

scheme for communication and computation along with ease of prototyping and

deployment. The design of the system’s middleware structure, which acts as an

integration model showing the types of connectivity between the different agents, is

also important for achieving autonomy. “Middleware is connectivity software that

consists of a set of enabling services that allow multiple processes running on one

or more machines to interact across a network” [2]. Middleware can take on the

following different models [3, 24, 7, 18, 74]:

1. Transactional middleware, which “permits client applications to request sev-

eral services within a transaction from a server application. The client can

request services using synchronous or asynchronous communication through

the two-phase commit protocol (2PC). This middleware platform is rather

scalable, because it supports load balancing and replication of server compo-

nents. Moreover, it supports software and hardware heterogeneity, because

58

the components can be located on different hardware and operating system

platforms” [74].

2. Procedural middleware, which “enables the logic of an application to be dis-

tributed across the network. Program logic on remote systems can be executed

by Remote Procedure Calls (RPCs) as simply as calling a local procedure” [2].

“Remote clients can invoke these procedures across the network using the net-

work protocols. These protocols are low-level, such as Transmission Control

Protocol/Internet Protocol (TCP/IP) or User Datagram Protocol (UDP). If

a client wants to receive some services, then it makes a request to a server.

This request consists of a message, which includes the marshalled parameters.

On the other side, the server receives this message, unmarshalls the param-

eters, executes the requested service and sends the result back to the client.

The RPC middleware supports synchronous communication in which an RPC

client is blocked until the remote procedure has been executed or an error oc-

curs. Partial synchronization decoupling is achieved by using the RPC style

between distributed processes (i.e., semi asynchronicity). The RPC has a good

heterogeneity support but limited scalability” [74].

3. Message-Oriented Middleware (MOM), which has become an increasingly pop-

ular solution for interoperability of heterogeneous applications. “It provides

generic interfaces that send and receive messages between applications through

a central message server that takes charge of routing the messages. MOM

loosely couples applications, in contrast to tightly coupled point-to-point in-

tegration. Employing middleware architectures reduces interapplication links

and reduces application maintenance. Such architectures also enable the addi-

tion of new applications with minimum impact on existing ones. One tradeoff

is the overhead associated with installing and maintaining the middleware it-

self” [58]. “MOM is analogous to email in the sense it is asynchronous and

59

requires the recipients of messages to interpret their meaning and to take ap-

propriate action” [2]. “MOM supports both synchronous (via message passing)

and asynchronous (via message queuing) communication. Asynchronous com-

munication is achieved in the natural way. The message is sent to a server,

without blocking a client. The client does not need to wait for a reply and can

proceed with other actions” [74].

4. Object/component middleware (e.g., COBRA, Java RMI, and Microsoft COM/D-

COM technologies), which “is a set of useful abstractions for building dis-

tributed systems. The communication model for this platform is based on a

request/reply pattern: an object remains passive until a principle performs an

operation on it. This kind of model is adequate for a local area network (LAN)

with a small number of clients and servers, but it does not scale well to large

networks like the Internet. The main reason is that the request/reply model

only supports one-to-one communication and imposes a tight coupling between

the involved participants because of the synchronous paradigm. The compo-

nent middleware supports both synchronous and asynchronous communication

with limited scalability” [27].

5. High Performance Computing and Communication (HPCC) middleware, which

is oriented toward the development of parallel computing hardware and par-

allel algorithms. The Message Passing Interface (MPI) communication model

meets the autonomy and high performance requirements by offering many ad-

vantages such as expressivity, ease of debugging, and most importantly high

performance. MPI is a specification and a library which provides the infras-

tructure for communications among several parallel computational processes.

MPI gives system designers the freedom to implement their own protocols that

best fit their systems’ requirements [35, 20].

60

6. Web Service-Oriented middleware, in which “XML-documents (i.e., messages)

are exchanged between systems using the simple object access protocol (SOAP).

A SOAP message may include, for example, all necessary information for its

secure transmission. This allows the message to be decoupled from, and trans-

mitted over, any appropriate transport protocol. It also allows the message

to be decoupled from explicit point-to-point connection protocols. The SOAP

protocol is purposefully constructed to be extensible. Important extensions

include reliability, security, and addressing. SOAP however specifies both in-

terfaces and message structure so broad interoperability can be achieved. This

is achieved at a performance cost that we return” [24].

Having reviewed the different middleware technologies, it is our opinion that the

high performance computing and communication MPI-based middleware meets the

ICAM system requirements. However, the MPI model offers many design choices,

which requires another level of requirements analysis, as discussed in the following

section.

4.3 Refined MPI Communications Requirements
for the ICAM System

The MPI communication library offers many communication modes and protocols,

giving system designers the freedom and flexibility to implement their communication

specifications and protocols. The MPI library specifies synchronous, buffered, ready,

and nonblocking communication modes. In the synchronous mode, communicating

processes are blocked till a message transfer operation is completed. However, the

non-blocking mode does not block the communicating processes, which allows more

flexible implementation in terms of communication/computation overlap. Buffered

mode gives designers more manageability over communication buffers, whereas the

ready mode guarantees correct message sending operation if a matching receiving

61

operation is posted.

Among pre-specified MPI protocols, designers can choose from several protocols

such as the Eager, the Rendezvous, and the One-sided protocols for implementation.

The Eager protocol can be used to send messages assuming that the destination can

store them. This protocol has minimal startup overhead and is used to implement

low latency message passing for smaller messages. The Eager protocol has advan-

tages in terms of programming simplicity and reduction of synchronization delays.

However, it requires significant buffering, additional buffer copies, and more CPU

involvement at the destination. In contrast, the Rendezvous protocol negotiates the

buffer availability at the receiver side before the message is actually transferred. This

protocol is used for transferring large messages when the sender is not sure whether

the receiver actually has the buffer space to hold the entire message. This protocol

is safe and robust, and may save in memory. However, it requires more complex pro-

gramming and may introduce synchronization delays. The One-sided protocol (i.e.,

remote memory access (RMA) protocol) moves data from one process to another

with a single routine that specifies both where the data are coming from and where

they are going. Communicating agents using this protocol must have a designated

public memory (i.e., blackboard), which can be remotely accessed. This protocol has

nearly the best performance compared to others in terms of synchronization delays;

however, it requires a very careful synchronization planning process [36].

Having described the communication design options available in the MPI library

and according to the high performance MPI recommendations [34], it is our opinion

that the ICAM system communications should meet the following requirements:

• In order to avoid deadlocks, synchronization time, and serialization problems,

the non-blocking communication mode should be used.

• To address the message size and scalability issues, the Rendezvous protocol

would be the perfect candidate among the other MPI protocols.

62

• The problem of buffer contention and achieving fairness in message passing can

be resolved by having large communication buffers.

• The one-sided protocol can also be implemented to augment ICAM system

communication performance by enabling agents to have their own private black-

boards, as was discussed in the previous section.

4.4 Reactive Agent Software Implementation

In order to reconcile efficient computation with ease of prototyping requirements,

the ICAM system is deployed as a distributed interconnection of reactive matlab

computational agents, which runs on a network of several Windows XP workstations.

Distributed matlab sessions exchange messages by using our newly developed MPI

communication protocol. Exchanged messages have two roles: a control role to

achieve internal coordination with other agents, and a numerical data processing

role to achieve the best interaction with the external environment (e.g,, offshore oil

processing rigs) [80].

Figure 4.4 shows the structure of a general reactive agent of the ICAM system.

The general agent is implemented as a matlab m-script, which runs two communica-

tion tasks and a computational one. The computational task represents the agent’s

main functionality (e.g., model ID, fault detection and isolation, etc.). The first

communication task is an MPI remote memory access (RMA) protocol, which pro-

vides the basic buffered messaging capabilities with minimum overhead (refer to the

next section for more details). Furthermore, a public memory window is embedded

in each reactive agent for remote access by other agents. The memory window will

act as a blackboard for direct transfer of complex numerical data structures among

agents. This design decision was made after investigating the advanced features of

the newest MPI 2.0 library [36], and to meet the blackboard functionality described

in the behavioral model of the ICAM system.

63

ICAM Agent

MATLAB Script

MPI communication task RMA

Communications

Switch (Task)

 Case T1;

 ...

 Case Tn;

G2 expert system

communication task

Blackboard

MATLAB workspace

G2

Communications

Figure 4.4: ICAM system reactive agent deployment structure

The second communication task manages the connection with the main system

supervisor (implemented as a G2 expert system). The general matlab template

for reactive agents is built as a hierarchical finite state machine (FSM) module,

which consists of two FSM layers. The first FSM is responsible for processing the

ICAM system events received from the supervisory agent (i.e., the operating system

of the ICAM system). The second FSM implements the specific computational

functionality of the agent (e.g., FDI, model ID etc.). Further FSM layers can be

added depending on the complexity of the reactive agent. Figure 4.5 illustrates the

reactive agent implementation, which first starts its main matlab script and its

associated graphical user interface (GUI). After the ICAM agent is instantiated and

its buffers are initialized, the MPI communication environment and the G2 expert

system link are initialized. The agent’s specified computational task is started.

Once the computations are done, the communication tasks are executed based on

64

MPI Communications

with other agents

ICAM Agent Start

Initialize MPI

environment

Start agent Matlab task

and its associated GUI

Do computations

Agent's

decision?

Destroy ICAM agent

Communications with G2

expert system

Finalize MPI environment

No

Yes

Initialize G2 expert system

connection

End Matlab task and GUI

Close G2 expert system

connection

Matlab task

done?

Requires deliberationRequires data

Figure 4.5: Reactive ICAM agent implementation flow chart

the agent’s internal state and decisions. If the agent decides that it requires further

deliberation about its internal state or its response to the external environment,

then messages are exchanged with the ICAM system supervisor (i.e., the G2 expert

system). On the other hand, if the agent requires more data for better awareness

of the external environment, then it would exchange messages with other agents

through its MPI link. if the computational task is done, the task is ended; if not,

the computation loop continues to execute. The MPI environment is finalized, and

the G2 expert system link is disconnected when the ICAM system shuts down. The

proposed agent structure paves the way to design and to rapid prototype any complex

65

multi-agent system for many applications. This definitely enables system designers

to implement any communication protocol in addition to exploiting the full power

of the matlab simulation, computation, and development environment.

4.5 Conceptual ICAM System Deployment Re-
quirements

Having analyzed the artificial intelligence, the communications, and the reactive

agents’ implementation requirements of the ICAM system, it is crucial to analyze

the system deployment requirements in terms of the required software development

tools and hardware setting. Figure 4.6 illustrates the deployment scheme of the

ICAM system, which facilitates its development, validation, and operation in real-

time simulation mode and in real-world industrial applications. The deployment

scheme includes some of the ICAM system agents for simplicity, and can be easily

extended by adding more reactive agents. The backbone of the ICAM system is a

Windows Server 2003 based local area network (LAN), which consists of the following

essential servers:

• A DHCP server that offers dynamic configuration of IP addresses and related

information to DHCP-enabled clients (i.e., agents) of the ICAM system. It

also enables the automatic, centralized management of IP addresses and other

TCP/IP configuration settings for network clients.

• A domain name space (DNS) server that maintains information about a portion

of the DNS database and that responds to and resolves DNS queries. The DNS

database is a hierarchical, distributed database that contains mappings of DNS

domain names to various types of data of the network computers, such as IP

addresses.

• A windows name resolution service (WINS) server for network basic input/out-

66

put system (NetBIOS) names. WINS is used by hosts running NetBIOS over

TCP/IP (NetBT) to register NetBIOS names and to resolve NetBIOS names

to Internet Protocol (IP) addresses.

• An active directory: stores information about objects (e.g., computers, users,

groups, etc...) on a network and makes this information available to users.

• A domain controller: a server that contains a writable copy of the Active

Directory database, participates in active directory replication, and controls

access to network resources.

• A file server which is responsible for the central storage and management of

data files so that other computers on the same network can access the files.

• An MPI server which provides access to the MPI library and manages the MPI

environment of the ICAM system.

• A G2 expert system shell server which manages the G2 connections with the

ICAM system reactive agents and runs the main knowledge base of the ICAM

system.

• A Firewall that provides a security system for the flow of network traffic, usually

to prevent unauthorized access from outside to an internal network.

• A router which is a device that connects networks using different communi-

cations protocols so that information can be passed from one network to the

other. The router connects the ICAM system LAN to the internet.

• An Ethernet hub which is a common connection point for devices in a network;

typically used to connect segments of a local area network (LAN).

The conceptual ICAM system network also contains five PCs, four of which repre-

sent some of the ICAM system reactive agents, including: the pilot plant simulation

67

agent, the data statistical processing agent, the model ID agent, and the FDIA

agent. Each of these machines would include the basic software tools, which enable

the specified reactive agent to function properly in the system. These tools include:

the MPI high performance communication library, the G2 standard interface (GSI)

library, matlab, and the reactive agent itself with its associated middleware task.

The fifth machine is designated for connection with the real-world industrial plant.

This machine would include the same software tools as the other four in addition to

an OLE for process control (OPC) client and an OPC data hub for connection over

the internet.

68

Hub

Router

Firewall

Windows server 2003

Internet

Hub

File Server

Domain controller

DNS server

WINS server

DHCP server

Windows server 2003

MPI server

G2 shell server

Windows server 2003

CNA plant agent

Agent middleware

OPC client

MATLAB

OPC data hub

MPI library

GSI library

Windows XP

Stat agent

Agent middleware

MATLAB

MPI library

GSI library

Windows XP

Model ID agent

Agent middleware

MATLAB

MPI library

GSI library

Windows XP

FDIA agent

Agent middleware

MATLAB

MPI library

GSI library

Windows XP

Pilot plant agent

Agent middleware

MATLAB

MPI library

GSI library

Windows XP

Figure 4.6: ICAM system deployment scheme

69

Chapter 5

ICAM System Prototype Design

The detailed design of a simplified ICAM system prototype is described in this

chapter. We will discuss each agent’s design in terms of its control flow (i.e., flow

chart), its components, and the techniques used to build its components.

5.1 The ICAM System Prototype

A prototype has been developed in order to have the ICAM system requirements

deployed in a real-world system. Figure 5.1 portrays the simplified ICAM system

prototype. Real-time data from the external plant or a simulation model are received

by the statistical data monitoring agent, which preprocesses the data by removing

undesired discrepancies such as outliers and missing data. Processed data are stored

in a real-time database for logging and other purposes, and are then sent to the fault

detection, isolation, and accommodation (FDIA) and model ID agents for further

processing. When the data statistical preprocessor detects a change in the operating

point or an abnormal change in data, it alerts the model ID and FDIA agents to

further identify the nature of the data change. If the change is in the process oper-

ating point, the FDIA agent asks the model ID agent to update the process model

parameters. If the change is a process fault (i.e., a sensor or actuator fault), the

FDIA agent detects the nature of the fault and notifies the ICAM system supervisor

for further processing. If the supervisor decides that a fault can be accommodated,

70

it notifies the FDIA agent to do so. For every event that occurs, the supervisor is

notified, which in turn monitors and assesses the logical behavior of the system. Pro-

cessed data at every agent are sent to an operator interface, which allows operators

to make the appropriate decision depending on the plant situation.

ICAM system supervisor

(G2 expert system)

Fault detection,

isolation, & accommodation

Oil production

facility model

Data statistical

pre-processor &

reconciliation

Knowledge base

Control flow

Data flow

CNA pilot

plant

Real time

database

Operator interface

Model

identification

Figure 5.1: ICAM system prototype

The ICAM system prototype design is a complex task, in which the following

system layers are developed:

• the middleware layer, which provides data communication between reactive

agents and event communications with the supervisory agent,

• the artificial intelligence (AI) layer (i.e., the supervisory agent), which coordi-

nates the behavior of the reactive agents to achieve robust performance against

the external environment dynamic changes, and

• the reactive agents layer, which represents the different system computational

and data processing functionalities (e.g., fault detection and isolation, process

71

modeling, etc...). Reactive agents are implemented as matlab scripts for ease

of development and design (refer to chapter 4).

The design of the different layers and agents of the ICAM system prototype is dis-

cussed in the following sections.

5.2 The Middleware Layer Design

The remote memory access (RMA) communication approach, which separates the

communication of data from sender to receiver from the synchronization of sender

with receiver, divides into two categories. The first one is active target commu-

nication, where data are moved from the memory of one process to the memory of

another, and both are explicitly involved in the communication. This communication

pattern is similar to message passing, except that all the data transfer arguments

are provided by one process, and the second process only participates in the syn-

chronization. The second category is passive target communication, where data are

moved from the memory of one process to the memory of another, and only the origin

process is explicitly involved in the transfer. This communication paradigm is clos-

est to a shared memory model, where shared data can be accessed by all processes,

irrespective of location [36].

In active target communication, a target window can be accessed by RMA oper-

ations only within an exposure epoch. Such an epoch is started and completed by

RMA synchronization calls executed by the target process. Distinct exposure epochs

at a process on the same memory window must be disjoint, but such an exposure

epoch may overlap with exposure epochs on other windows or with access epochs for

the same or other windows arguments [36]. There is a one-to-one matching between

access epochs at origin processes and exposure epochs on target processes. RMA

operations issued by an origin process for a target window will access that target

window during the same exposure epoch if and only if they were issued during the

72

same access epoch. In passive target communication the target process does not ex-

ecute RMA synchronization calls, and there is no concept of an exposure epoch. We

have chosen the active target communication RMA communication type to achieve

high reliability.

Figure 5.2 illustrates the general synchronization pattern for active target RMA

communication of the ICAM system prototype, where four RMA communication

channels are designed to transfer raw data, processed data, the accommodation pa-

rameters and the plant state space model to the corresponding agents respectively.

The synchronization on the first channel occurs between the access epoch at the pilot

plant agent (origin agent) and the exposure epoch at the statistical processing agent

(target agent). This ensures that the raw data message is transferred reliably. The

raw data message is converted from/to the matlab type to/from the MPI type be-

fore/after the communication task. The synchronization between complete and wait

ensures that the put call of the origin agent completes before the memory window is

unexposed with the wait call.

Once data have been preprocessed by the statistical agent, they are converted

to the MPI type to prepare them for communication on the second MPI channel.

An access epoch is started at the statistical processing agent to synchronize with

the model ID and FDIA agents. If the model ID and FDIA agents have started

their exposure epochs, then the processed data message is transferred to their mem-

ory windows. Once the communication on this MPI channel is completed at the

statistical processing agent, the exposure epochs at the target agents are finalized,

and the processed data message is converted to the matlab type again for further

processing.

If the model ID agent has identified a new model of the pilot plant, it sends the

new model message to the FDIA and the statistical processing agents on the third

MPI channel. The conversion and transfer procedure is similar. If a sensor/actuator

73

fault occurs and the system starts the fault accommodation task, a fourth MPI

channel is designed to transfer the real-time accommodation data from the FDIA

agent to the pilot plant agent. Again, the conversion and transfer procedure is

similar.

When it comes to the communications between the reactive agents and the su-

pervisory agent, the remote procedure call (RPC) paradigm is used to achieve looser

connection with the supervisory agent. RPC is a client/server infrastructure that in-

creases the interoperability, portability, and flexibility of an application by allowing

the application to be distributed over multiple heterogeneous platforms. It reduces

the complexity of developing applications that span multiple operating systems and

network protocols by insulating the application developer from the details of the

various operating system and network interfaces.

The RPC communication part of the ICAM system prototype was designed so

that the G2 supervisory agent acts as a client for the reactive agents (i.e., servers).

Every reactive agent has an update procedure, which can be called remotely by the

supervisory agent. So when the G2 supervisory agent wants to update the state of

each agent in its knowledge base, it sends a request to the specified reactive agent and

passes a structure object to the reactive agent. The structure object represents the

reactive agent state, which contains attributes about the reactive agent’s MPI and

G2 communication channels, and its internal decisions and response to the external

environment.

Figure 5.3 illustrates the G2 communication sequence of the ICAM system pro-

totype, where the G2 supervisory agent has four rules to update each reactive agent

state in its knowledge base. The rules are fired asynchronously every one second

by passing a request to the specified reactive agent. Once the update procedure is

executed in the reactive agent side, the reactive agent replies by sending its updated

state (structure object) to the supervisory agent.

74

optModel

Transfer

FDIA Agent
Model ID

Agent
Stat Agent

Pilot Plant
Agent

mat2C(Raw data)

Time

Agents

Agent lifeline

Complete

Put(Raw data)

Start(Stat)

Post(Pilot)

Wait

C2mat(Raw data)

mat2C(Processed data)

Start(Model ID, FDIA)

Put(Processed data)

Complete

Post(Stat)

Post(Stat)

Wait

Wait

C2mat(Processed data)

C2mat(Processed data)

mat2C(Model)

Start(Stat, FDIA)

Put(Model)

Complete

Post(Model ID) Post(Model ID)

Wait
Wait

C2mat(Model)C2mat(Model)

SynchronizationData transfer

mat2C(Accom data)

Complete

Put(Accom data)

Start(Pilot)

Post(FDIA)

Wait

C2mat(Accom data)

Figure 5.2: ICAM system prototype MPI communications sequence

75

Supervisory
Agent

FDIA
Agent

Model ID
Agent

Stat Agent
Pilot Plant

Agent

Time

Agents

Asynchronous messageAgent activation Agent time line

RPC request

RPC reply

RPC request

RPC request

RPC request

RPC reply

RPC reply

RPC reply

Update FDIA

agent state

Update Model ID

agent state

Update Stat

agent state

Update Pilot

agent state

Figure 5.3: ICAM system prototype G2 communications sequence

76

5.3 The Supervisory Agent Design

The supervisory agent is implemented based on the G2 real time expert system shell,

which codifies the ICAM system internal and external behavior in its knowledge

base [31]. The supervisory agent contains an ontology that represents the differ-

ent agents of the ICAM system prototype. Each agent in the ontology has its own

attributes which represent the agent technical characteristics and methods which

represent the agent’s behavior. The ICAM system prototype is represented as a log-

ical connection of the corresponding reactive agents, as illustrated in figure 5.4. Each

reactive agent has two connections; the first is the data MPI connection, and the

second is the G2 connection with the supervisory agent. The META Agent object,

which encapsulates the supervisory knowledge base of the ICAM system prototype, is

a representation of the supervisory agent. The ENV Agent object represents the pilot

plant model agent, the STAT Agent object represents the statistical preprocessing

agent. Likewise, the M-ID Agent and PSV Agent objects represent the model iden-

tification agent and the FDIA agent, which exploits the parity space vector (PSV)

FDI approach [104, 70, 71, 69, 72]. The attributes of each reactive agent represent

the MPI and G2 connections characteristics, the reactive agent internal state, and

its response to changes in the pilot plant (i.e., the external environment).

The attributes are updated by means of four rules which fire asynchronously

every one second, after which a structure object is sent to the actual reactive agent

to update it. The structure object acts as a two-way vehicle, which has the decisions

from the supervisory agent and the internal state of the reactive agent. Once the

attributes are updated, the supervisory agent reasons about the newly updated values

and generates new decisions depending on the current internal state of the reactive

agent and its response to the pilot plant current dynamic situations. The master

rule base, which manages the ICAM system prototype, is embedded in the META

Agent object. The ontology and the rule-base design of the ICAM system prototype

77

are discussed in the following sections.
G2 Workspace: ICAM-SYSTEM-SCHEMATIC Wed Nov 07 08:10:34 2007

Figure 5.4: ICAM system prototype representation in the G2 supervisory agent

5.3.1 ICAM system ontology design

An ontology is important for knowledge-based system development, as it acts as

a software specification. Figure 5.5 illustrates the ontology of the ICAM system

prototype, where the different agents of the ICAM system are represented as a class

hierarchy. The class hierarchy includes a class for starting up the system, a class for

linking the supervisory with the other reactive agents, and two graphical connection

classes to show the status of the MPI and G2 communication channels of each reactive

agent.

The root class in the main class hierarchy is the ICAM agent, from which other

reactive agents inherit their main attributes. The meta-manager class is responsible

for executing the master rule-base of the ICAM system prototype. Each reactive

78

agent of the ICAM system is represented by a class, including a statistical prepro-

cessing agent, a model identification agent, a pilot plant simulation agent, and an

FDI agent. The ICAM system ontology supports scalability. For example, the FDI

agent may have two types: qualitative- and quantitative-based FDI agents; a signed

digraph (SDG) based FDI agent would be a qualitative FDI agent, and a general

parity vector space based FDI agent is a quantitative FDI agent. The model iden-

tification agent may have different types such as a recursive least square agent or a

subspace model ID agent. The ontology is also open to have new types of agents

such as an optimization agent that may, in turn, have different types. Once the

ontology is designed, the ICAM system representation in the supervisory agent is

then designed as an interconnection of the system agents, as shown in figure 5.4.

79

G2 Workspace: KB-WORKSPACE-XXX-112 Mon Nov 19 14:57:39 2007

Figure 5.5: ICAM system ontology

80

5.3.2 The supervisory agent rule-base design

Since the supervisory agent of the ICAM system coordinates its internal and exter-

nal behavior, it is crucial to carefully design the rule base of the supervisory agent

to achieve robust system performance. The rule base codifies the desired system

behavior in response to external environment dynamic changes and to process oper-

ator interactions. Figure 5.6 illustrates the ICAM system prototype event sequence

diagram, which is embedded in the supervisory agent rule base. This event sequence

was developed by the UNB PAWS team (i.e., Sayda, Omana, and Moreno) in group

meetings led by Dr. Taylor. The rule-base design process is in its preliminary stage;

it will be further developed to address more complex situations in future work. The

ICAM system supervisory agent starts up the other reactive agents (i.e., event #

1), which are implemented as matlab functions and scripts for ease of development

and debugging [81].

If the FDI agent or the statistical pre-processing agents do not have any process

model (event # 2), they report their status to the supervisory agent, which, in turn,

commands the statistical pre-processor to check if the external plant is in a steady

state (event # 3). If the external plant is in a steady state, the supervisory agent

asks the low level control system to apply a small pseudo random binary signal

(PRBS) for a specified period of time ∆t = 300s (event # 4). The model ID agent

collects process data during the application of the PRBS signal. Once the low level

control system flags back the end of PRBS signal application to the supervisory agent

(event # 5), the supervisor flags to the model ID agent to estimate a new process

model (event # 6), and informs the statistical pre-processing and the FDIA agents

that a new model is being estimated. If the model was estimated successfully, the

supervisory agent informs other agents that a new model is available to be updated

(event # 7).

81

Supervisory

Agent
FDIA Agent

Model ID

Agent
Stat Agent

Pilot Plant

Agent

Time

Agents

Start agent Start agent Start agent Start agent

No model No model

Model sentModel sent

Apply PRBS signal

End of PRBS

Send new model

Check steady state

Steady state reached

Design FDI

Design done

Fault diagnosis

Fault detected

Asynchronous

message

Agent

activation
Agent

lifeline

PRBS applied

Estimate model

Estimating model

Model estimated successfully

New model available

Model sent

Model receivedModel received

Accommodate

sensor fault

Accommodation

in progress

Sensor fixed

1

2

3

4

5

7

6

9

10

11

12

13

14

1 Event

number

8

Figure 5.6: ICAM system prototype event sequence

82

The estimated model is then sent to the appropriate agents (event # 8), which, in

turn, report the model reception status back to the supervisory agent. The supervisor

then requests that the FDIA agent design the FDI filter based on the received process

model (event # 9). The FDIA agent starts monitoring the external process for sensor

and actuator faults (event # 10) [71, 72]. If the FDIA agent detects a fault in the

plant, the fault location, type, time, size and other information are reported back

to the supervisor for further processing (event # 11). In the case of a sensor fault,

the FDIA agent will also recommend the appropriate accommodation (correction)

(event # 12) [94]. The sensor accommodation status is reported continuously to the

supervisory agent (event # 13), which terminates the sensor accommodation task if

the sensor has been fixed (event # 14).

5.4 Design of Reactive Agents

The simplified ICAM system prototype consists of four reactive agents, namely, the

pilot plant simulation agent, the data statistical preprocessing agent, the model

identification agent, and the FDIA agent, whose design is discussed in the following

sections. The interactions of the supervisory agent with the reactive agents are

indicated on their flow charts by the event numbers, which have been discussed in

the previous section (refer to figure 5.6).

5.4.1 The pilot plant agent design

The pilot plant model represents an oil production facility, which separates oil well

fluids into crude oil, sales gas, and water. The simulation model basically consists

of two processes, as illustrated in figure 5.7. The first is a two-phase separator in

which hydrocarbon fluids from oil wells are separated into two phases to remove

as much light hydrocarbon gases as possible. The produced liquid is then pumped

to the three-phase separator (i.e., the second process), where water and solids are

separated from oil. The produced oil is then pumped out and sold to refineries and

83

petrochemical plants if it meets the required specifications. Gas is processed further

and sent as sales gas.

Two-phase
oil separator

Three-phase
oil separator

Oil well

Oil & water mix

Water

Oil

P

P

Oil sales

Gas processing

Disposal

Gas

Gas

Pipe line
Signal line

LCL : Level control loop

LCL 1

LCL 2

LCL 3

PCL : Pressure control loop

PCL 1

PCL 2

Figure 5.7: Oil production facility P&ID

The two separation processes of the simulation model are controlled to maintain

the operating point at its nominal value, and to minimize the effect of disturbances

on the produced oil quality. As shown in figure 5.7, the first separation process

is controlled by two PI controller loops. In the first loop, LCL1, the liquid level

is maintained by manipulating the liquid outflow valve. The second loop, PCL1,

controls the pressure inside the two-phase separator by manipulating the amount of

the gas discharge. The second separation process has three PI controller loops. An

interface level PI controller, LCL2, maintains the height of the oil/water interface by

manipulating the water dump valve. The oil level is controlled by the second PI con-

troller, LCL3, through the oil discharge valve, and the vessel pressure is maintained

constant by the third PI loop, PCL2 [80] (refer to appendix A).

The plant ordinary differential equation (ODE) model was simulated in real time

every δt = 100 milliseconds using the fixed-step first-order Euler ODE solver. Ten

84

sensor and actuator faults were embedded in the plant model to validate the ICAM

system performance and logical behavior during faulty situations. Figure 5.8 illus-

trates the flow chart of the pilot plant simulation model agent. After the supervisory

agent starts up the plant agent, the plant agent initializes its MPI and G2 communi-

cation links, and it enters in a wait loop till it receives a valid scenario to run. Four

scenarios are embedded in the plant agent: the first is the default scenario which runs

the plant at its nominal operating point; the second scenario allows the set points of

the plant to be changed from the nominal operating point; the third scenario applies

a disturbance to the plant; and the final scenario simulates the plant during sensor

and actuator faults.

The four scenarios add richness to the plant agent and facilitate demonstrating

the performance and logical behavior analysis of the ICAM system prototype during

different situations. Once the specified scenario is chosen to run, the agent starts

the simulation and sends raw data messages to the statistical pre-processing agent.

The capability of applying a small PRBS signal is incorporated in the plant agent

for model identification purpose. If the plant agent receives a request from the

supervisory agent to apply PRBS signals (event # 4), then the plant agent applies

a PRBS signal to each plant input for a time period of TID = 300 second, and flags

back to the supervisory agent the end of PRBS signal application flag (event # 5).

85

Pilot plant Agent

Initialize MPI
& G2 Comm

Start agent
m-script

Wait

Inform
supervisor

Simulate &
send data

New
scenario?

Is PRBS?

No

Yes

No

Apply PRBS

Setpoint
scenario?

Disturb
scenario?

Run applicable
scenario

Fault
scenario?

default
scenario?

1

5

4

Yes

Figure 5.8: The pilot plant simulation agent flow chart

86

5.4.2 The statistical pre-processing agent design

Figure 5.9 illustrates the flow chart of the data statistical pre-processing agent, where

the agent is started up by the supervisory agent (event # 1), and its G2 and MPI

communication links are initialized. Once the statistical preprocessor agent receives

raw data from the plant agent, it stores them in a data window for further processing.

If the agent receives a request from the supervisory agent to check the steady state

status of the plant agent (event # 3), it checks the steady state and report the

result back to the supervisory agent. The statistical pre-processing agent informs

the supervisory agent that it does not have any plant model after its startup (event

2).

If there is a new plant model available, the supervisory agent informs the sta-

tistical pre-processing agent to update the plant model (event # 7). The agent

then removes missing data and outliers by exploiting the median absolute deviation

algorithm [60]. The data are then reconciled according to a pre-specified material

balance for quality control (this functionality may be implemented in future work),

and are sent to other agents for further processing. The processed data are also sent

to a graphic user interface (GUI) agent to allow plant operators to interact with

processed data (e.g., zoom, store, and plot the data) in a friendly manner. Should

the statistical pre-processing agent fail internally, it reports its failure mode status

to the supervisory agent for further actions. Internal failure could happen during

sensor/actuator faults, which leads to an ill-posed optimization problem to solve in

the data reconciliation task (to be implemented in future work).

87

Stat/NDDR Agent

Receive data
& fill window

Initialize MPI
& G2 Comm

Start agent
m-script

Update new
model

Process outliers,
missing data, & filter

New
model?

Process &
Reconcile data

No

Yes

No

Yes

is SS req?

is SS?

Check steady
state

Inform
supervisor

Yes

Yes

No

No

Any model
& No Fault?

GUI

GUI

Send corrected
data

Failure mode
status?

No

Yes

2

3

1

7

Inform
supervisor

Figure 5.9: The statistical pre-processing agent flow chart

88

5.4.3 The model identification agent design

The model ID agent estimates the multivariable plant model by using the subspace

method, which uses the canonical variable algorithm (CVA) in its singular value

decomposition stage [99, 51, 56]. Figure 5.10 illustrates the flow chart of the model

identification agent, where the agent is started up by the supervisory agent (event #

1). The model ID agent then initializes its own MPI and G2 communication links.

The agent stays in an idle state, unless the supervisory agent informs it that a PRBS

signal is being applied by the pilot plant simulation agent (event # 4). Consequently,

the agent starts receiving processed data from the statistical processing agent.

After the end of the PRBS signal application (event # 5), the supervisory agent

informs that model ID agent to estimate a new model (event # 6). If the plant model

estimation is successful, the model is sent to the statistical processing and the FDIA

agents for further processing (event # 8). If not, the estimated model diagnostics

are updated and sent to the supervisory agent to take the appropriate decision.

89

Model ID Agent

Initialize MPI
& G2 Comm

Start agent
m-script

Receive data
& fill window

Is PRBS?

Yes

No

Calculate new
model

Is end of
PRBS?

Send new
model

Is good
model?

No

No

Yes

Yes

Update model
diagnostic

To Sta t

& FDI A

Idle State

4

1

5

6

8

Inform
supervisor

Figure 5.10: The model identification agent flow chart

90

5.4.4 The fault detection, isolation, and accommodation agent
design

The FDI agent exploits the generalized parity space (GPS) to generate a set of

directional residuals, from which process faults can be determined [104, 70, 71, 69, 72,

94]. After the supervisory agent starts up the FDIA agent (event # 1), it initializes

its G2 and MPI communication links [94], as shown in figure 5.11. If the FDIA

agent has no plant model, it reports that back to the supervisory agent for further

actions (event # 2). When a new plant model is available (event # 7), the FDIA

agent updates its knowledge about the plant. The supervisory agent then instructs

the FDIA agent to design its FDI filter based on the newly updated plant model

(event # 9). When that task is completed, the FDIA agent then starts to monitor

the plant data to detect any sensor/actuator faults (event # 10).

If the decision maker of the FDIA agent detects a fault (event # 11), it alerts the

supervisory agent and sends the detected fault location, type, time, size, and other

information to the supervisory agent for further processing. If the fault is a sensor

fault (event # 12), the supervisory agent alerts the FDIA agent to accommodate the

sensor fault (event # 13). If the sensor fault type is bias, the fault size is estimated

and used to accommodate the fault without estimating the fault size recursively. If

the sensor fault type is a ramp type, this starts the recursive fault size estimation, and

the fault is accommodated accordingly. The accommodation process terminates if

the accommodation stopping criterion is reached, or if the supervisory agent informs

the FDIA agent that the faulty sensor is fixed (event # 14).

91

FDIA Agent

Initialize MPI
& G2 Comm

Start agent
m-script

New model?

Estimate fault
size & classify

Decision
maker

Run residual
generator

Design FDI
filter

Is sensor
fault?

Fault type
= ramp?

Recursive fault
size estimation

Sensor
Fixed ?

No

Yes

Yes

No

No

No

Yes

Sensor
accommodation

Any model?

No

Yes

Yes

Fsize, Dacc

Idle state

Is fault?
No

Yes

1

2

11

7

9

10

12

13

14

Inform
supervisor

Figure 5.11: The FDIA agent flow chart

92

5.5 ICAM System Prototype Deployment Scheme

Having discussed the ICAM system prototype design with respect to the artificial

intelligence, the middleware, and its reactive agents’ requirements, it is crucial to de-

sign the prototype deployment scheme to verify its performance and logical behavior.

Figure 5.12 illustrates the ICAM system prototype deployment scheme, which is sim-

plified from the general ICAM system deployment scheme (refer to figure 4.6 in the

previous chapter). The ICAM system prototype contains two Windows 2003 servers,

which provide the local network infrastructure of the system. The prototype also

consists of two PC nodes, in which the five agents of the ICAM system prototype

are deployed. The first node runs three agents, namely, the pilot plant simulation

agent, the model ID agent, and the G2 supervisory agent. The second node runs the

data statistical processing agent and the FDIA agent. Each reactive agent consists

of its m-script, its middleware task, and its associated matlab session.

93

Hub

Router + Firewall

Windows server

2003

Internet

Hub

Domain controller

DNS server

WINS server

DHCP server

MPI server

File server

Windows server 2003

Stat agent

Stat agent middleware

Stat agent MATLAB session

FDIA agent

FDIA agent middleware

FDIA agent MATLAB session

MPI library

GSI library

Windows XP

G2 supervisory agent

Pilot plant agent

Pilot plant agent middleware

Pilot plant agent MATLAB session

Model ID agent

Model ID agent middleware

Model ID agent MATLAB session

MPI library

GSI library

Windows XP

Figure 5.12: ICAM system prototype deployment scheme

94

Chapter 6

ICAM System Prototype
Verification and Validation

Real-time simulation experiments were designed to analyze the performance of the

ICAM system prototype in terms of its logical behavior and its response to the

external environment dynamics. The ICAM system prototype is deployed in a Win-

dows 2003 network, which has two nodes (i.e., workstations). The first node has

three running agents, namely the pilot plant agent, the model ID agent, and the

supervisory agent. The second node has the remaining agents, namely the statistical

preprocessing agent and the FDIA agent. The pilot plant simulation model corre-

sponds to figure 6.1; it consists of 10 states, 5 manipulated variables, 5 controlled

variables, and 17 auxiliary measured inputs and outputs (e.g., disturbances, prod-

uct quality variables, etc.). Ten sensor/actuator faults are embedded in the pilot

plant simulation agent to emulate faulty instrumentation in real-world oil produc-

tion plants, as indicated in table 6.1. Five different simulation scenarios are applied

during the real-time simulation experiments, three showing successful behavior and

two revealing ICAM system prototype limitations.

Three simulation scenarios will demonstrate the ICAM system logical behavior

and performance. In the first scenario (i.e., indicated by 1 in figure 6.1), we will

apply a bias fault in the three-phase separator water volume sensor. The second

scenario will demonstrate the system behavior when a bias fault is applied in the

95

Fault number Instrumentation name
F1 Faulty two-phase liquid volume sensor
F2 Faulty two-phase pressure sensor
F3 Faulty three-phase water volume sensor
F4 Faulty three-phase oil volume sensor
F5 Faulty three-phase pressure sensor
F6 Faulty two-phase separator liquid outflow valve
F7 Faulty two-phase separator gas outflow valve
F8 Faulty three-phase separator water outflow valve
F9 Faulty three-phase separator oil outflow valve
F10 Faulty three-phase separator gas outflow valve

Table 6.1: Oil production facility instrumentation faults

two-phase separator gas outflow valve (i.e., indicated by 2 in figure 6.1). The third

scenario is a more sophisticated one, in which a ramp fault is applied in the two-

phase separator liquid volume sensor (i.e., indicated by 3 in figure 6.1). In order

to diagnose the system limitations, two additional simulation scenarios are applied.

The first one is the application of a bias fault in the three-phase separator pressure

sensor (i.e., indicated by A in figure 6.1). A decrease in oil production is emulated

in the second scenario (i.e., indicated by B in figure 6.1).

We will discuss the behavior of each agent of the system in terms of its results

and decisions in each simulation scenario. Furthermore, we will discuss the decisions

made by the supervisory agent in each scenario. The system performance is analyzed

in terms of the real-time performance during the computation and communication

tasks of each agent. The network activity also is analyzed to see if it is consistent

with the decisions made by the supervisory and the reactive agents of the system,

and that no deadlocks are encountered when the agents communicate among each

other.

96

Two phase
oil separator

Three-phase
oil separator

Oil well

Oil & water mix

Water

Oil

P

P

Oil sales

Gas processing

Disposal

Gas

Gas

Pipe line

Signal line

LCL : Level control loop

LCL 1

LCL 2

LCL 3

PCL : Pressure control loop

PCL 1

PCL 2

1

2

3
A

B

Figure 6.1: Oil production facility P&ID

6.1 Scenario 1: Faulty Water Volume Sensor in
The Three-Phase Separator Sub-Process

The first simulation scenario is done by applying a +15% bias fault in the water

volume sensor of the three-phase separator (F3; refer to control loop LCL2 in fig-

ure 6.1). After the ICAM system supervisory agent starts up executing its rule base,

other reactive agents are started and initialized. The pilot plant agent starts its sim-

ulation at a nominal value of V = 146 ft3, P = 625 PSI for the two-phase separation

sub-process and Vwat = 77.5 ft3, Voil = 46.5 ft3, P = 200 PSI for the three-phase

separation sub-process. Outliers and missing data are applied to the two-phase sep-

arator measurements to emulate real-world data. Since the ICAM system has no

knowledge about the pilot plant agent (i.e., no dynamic model), it sends a message

to the statistical pre-processor to check if the pilot plant is in steady state.

Once it is in steady state, the supervisor then commands the control system of

the pilot plant to apply a sufficiently exciting pseudo random binary (PRBS) signal

with an amplitude of 2% about the nominal operating point. This allows the model

97

ID agent to collect enough data to identify the pilot plant model, after which the

FDIA agent designs its FDI filter. Having gained new knowledge about the current

dynamic behavior of the pilot plant, the ICAM system now can start monitoring

the pilot plant for any instrumentation failure. If a sensor/actuator fault occurs the

FDIA agent reports its decision to the supervisory agent. The supervisory agent in

turn commands the FDIA agent to start the fault accommodation task, if applicable.

The fault accommodation task is stopped if the sensor is fixed. The behavior of each

agent during this scenario is discussed in the following sections.

6.1.1 The pilot plant agent behavior

The process variables are logged at the pilot plant agent during the first simulation

scenario as indicated by figures 6.2, 6.3, 6.4, 6.5, and 6.6. Positive fixed-size outliers

and missing data are applied to the two-phase separator measurements at random

time instants (i.e., the liquid volume and the pressure measurement as shown by

the top plots of figures 6.2, and 6.3). The pilot plant at first runs at its nominal

operating point. Independent PRBS signals are applied to all the plant inputs to

identify its model. Subsequently, a +15% bias fault is applied to the three-phase

separator water volume sensor at time Tfault = 9:47:32, and the accommodation

task starts at time Taccom = 9:48:44, as shown in figure 6.4. The PI controller in

loop LCL2 (refer to figure 6.1) rejects the fault, as it is considered as a constant

disturbance applied to the water volume sensor. However, the sensor measurement

does not reflect the actual state of the water volume, as shown in the FDIA agent

results. The effect of the faulty volume sensor on the oil volume and the gas pressure

in the three-phase separator is also shown in figures 6.5 and 6.6.

98

09:36:00 09:43:12 09:50:24
130

140

150

160

170

180

Time (hh:mm:ss)

V−
liq

 (f
t3)

Liquid volume & its setpoint

09:36:00 09:43:12 09:50:24
1.65

1.7

1.75

1.8
x 10

5

Time (hh:mm:ss)

Fo
ut

−l
iq

 (B
PD

)

Liquid outflow

Setpoint
Measurement

PRBS signal application

Figure 6.2: Scenario 1: Two-phase separator liquid volume logged by the pilot plant
agent

09:36:00 09:43:12 09:50:24
580

600

620

640

660

680

Time (hh:mm:ss)

P−
va

p
(P

SI
)

Vapor pressure & its setpoint

09:36:00 09:43:12 09:50:24
150

160

170

180

Time (hh:mm:ss)

Fo
ut

−v
ap

 (M
SC

FD
)

Vapor outflow

Setpoint
Measurement

Figure 6.3: Scenario 1: Two-phase separator pressure logged by the pilot plant agent

99

09:36:00 09:43:12 09:50:24
65

70

75

80

85

90

Time (hh:mm:ss)

V−
w

at
 (f

t3)

Water volume & its setpoint

09:36:00 09:43:12 09:50:24
6

7

8

9

10
x 10

4

Time (hh:mm:ss)

Fo
ut

−w
at

 (B
PD

)

Water outflow

Setpoint
Measurement

Fault application Fault accommodation

Figure 6.4: Scenario 1: Three-phase separator water volume logged by the pilot plant
agent

09:36:00 09:43:12 09:50:24
42

44

46

48

50

Time (hh:mm:ss)

V−
oi

l (
ft

3)

Oil volume & its setpoint

09:36:00 09:43:12 09:50:24
6

7

8

9

10

11
x 10

4

Time (hh:mm:ss)

Fo
ut

−o
il

(B
PD

)

Oil outflow

Setpoint
Measurement

Figure 6.5: Scenario 1: Three-phase separator oil volume logged by the pilot plant
agent

100

09:36:00 09:43:12 09:50:24
185

190

195

200

205

210

215

Time (hh:mm:ss)

P−
va

p
(P

SI
)

Vapor pressure & its setpoint

09:36:00 09:43:12 09:50:24
0

10

20

30

40

Time (hh:mm:ss)

Fo
ut

−v
ap

 (M
SC

FD
)

Vapor outflow

Setpoint
Measurement

Figure 6.6: Scenario 1: Three-phase separator pressure logged by the pilot plant
agent

101

6.1.2 Behaviors of the statistical preprocessing and model
ID agents

Raw data are received by the statistical pre-processing agent, which removes any

outliers and corrects missing data by replacing them with the previous data value,

as demonstrated by the clean two-phase separator liquid volume and pressure data

record in figures 6.7 and 6.8. The statistical agent first checks if the pilot plant is in

steady state to prevent applying the PRBS signal in a transient state. Apparently

the pilot plant takes a time period of TSS = 37.204 s to reach steady state due to the

plant small initial conditions, as shown in figures 6.7 and 6.8. Processed data are

sent to the model ID agent during the PRBS signal application, after which a new

process model can be estimated.

Figure 6.9 shows measured plant outputs along with their simulated counterparts

using the newly identified plant model. Each process variable data record has a

length of 300 seconds, which was the pre-specified PRBS signal application time. It

is interesting to notice that although missing data have been corrected, they still

affect the identified model quality, as indicated by the two-phase separator pressure

data record (refer to the second plot in figure 6.9 with a model fit of 66%). Figure 6.10

shows the plant inputs during the PRBS signal application task.

102

09:36:00
135

140

145

150

155

Time (hh:mm:ss)

V−
liq

 (f
t3)

Liquid volume & its setpoint

09:36:00
1.65

1.7

1.75

1.8
x 10

5

Time (hh:mm:ss)

Fo
ut

−l
iq

 (B
PD

)

Liquid outflow

Setpoint
MeasurementSteady state detection

Missing data correction

PRBS signal application

Figure 6.7: Scenario 1: Two-phase separator liquid volume logged by the statistical
pre-processing agent

09:36:00
580

600

620

640

660

Time (hh:mm:ss)

P−
va

p
(P

SI
)

Vapor pressure & its setpoint

09:36:00
150

155

160

165

170

175

180

Time (hh:mm:ss)

Fo
ut

−v
ap

 (M
SC

FD
)

Vapor outflow

Setpoint
Measurement

Steady state detection

Missing data correction

PRBS signal application

Figure 6.8: Scenario 1: Two-phase separator pressure logged by the statistical pre-
processing agent

103

0 50 100 150 200 250 300
−10

0

10

V
−

liq

Time (s)

Measured Output and Simulated Model Output

0 50 100 150 200 250 300
−100

0

100

P
−

va
p

Time (s)

0 50 100 150 200 250 300
−10

0

10

V
−

m
ix

Time (s)

0 50 100 150 200 250 300
−5

0

5

V
−

oi
l

Time (s)

0 50 100 150 200 250 300
−20

0

20

P
−

ga
s

Time (s)

Measured Output
M Fit: 84.28%

Measured Output
M Fit: 66.92%

Measured Output
M Fit: 88.27%

Measured Output
M Fit: 82.61%

Measured Output
M Fit: 86.14%

Figure 6.9: Scenario 1: Measured plant outputs and simulated model outputs logged
by the model ID agent

104

0 50 100 150 200 250 300
−1

0

1

Time (s)

F
ou

t−
liq

(m
ol

e/
s)

Identified separation model inputs

0 50 100 150 200 250 300
−0.5

0

0.5

Time (s)

F
ou

t−
va

p
(m

ol
e/

s)

0 50 100 150 200 250 300
−1

0

1

Time (s)

F
ou

t−
w

at

(f
t3 /s

)

0 50 100 150 200 250 300
−0.5

0

0.5

Time (s)

F
ou

t−
oi

l
(m

ol
e/

s)

0 50 100 150 200 250 300
−0.5

0

0.5

Time (s)

F
ou

t−
va

p
(m

ol
e/

se
c)

Figure 6.10: Scenario 1: Plant inputs logged at the model ID agent

105

6.1.3 The FDIA agent behavior

Once the new process model is received by the FDIA agent, then it can design its

FDI filter and deploy it to diagnose faulty plant instrumentation. Figure 6.11 shows

the three-phase water volume data record collected after the FDI filter is deployed.

When the water volume sensor fault occurs, its effect can be noticed not only in the

local control loop of the faulty instrumentation but also downstream, which is seen

as disturbance in the three-phase oil volume control loop, as shown in figure 6.5.

Figure 6.11 shows that the actual process variable has a different response from its

corresponding measurement, i.e., the +15% error starts to drive the actual water

volume to a lower setpoint in an effort to make the sensed setpoint approach the

desired value; once the fault is accommodated the actual water volume returns to

the correct setpoint.

09:43:12 09:50:24
60

70

80

90

Time (hh:mm:ss)

V−
w

at
 (f

t3)

Water volume & its setpoint

09:43:12 09:50:24
6

7

8

9

10
x 10

4

Time (hh:mm:ss)

Fo
ut

−w
at

 (B
PD

)

Water outflow

Setpoint
Sensed variable
Actual variable

Actual variable
PI controller action

Fault application

Fault accommodation

Figure 6.11: Scenario 1: Three-phase separator water volume logged by the FDIA
agent

The FDIA agent generates a general parity vector whose abnormal magnitude can

106

detect faulty instrumentation, and generates the angles between the parity vector

and the reference directions of the process variables. When there is a fault, then

the smallest angle indicates the approximate alignment of the parity vector with the

reference direction of a specific instrumentation fault. Hence the fault can be isolated

based on the smallest angle after the fault detection. It is clear from the top plot in

figure 6.12 (produced by FDI routines documented in [104, 70, 71, 69, 72, 94]) that the

general parity vector (GPV) magnitude increased significantly, which indicates that

a fault occurred. Furthermore, the smallest angle after the fault detection instant is

the one that corresponds to the water volume sensor in the three-phase separator, as

indicated by the blue dash-dotted trace in the middle plot of figure 6.12. The other

GPV angles are higher than the faulty volume sensor GPV angles, as indicated by

the other traces in the middle and bottom plots of figure 6.12.

09:38:52 09:41:45 09:44:38 09:47:31 09:50:24 09:53:16 09:56:09 09:59:02
0

2

4

Time (hh:mm:ss)

 GPV magnitude

09:38:52 09:41:45 09:44:38 09:47:31 09:50:24 09:53:16 09:56:09 09:59:02
0

50

100

Time (hh:mm:ss)

de
gr

ee
s

 Sensor failure angles

F1
F2
F3
F4
F5

09:38:52 09:41:45 09:44:38 09:47:31 09:50:24 09:53:16 09:56:09 09:59:02
0

50

100

Time (hh:mm:ss)

de
gr

ee
s

 Actuator failure angles

F6
F7
F8
F9
F10

Figure 6.12: Scenario 1: FDIA agent diagnostic signals

The parity vector-based FDI angles are highly sensitive to process variable changes

when there is no fault. This is because of the small size of the GPV vector in the

107

09:38:52 09:41:45 09:44:38 09:47:31 09:50:24 09:53:16 09:56:09 09:59:02
−1

0

1

2

3

4

5

6

7

8

Time (hh:mm:ss)

 F
au

lt
#

 FDI Results: Fault # F3 BIAS fault detected at t=08−Nov−2007 09:47:32

Figure 6.13: Scenario 1: FDIA agent fault display

no-fault situation, which can change its angle widely even in the case of very small

process variable changes, as indicated by the large variation of the GPV angles be-

fore fault occurrence in figure 6.12. The local decision-making logic of the FDIA

agent ignores the angles until a large GPV magnitude signals fault detection, then it

isolates the fault after its occurrence as demonstrated in the FDI GUI [94], as shown

in figure 6.13 . It interesting to notice a fault # of -1 occurred at the beginning of

fault isolation task (-1 indicates an unknown fault). The FDIA agent isolates faults

when the process variables have reached an acceptable steady state level, so isolation

is ineffective during the transient part of the fault dynamics. As soon as the super-

visory agent receives the fault information from the FDIA agent, including the fact

that it is a sensor fault, it alerts the FDIA agent to start the fault accommodation

task. The FDIA agent then estimates the fault size, which is used to accommodate

the fault (correct the sensor reading).

Once the fault has been accommodated the actual water volume process variable

108

returns to its nominal setpoint, which matches its corresponding corrected measure-

ment, as indicated by figures 6.11 and 6.12. The FDIA agent logic then indicates a

no-fault situation during the fault accommodation task, as indicated by figure 6.13.

Figure 6.14 shows the accommodation parameters in terms of the estimated fault

size and the recursive fault size estimation error, which is only effective during faults

of ramp type. The estimated fault size is +15%, which matches the original fault

size value.

09:41:45 09:44:38 09:47:31 09:50:24 09:53:16 09:56:09
−1

−0.5

0

0.5

1

 ∆
error

Time (hh:mm:ss)

09:41:45 09:44:38 09:47:31 09:50:24 09:53:16 09:56:09
0

5

10

15

20
 Fault size estimation

Time (hh:mm:ss)

Figure 6.14: Scenario 1: FDIA agent fault accommodation parameters

6.1.4 The supervisory agent behavior

The supervisory agent monitors the state of the reactive agents and reasons about

their current state according to its knowledge base. Each reactive agent is repre-

sented by an object with a set of attributes that represents its own state, as dis-

cussed in chapters 4 and 5 (refer to figure 5.4 in chapter 5). Table 6.2 demonstrates

the pilot plant supervisory frame during the fault accommodation task. The pilot

109

plant agent frame shares some common attributes with the other reactive agents,

which represent the agent’s internal state, MPI, and G2 communication channels’

states. For example, the pilot plant frame is in the simulation state and executing

its functionality as indicated by the simulation status attribute. Its MPI and G2

links are connected, and the pilot plant agent has a rank (i.e., the software process

number) of 0 in the MPI environment defined by the MPI communicator attribute.

The agent’s decision attribute indicates that a fault simulation scenario is applied.

The decision attribute is the decision made by the supervisory agent depending on

the current state of the agent. The MPI channel decision attribute indicates that

the accommodated data MPI channel is opened, through which the pilot plant agent

receives the accommodation parameters from the FDIA agent.
9 Wed Nov 07 09:07:32 2007

Table 6.2: Scenario 1: Pilot plant agent supervisory frame

Tables 6.3 and 6.4 show the statistical preprocessing and model ID supervisory

frames, which have the same ICAM system common attributes (i.e., rank, G2 link,

MPI link status, decision etc.). Both agents have a common model status attribute,

which indicate that the two agents have updated their knowledge about the current

dynamics of the pilot plant. The statistical preprocessing agent has a steady state

detection attribute to indicate if the pilot plant is in a steady or transient state. The

110

decision attributes in these agents’ supervisory frames have the value no-decision,

which indicates that the supervisory agent does not require these agents to do any

task. Likewise, the MPI channel decision attributes of the statistical preprocessing

and model ID supervisory frames have a no-decision value, which indicates that

the supervisory agent does not require these agents to close any of their MPI data

channels.
0 Wed Nov 07 09:07:45 2007

Table 6.3: Scenario 1: Statistical preprocessing agent supervisory frame

The FDIA agent supervisory frame has the same common attributes, which in-

dicate that the agent is in the simulation state and is executing the fault diagnosis

task, as shown in table 6.5. It also has attributes about the fault information such as

the fault size, sign, type, time, and location. The model status and the FDI design

status attributes indicate that the FDIA agent has received the process model and

has deployed the designed FDI filter. The FDIA agent supervisory frame also has

attributes to represent the accommodation task status and the recursive fault esti-

mation in case of ramp faults. For example, the FDIA agent has reported the fault

information back to the supervisor for further processing and actions. In this case

the FDIA agent successfully detected, isolated, and identified the faulty instrumenta-

111

1 Wed Nov 07 09:08:00 2007

Table 6.4: Scenario 1: Model ID agent supervisory frame

tion, which is the three-phase separator water volume sensor (F3; refer to table 6.1).

The fault has occurred at time Tfault = 9:47:32, which is nearly the exact fault ap-

plication time. The fault has a type bias with an estimated size of +15%. The fault

accommodation task is in progress and the accommodation parameters are sent to

the pilot plant agent, as indicated by the MPI channel decision attribute. Since the

fault type is bias and not of a ramp type, then recursive fault size estimation is not

required as indicated by the corresponding attribute of the table.

112

5 Thu Nov 08 09:50:39 2007

Table 6.5: Scenario 1: FDIA agent supervisory frame

6.1.5 Network activity

The ICAM system prototype is deployed in a Windows 2003 network, which has

two nodes (i.e., workstations). The first node has the statistical preprocessing agent

and the FDIA agent running. The second node has three running agents, namely,

the pilot plant agent, the model ID agent, and the supervisory agent, as shown in

figure 6.15. The total communication throughput between the two nodes (indicated

by green solid arrows in figure 6.15) is composed of five channels; one asynchronous

supervisory channel (indicated by black dashed arrows in figure 6.15), and four syn-

chronous MPI data channels. The first MPI data channel is the raw data channel

113

which connects the pilot plant agent with the statistical preprocessing agent (in-

dicated by a green solid arrow). The statistical preprocessing agent transfers the

processed data on the second MPI data channel (indicated by dark-blue solid ar-

rows) to the model ID and FDIA agents. Once the plant model is identified, it

is transferred to the statistical preprocessing and FDIA agents through the model

MPI channel (indicated by magenta dash-double-dotted arrows). Finally the accom-

modation parameters are transferred from the FDIA agent to the pilot plant agent

through the accommodated data MPI channel (indicated by a purple dash-dotted

arrow).

Node # 2Node # 1

Stat agent Pilot plant agent

Model ID agent

G2 supervisory

agent

FDIA agent

G2 supervisor channel

Raw data MPI channel

Processed data MPI channel

Model MPI channel

Accomm. data MPI channel

Total network throughput

Figure 6.15: ICAM system prototype network architecture

114

Figure 6.16 depicts the ICAM system prototype network activity during the first

simulation scenario. After the ICAM system prototype starts up (event 1), the raw

data and processed data MPI channels start to transfer data at a rate of 330 Kbps

(i.e., 0.33% of the 100 Mbps network transfer rate) for each channel, as indicated by

the event 1 ; note that the green and dark-blue traces have nearly the same rate. The

total network throughput is represented by the purple trace. The transfer rates of

the MPI channels dip prior to event 2 because of increasing memory consumption

and computations resulted from increasing data storage in some agents (refer to

section 6.4.1 for more detailed analysis). The processed data channel (i.e., the dark-

blue trace) is closed during the plant model identification task, as indicated by event

2 . Once the plant model is transferred to the corresponding agents, the processed

data channel is opened again and the fault diagnosis task is started, as indicated

by event 3 . When the three-phase water volume sensor fault is detected and the

fault accommodation task is started, the accommodated data channel is opened,

as indicated by event 4 ; the dark-blue trace is stepped up to its twice rate (i.e.,

580 kbps), and the total network transfer rate is at 870 kbps. When the system

shuts down at the end of the first scenario, the MPI channels are closed sequentially

starting with accommodated data channel, followed by the processed data channel,

and finally the raw data channel, as indicated by event 5 .

115

Time (hh:mm:ss)

N
et

w
or

k
ut

ili
za

tio
n

%

09:33:27 09:48:42 09:58:00

1%

0.5%

0%

1

2

3

4 5

Blue trace: Processed and
accommodated data MPI channels

Green trace: Raw data MPI channel

Purple trace: Total data throughput

Figure 6.16: Scenario 1: ICAM system prototype network activity

6.2 Scenario 2: Faulty Gas Outflow Valve in the
Two-Phase Separator Sub-Process

The second simulation scenario is done by applying a fault in the two-phase sep-

arator gas outflow valve, which is stuck at 15% higher than its nominal operating

point (F7; refer to control loop PCL1 in figure 6.1). The fault is applied at time

Tfault = 14:33:40, which is after the ICAM system has started the fault diagnosis

task. Figure 6.17 shows the two-phase separator pressure data and its associated

gas outflow data logged at the FDIA agent. It is clear that the measured and actual

pressure of the two phase separator goes to zero as a result of the flow (i.e., top

plot of figure 6.17). The bottom plot of figure 6.17 shows the faulty flow measure-

ment (i.e., solid blue trace) and the control action generated by the PI controller

of loop PCL1, which rapidly decreases (indicating the valve should be closing) until

116

it reaches the lower bound of zero (i.e., green dash-dotted trace). The FDIA agent

detects the fault when the GPV magnitude is increased significantly, as indicated

by the top plot of figure 6.18. Furthermore, the lowest GPV angle compared to the

other angles indicates the faulty instrumentation (i.e., F7), as shown in bottom plot

of figure 6.18. The FDIA agent local logic isolates in this case fault # 7, as shown

in figure 6.19. This fault corresponds to the two-phase separator gas outflow valve

being stuck (refer to table 6.1). Note that actuator faults cannot be accommodated

(a stuck valve cannot be compensated); hence, no accommodation parameters are

generated.

14:31:12 14:38:24
0

200

400

600

800

Time (hh:mm:ss)

P−
va

p
(P

SI
)

Vapor pressure & its setpoint

14:31:12 14:38:24
0

50

100

150

200

Time (hh:mm:ss)

Fo
ut

−v
ap

 (M
SC

FD
)

Vapor outflow

Setpoint
Sensed variable
Actual variable

Actual variable
PI controller action

Fault application

Figure 6.17: Scenario 2: Two-phase separator pressure logged by the FDIA agent

Once the FDIA agent isolates the fault, it sends the fault information to the

supervisory agent for further processing, as shown in table 6.6. The fault attribute of

the FDIA supervisory frame shows that fault F7 has occurred at time at time Tfault =

14:33:40. The accommodation status attribute indicates that accommodation is not

possible in case of actuator faults. The fault sign and size attributes do not provide

117

14:24:00 14:26:52 14:29:45 14:32:38 14:35:31 14:38:24 14:41:16 14:44:09
0

50

100

Time (hh:mm:ss)

 GPV magnitude

14:24:00 14:26:52 14:29:45 14:32:38 14:35:31 14:38:24 14:41:16 14:44:09
0

50

100

Time (hh:mm:ss)

de
gr

ee
s

 Sensor failure angles

F1
F2
F3
F4
F5

14:24:00 14:26:52 14:29:45 14:32:38 14:35:31 14:38:24 14:41:16 14:44:09
0

50

100

Time (hh:mm:ss)

de
gr

ee
s

 Actuator failure angles

F6
F7
F8
F9
F10

Figure 6.18: Scenario 2: FDIA agent diagnostic signals

any fault knowledge, as the FDIA agent is not designed to estimate actuator fault

size. Figure 6.20 illustrates the ICAM system network activity during this scenario,

which is nearly similar to the first simulation scenario. The only difference is that

the accommodated data channel is not active in this case.

118

14:24:00 14:26:52 14:29:45 14:32:38 14:35:31 14:38:24 14:41:16 14:44:09
−1

0

1

2

3

4

5

6

7

Time (hh:mm:ss)

 F
au

lt
#

 FDI Results: Fault # F7 BIAS fault detected at t=19−Nov−2007 14:33:40

Figure 6.19: Scenario 2: FDIA agent fault display

119

4 Mon Nov 19 14:34:46 2007

Table 6.6: Scenario 2: FDIA agent supervisory frame

120

Time (hh:mm:ss)

N
et

w
or

k
ut

ili
za

tio
n

%

14:18:43 14:34:28 14:45:02

1%

0.5%

0%

1

2 3
4

Blue trace: Processed and
accommodated data MPI channels

Green trace: Raw data MPI channel

Purple trace: Total data throughput

Figure 6.20: Scenario 2: ICAM system prototype network activity

121

6.3 Scenario 3: Drift Fault in the Two-Phase Sep-
arator Liquid Level Sensor

The third simulation scenario investigates the system behavior where a ramp fault is

applied to the two-phase separator liquid level sensor (F1; refer to control loop LCL1

in figure 6.1). The drift fault was applied at a time of Tfault = 10:44:15 with a slope

of S = 10 %/100s. Figure 6.21 depicts the fault application effect on the liquid level

in the two-phase separator sub-process. Clearly, the drifting sensor reading causes a

fault in both the measurement and the actual liquid volume. The PI controller of the

LCL1 loop generates the wrong control action, trying to correct the erroneous drifting

volume measurement. This results in a big decrease in the actual liquid volume of the

two-phase separator. The FDIA agent detects the fault when the GPV magnitude

increases significantly, as shown in the top plot of figure 6.22. Furthermore, the

lowest GPV angle corresponds to fault F1 compared to other angles, as indicated

by the black dotted trace in the middle plot of figure 6.22. The internal logic of

the FDIA agent isolates fault F1 (refer to table 6.1), which corresponds to a faulty

two-phase separator liquid volume sensor, as shown in figure 6.23.

The FDIA agent sends the fault information to the supervisory agent, as depicted

in table 6.7. The supervisory agent alerts the FDIA agent to start the fault accom-

modation task, which is started at time Taccomm = 10:46:07. The FDIA agent flags

back that the accommodation task is in progress along with the recursive fault esti-

mation task (refer to the accommodation attributes in the FDIA agent supervisory

frame in table 6.7) because of the ramp nature of the fault.

It is interesting to notice that the fault slope size is initially estimated with a

little error, because the accommodation task was activated during the transient time

of the fault as opposed to the steady state. This results in an incomplete fault

accommodation, as shown in figure 6.21 (top plot), which produces a growing error.

Figure 6.24 show the accommodation parameters in terms of the estimated fault

122

10:40:48 10:48:00 10:55:12
135

140

145

150

Time (hh:mm:ss)

V−
liq

 (f
t3)

Liquid volume & its setpoint

10:40:48 10:48:00 10:55:12
1.72

1.73

1.74

1.75

1.76

1.77
x 10

5

Time (hh:mm:ss)

Fo
ut

−l
iq

 (B
PD

)

Liquid outflow

Setpoint
Sensed variable
Actual variable

Actual variable
PI controller action

Fault application

Fault accommodation

Figure 6.21: Scenario 3: Two-phase separator liquid volume logged by the FDIA
agent

and the recursive fault estimation error. It is evident that there is an error in the

fault size, as indicated in the bottom plot of figure 6.24. As far as the network

activity during this simulation scenario, it is similar to the network activity of the

first simulation scenario, where the accommodated data channel is opened.

123

2 Wed Nov 07 10:55:35 2007

Table 6.7: Scenario 3: FDIA agent supervisory frame

124

10:36:28 10:39:21 10:42:14 10:45:07 10:48:00 10:50:52 10:53:45 10:56:38 10:59:31
0

0.2

0.4

Time (hh:mm:ss)

 GPV magnitude

10:36:28 10:39:21 10:42:14 10:45:07 10:48:00 10:50:52 10:53:45 10:56:38 10:59:31
0

50

100

Time (hh:mm:ss)

de
gr

ee
s

 Sensor failure angles

F1
F2
F3
F4
F5

10:36:28 10:39:21 10:42:14 10:45:07 10:48:00 10:50:52 10:53:45 10:56:38 10:59:31
0

50

100

Time (hh:mm:ss)

de
gr

ee
s

 Actuator failure angles

F6
F7
F8
F9
F10

Figure 6.22: Scenario 3: FDIA agent diagnostic signals

10:36:28 10:39:21 10:42:14 10:45:07 10:48:00 10:50:52 10:53:45 10:56:38 10:59:31
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (hh:mm:ss)

 F
au

lt
#

 FDI Results: Fault # F1 RAMP fault detected at t=07−Nov−2007 10:44:41

Figure 6.23: Scenario 3: FDIA agent fault display

125

10:36:28 10:39:21 10:42:14 10:45:07 10:48:00 10:50:52 10:53:45 10:56:38 10:59:31
−1

0

1

2

3

4

5

 ∆
error

Time (hh:mm:ss)

10:36:28 10:39:21 10:42:14 10:45:07 10:48:00 10:50:52 10:53:45 10:56:38 10:59:31
0

2

4

6

8

10
 Fault size estimation

Time (hh:mm:ss)

Figure 6.24: Scenario 3: FDIA agent fault accommodation parameters

126

6.4 Performance Analysis

Having verified and validated the ICAM system prototype functionality during the

previous simulation scenarios, it is crucial to analyze its performance to pinpoint any

computational bottlenecks and to verify the correctness of the computation/commu-

nication overlap (i.e., the correct order of communication and computation tasks in

each agent’s code). The performance analysis is done during the fault accommoda-

tion system mode of the first simulation scenario. Table 6.8 illustrates the profile of

the pilot plant agent, whose execution cycle took 108.543 milliseconds.

It is evident that the real-time clock functionality took the biggest execution time

slot (i.e., about 70.49%). The evaluation of the oil separator ordinary differential

equation (ODE) model took 24.12% of the total execution time, due to the nonlinear

problem being solved every sampling period [80]. Raw data storage consumed around

1.77% of the agent’s execution cycle. Communicating data to other agents and

messages to the supervisory agent did not have a significant effect on the agent’s

performance, which indicates a good communication/computation overlap.

While computational functionalities dominated the pilot plant agent, data com-

munications with other agents took the largest execution time slot in the statistical

preprocessing agent. That is, the raw data reception task took 69.64% of the agent’s

execution cycle, as demonstrated in table 6.9. This is due to synchronization with

other agents during data reception, i.e., waiting. However, this is less significant

on the agent performance when sending processed data to other agents (i.e., about

11.99% of the execution time), as specified by the system design requirements [78, 79].

The total execution cycle of this agent was 106.98 milliseconds. It is evident that

there is a performance bottleneck in this agent due to raw and processed data stor-

age (around 16.8%). This can be rectified by adding a database agent to the system

which stores the different data types across the ICAM system. Again, the commu-

nication part with the supervisor had a minimum effect on performance.

127

Functionality name
Total Time Per
Execution Cycle (ms)

% Time

Real time clock 76.512 70.49%

Separator ODE model evaluation 26.18 24.12%

Accommodation data reception 3.387 3.12%

Raw data storage 1.925 1.77%

Raw data sending 0.336 0.31%

Communication with supervisor 0.203 0.18%

Totals 108.543 100%

Table 6.8: The pilot plant agent performance profile

Functionality name
Total Time Per
Execution Cycle (ms)

% Time

Raw data reception from pilot plant 74.50 69.64%

Processed data sending 12.837 11.99%

Raw data storage 9.451 8.83%

Processed data storage 8.54 7.98%

Outlier removal 1.404 1.31%

Communication with supervisor 0.248 0.23%

Totals 106.98 100%

Table 6.9: The statistical agent performance profile

When it comes to the model ID agent, the reception of processed data from the

statistical preprocessing agent had the biggest effect on performance (i.e., about

99.48% of the agent’s execution cycle time). While the execution cycle of this agent

took 105.69 milliseconds, communications with the supervisory agent had the least

effect on performance, as shown in table 6.10. The FDIA agent had a similar profile of

the model ID agent, in which data communications took 90.89% of the agent’s cycle

execution time. We do notice here that data storage has a fairly undesirable effect

of 13.24% on the FDIA agent performance, as illustrated in table 6.11. Table 6.12

demonstrates the performance of the supervisory agent during the real-time system

128

simulation. The G2 supervisory agent was in an idle state for almost 99.18% of

the total simulation time, whereas communications with other agents had almost no

impact on the agent’s performance, as specified in the design requirements.

Functionality name
Total Time Per
Execution Cycle (ms)

% Time

Processed data reception 105.15 99.48%

Communication with supervisor 0.54 0.52%

Totals 105.69 100%

Table 6.10: The model ID agent performance profile

Functionality name
Total Time Per
Execution Cycle (ms)

% Time

Accommodation data sending 68.601 45.67%

Processed data reception 67.916 45.22%

Processed data storage 7.45 4.96%

FDI variables storage 5.763 3.84%

Communication with supervisor 0.464 0.31%

Totals 150.194 100%

Table 6.11: The FDI agent performance profile

129

Functionality name Total Time % Time

Idle time 1575 s 99.18%

Scheduling time 0.982 s 0.06%

Communication with agents 4.505 s 0.28%

Other functionalities 7.565 s 0.47%

Totals 1588.052 s 100%

Table 6.12: The supervisory agent performance profile

6.4.1 Complete ICAM system performance analysis

Although the ICAM system prototype performance analysis showed good results, the

performance analysis was a snapshot done during the fault accommodation mode

of the system. It is crucial to conduct a complete system performance analysis

throughout the complete life-time of the ICAM system. The ICAM system goes

through six different modes during its life-cycle, namely, system startup and steady

state detection mode, PRBS signal application mode, model identification mode,

fault diagnosis mode, fault accommodation mode, and system shutdown mode. A

real-time simulation scenario was set up to measure the execution cycles of the

different reactive agents and compare it against the ICAM system network activity

during the six modes of the ICAM system. We studied scenario 3, i.e., we applied a

bias fault in the liquid volume sensor of the two-phase separator to make the system

execute the fault diagnosis and accommodation modes.

Figure 6.25 shows the measured execution cycles of the ICAM system reactive

agents, where the overlapped execution cycles traces show remarkable synchroniza-

tion among the reactive agents during the six system modes, since the agents have

nearly the same execution cycle traces. The ICAM system agents start up with

an execution cycle of 94 milliseconds, which increases to 95 milliseconds during the

steady state detection mode (i.e., mode 1). It is interesting to notice that the exe-

cution cycle increases to a level of 110.7 milliseconds during mode 1. The execution

130

cycle of the model ID agent increases to around 92 milliseconds because of the time-

consuming plant model estimation task. The processed data MPI channel is closed

during this mode and the FDIA agent enters a waiting state till the end of mode 2,

as shown in figure 6.25.

The pilot plant and statistical preprocessing agents continue executing their func-

tionalities at a cycle level of 110.7 milliseconds. The agents’ execution cycle decreases

to a level of 98 milliseconds and then increases to a level of 109 milliseconds during

the fault diagnosis mode (i.e, mode 4) and the beginning of the fault accommodation

mode (i.e, mode 5). The execution cycle then increases to a level of 124 milliseconds

during the fault accommodation and system shutdown modes. The gradual increases

of the execution cycles of the agents are accompanied with matching gradual increases

in agents’ memory consumption and matching gradual decreases in network activity

(i.e., less communications among agents). This interesting phenomenon is attributed

to the fact that some agents store their local data in large matrices, whose growing

size requires more computational effort and more memory consumption. This reflects

on the communications and network activity of the ICAM system as demonstrated

by figure 6.27.

Figure 6.26 shows the individual execution cycles of the ICAM system reactive

agents, which again demonstrates the agents’ remarkable synchronization in spite of

the semi-autonomous nature of the ICAM system agents. We measured the network

activity of the ICAM system prototype in this simulation scenario, as illustrated in

figure 6.27. It is interesting to notice that the communication activity of the agents

is a mirror of the computation activity. The gradual decreases in network activity

match the gradual increases in computational activity of the agents, as observed

in figures 6.25 and 6.27. It is also observed that the processed data MPI channel

is closed during the model ID mode (i.e., mode 2) because of the time-consuming

task of plant model estimation (as indicated by the yellow trace in figure 6.27).

131

This simulation scenario demonstrated an excellent ICAM system performance in

terms of good computation/communications activities overlap, as specified by design

requirements. It also highlighted the need to embed a data-base management agent

in the ICAM system to relax the execution cycle of the reactive agents, and hence,

to improve the ICAM system performance.

09:28:48 09:36:00 09:43:12 09:50:24
0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

Time hh:mm:ss

A
ge

nt
 e

xe
cu

tio
n

cy
cl

e
(s

)

Plant agent
Stat agent
Mod ID agent
FDIA agentMode 1: Steady state check

Mode 2: PRBS signal application

Mode 3: Model Identification

Mode 4: Fault diagnosis

Mode 5: Fault accommodation

Mode 6: ICAM system shutdown

Figure 6.25: Execution cycles of ICAM system agents (overlapped)

132

09:28:48 09:36:00 09:43:12 09:50:24

0.1

0.12

Time (hh:mm:ss)

Pl
an

t a
ge

nt

09:28:48 09:36:00 09:43:12 09:50:24

0.1

0.12

Time (hh:mm:ss)

St
at

 a
ge

nt

09:28:48 09:36:00 09:43:12 09:50:24

0.1

0.12

Time (hh:mm:ss)

M
od

 ID
 a

ge
nt

09:28:48 09:36:00 09:43:12 09:50:24

0.1

0.12

Time (hh:mm:ss)

FD
IA

 a
ge

nt

95.82 ms

109.7 ms

98.41 ms 109 ms

125 ms

Figure 6.26: Execution cycles of ICAM system agents (non overlapped)

133

N
et

w
or

k
ut

ili
za

tio
n

%

Time (hh:mm:ss)
09:23:28 09:43:09 09:57:55

0%

0.5%

1%

Blue trace: Processed and
accommodated data MPI channels

Green trace: Raw data MPI channel

Purple trace: Total data throughput

Mode 1 & 2: Steady state check
and PRBS signal application

Mode 3: Model identification

Mode 4: Fault diagnosis

Mode 5: Fault accommodation

Mode 6: ICAM system shutdown

Figure 6.27: ICAM system prototype network activity

134

6.5 ICAM System Prototype Limitations

The ICAM system prototype showed excellent logical behavior in response to simple

faulty sensors/actuator scenarios. However, the system has limitations that must

be identified and analyzed carefully. This will reveal if the system will respond

consistently against unexpected disturbances, and show a coherent performance and

acceptable logical behavior. Two simulation scenarios have been applied to study

the ICAM system prototype limitations, as discussed in the following sections.

6.5.1 Scenario A: ICAM system behavior during faults with
fast dynamics

To demonstrate the system behavior during fault with fast dynamics, a +15% bias

fault is applied to the three-phase separator pressure sensor (F5; refer to control loop

PCL2 in figure 6.1) at time Tfault = 09:09:55. Figure 6.28 shows the measured and

actual pressure of the three-phase separator along with its associated gas outflow.

The figure obviously shows that there is a significant mismatch between the measured

and actual pressure. The FDIA agent successfully detects a fault at time Tfault =

09:09:55 (refer to table 6.13), as the GPV magnitude spikes up sharply, as shown

in the top plot of figure 6.29. The lowest GPV angle compared to other angles

corresponds to fault F10, where it decreases sharply for a short time period, as shown

in the bottom plot of figure 6.29. Accordingly the FDIA agent internal logic declares

that a fault F10 has been isolated, as shown in figure 6.30. Interestingly enough,

the isolation decision lasts for a very short period of time. Fault F10 corresponds

to a fault in the three-phase separator gas outflow valve (refer to table 6.1), which

is in the same control loop as F5. The pressure sensor fault is almost immediately

masked by a quick spike in outflow, allowing the pressure to adjust to the erroneous

setpoint so fast that correct isolation is impossible.

The FDIA agent sends the fault information to the supervisory agent to reason

135

09:04:19 09:07:12 09:10:04 09:12:57 09:15:50
170

180

190

200

210

Time (hh:mm:ss)

P−
va

p
(P

SI
)

Vapor pressure & its setpoint

09:04:19 09:07:12 09:10:04 09:12:57 09:15:50
20

25

30

35

Time (hh:mm:ss)

Fo
ut

−v
ap

 (M
SC

FD
)

Vapor outflow

Setpoint
Sensed variable
Actual variable

Actual Variable
PI controller action

Figure 6.28: Limitation scenario A: Three-phase separator pressure logged by the
FDIA agent

about this abnormal plant situation, as shown in the FDIA agent supervisory frame

in table 6.13. The supervisory agent decides not to activate the fault accommodation

task as the fault is identified an actuator fault (refer to the accommodation attributes

in table 6.13). As a result, the fault accommodation parameters have a value of zero

and the fault size and sign attributes have no facts, as the identified actuator fault

size can not be estimated by the FDIA agent. It is very evident that something went

wrong during this simulation scenario, as the system isolated the wrong fault (i.e.,

fault F10 instead of fault F5).

To analyze this situation, we compare the data record of the three-phase separator

pressure measurement logged at the FDIA agent (refer to figure 6.28) and the same

data record logged at the pilot plant agent (refer to figure 6.31). The comparison

reveals that there is a significant difference between the two pressure measurement

data records at the fault application instant. The pressure measurement logged at

136

09:01:26 09:04:19 09:07:12 09:10:04 09:12:57 09:15:50 09:18:43
0

2

4

Time (hh:mm:ss)

 GPV magnitude

09:01:26 09:04:19 09:07:12 09:10:04 09:12:57 09:15:50 09:18:43
0

50

100

Time (hh:mm:ss)

de
gr

ee
s

 Sensor failure angles

F1
F2
F3
F4
F5

09:01:26 09:04:19 09:07:12 09:10:04 09:12:57 09:15:50 09:18:43
0

50

100

Time (hh:mm:ss)

de
gr

ee
s

 Actuator failure angles

F6
F7
F8
F9
F10

Figure 6.29: Limitation scenario A: FDIA agent diagnostic signals

the FDIA agent shows that the pressure spikes up to P = 209 PSI compared to a

value of P = 230 PSI logged at the pilot plant agent during fault application. The

same difference can be noticed in the three-phase separator gas outflow measurement

data records. This measurement mismatch is due to the fast dynamics nature of

the three-phase separator pressure, which caused the outlier removing task in the

statistical preprocessing agent to clip the pressure and gas outflow measurements

before being sent to the FDIA agent. This led to the wrong fault isolation decision

made by the FDIA agent, and the wrong decisions made by the supervisory agent

accordingly. This highlights the importance of embedding a safety net in the ICAM

system prototype to compensate for the limitations of the system agents; for example,

if the statistical preprocessing agent notified the other agents whenever it clipped

a measurement they could be able to make allowances for that fact. Refining the

statistical preprocessing agent so that pressure spikes were not treated as outliers

would also be effective.

137

09:01:26 09:04:19 09:07:12 09:10:04 09:12:57 09:15:50 09:18:43
−2

0

2

4

6

8

10

Time (hh:mm:ss)

 F
au

lt
#

 FDI Results: Fault # F10 BIAS fault detected at t=08−Nov−2007 09:09:55

Figure 6.30: Limitation scenario A: FDIA agent fault display

09:04:19 09:07:12 09:10:04 09:12:57 09:15:50
190

200

210

220

230

240

Time (hh:mm:ss)

P−
va

p
(P

SI
)

Vapor pressure & its setpoint

09:04:19 09:07:12 09:10:04 09:12:57 09:15:50
20

25

30

35

40

45

Time (hh:mm:ss)

Fo
ut

−v
ap

 (M
SC

FD
)

Vapor outflow

Setpoint
Measurement

Figure 6.31: Limitation scenario A: Three-phase separator pressure logged by the
pilot plant agent

138

5 Thu Nov 08 09:17:08 2007

Table 6.13: Limitation scenario A: FDIA agent supervisory frame

139

6.5.2 Scenario B: Oil-well production decrease

The productivity of offshore oil wells and fields may decrease with time and demand,

which leads to a decrease in the oil flow to the production facility. In order to analyze

the impact of such change on the logical behavior of the ICAM system prototype,

we introduce a 20% sudden decrease in the oil component of the oil-well incoming

flow at time Tdist = 14:58:00 (refer to the symbol B in figure 6.1).

Figure 6.32 shows the two-phase liquid volume measurement logged at the FDIA

agent, where the disturbance effect on the liquid volume is corrected by the PI con-

troller by adjusting the liquid outflow valve accordingly. The disturbance is rejected

in a time period of about seven minutes, during which the GPV magnitude increases

and stays at value of 0.4, as shown in the top plot of figure 6.33. Interestingly enough,

none of the GPV angles go to a low level except for the angle of fault F7 for a very

short time period, as illustrated in the middle and bottom plots of figure 6.33. The

local decision making logic of the FDIA agent declares that a fault F7 is isolated

for a short time period, as shown in figure 6.34. The decision of the FDIA agent

then takes a value of -2, which corresponds to an undefined fault decision during

steady state. The FDIA decision then changes to -1 for a longer time period, which

represents an undefined fault during transient. This strange behavior can also be

noticed in the GPV magnitude (refer to the top plot of figure 6.33), where the GPV

magnitude seems to reach a steady state of about 0.2 for a very short time period

and then increases for a longer time period before it is in a true steady state. Finally,

the FDIA fault isolation decision settles down on a fault F7 (i.e., the last detected

fault) till the end of the simulation scenario, although the lowest GPV angle is the

one associated with fault F1.

In order to verify the FDIA fault isolation decision, we examine the FDIA agent

supervisory frame, depicted in table 6.14. It is evident that the FDIA agent isolates

a fault F7 of type ramp at time Tfault = 14:58:04. Fault F7 corresponds to a faulty

140

14:52:48 15:00:00
140

142

144

146

148

Time (hh:mm:ss)

V−
liq

 (f
t3)

Liquid volume & its setpoint

14:52:48 15:00:00
1.7

1.71

1.72

1.73

1.74

1.75
x 10

5

Time (hh:mm:ss)

Fo
ut

−l
iq

 (B
PD

)

Liquid outflow

Setpoint
Sensed variable
Actual variable

Actual variable
PI controller action

Figure 6.32: Limitation scenario B: Two-phase separator liquid volume logged by
the FDIA agent

two-phase gas outflow valve (refer to table 6.1). The supervisory agent reasons about

this situation and decides that no fault accommodation action should be taken, as

indicated by the accommodation attributes in table 6.14. The fault sign and size

attributes provide no new facts, as the identified fault is an actuator fault, whose

size can not estimated by the FDIA agent. The FDIA agent can only estimate sensor

faults by design.

To further analyze the results, we plot the two-phase separator pressure mea-

surement and its associated gas outflow data records logged at the FDIA agent, as

shown by figure 6.35. The gas pressure and outflow measurements show the effect

of the oil-well incoming flow disturbance, which is rejected by the PI control loop

PCL1 (refer to figure 6.1). Furthermore, there is no mismatch between the mea-

sured and actual data records for both process variables. To add to the situation

complexity, the FDIA agent was not designed to isolate ramp actuator faults. Yet,

141

14:49:55 14:52:48 14:55:40 14:58:33 15:01:26 15:04:19 15:07:12
0

0.5

Time (hh:mm:ss)

 GPV magnitude

14:49:55 14:52:48 14:55:40 14:58:33 15:01:26 15:04:19 15:07:12
0

50

100

Time (hh:mm:ss)

de
gr

ee
s

 Sensor failure angles

F1
F2
F3
F4
F5

14:49:55 14:52:48 14:55:40 14:58:33 15:01:26 15:04:19 15:07:12
0

50

100

Time (hh:mm:ss)

de
gr

ee
s

 Actuator failure angles

F6
F7
F8
F9
F10

Figure 6.33: Limitation scenario B: FDIA agent diagnostic signals

it did declare that a ramp actuator (i.e., gas outflow valve) fault has occurred. This

complex simulation situation, in which the FDIA agent generated confusing deci-

sions, is attributed to the fact that the FDIA agent was not designed to decouple

disturbances from sensor/actuator faults. This limitation is due to a lack of an ana-

lytic model that includes disturbance inputs; studies have demonstrated that known

disturbances can be decoupled so they do not interfere with FDI [71]. Again, the

necessity of embedding limitations of the ICAM system reactive agents in the knowl-

edge base of the supervisory agent becomes crucial to guarantee robust and logically

coherent system behavior.

142

14:49:55 14:52:48 14:55:40 14:58:33 15:01:26 15:04:19 15:07:12
−2

−1

0

1

2

3

4

5

6

7

Time (hh:mm:ss)

 F
au

lt
#

 FDI Results: Fault # F7 RAMP fault detected at t=07−Nov−2007 14:58:04

Figure 6.34: Limitation scenario B: FDIA agent fault display

14:52:48 15:00:00
623

624

625

626

Time (hh:mm:ss)

P−
va

p
(P

SI
)

Vapor pressure & its setpoint

14:52:48 15:00:00

163.8

164

164.2

164.4

164.6

Time (hh:mm:ss)

Fo
ut

−v
ap

 (M
SC

FD
)

Vapor outflow

Setpoint
Sensed variable
Actual variable

Actual variable
PI controller action

Figure 6.35: Limitation scenario B: Two-phase separator pressure logged by the
FDIA agent

143

0 Wed Nov 07 15:00:33 2007

Table 6.14: Limitation scenario B: FDIA agent supervisory frame

144

Chapter 7

Conclusions and Future Work

The automation of asset management for industrial process plants proved to be a

very challenging problem, which we tried to investigate and to develop an innovative

framework to solve in this thesis. The research revealed that the implementation of

the solution has its own challenges, some of which have been tackled in this thesis.

The rest of the challenges have been suggested as future work.

7.1 Summary and Conclusions

• A thorough literature review of intelligent asset management systems in in-

dustry and academia was conducted, which showed that this research area has

been active for the past two decades. Most early research projects focused

on the qualitative approach to diagnose the industrial plant during abnormal

situations. Later, research focused on quantitative approaches, which focused

on embedding plant models and more advanced data statistical processing al-

gorithms. They also developed a basic framework to integrate the different

system modules. However, most of the projects operated the different modules

in a semi-automated manner and did not efficiently exploit artificial intelli-

gence (AI) techniques to better manage the different modules of the system.

The intelligent control and asset management (ICAM) system research project

was introduced to build on previous research and to specifically address the

145

full automation and high performance aspects of such systems.

• The conceptual model of the ICAM system was defined based on the human

cognition-affect (H-Cogaff) architecture, which we determined to represent a

combination of the cognitive architecture and the multi-agent system (MAS)

conceptual frameworks. The different agents of the ICAM system were prop-

erly distributed among the layers of the H-Cogaff architecture. A detailed

functional description of the ICAM system agents was discussed. We also de-

scribed the general logical behavior of the ICAM system based on Durffee’s

informal theory of coordination, which tackles the full automated interactions

among the different agents of the ICAM system. We found that the H-Cogaff

architecture addressed some aspects of Durffee’s coordination theory. A de-

velopment plan along with the appropriate analysis tools were suggested for

designing such a complex system.

• The implementation requirements of the ICAM system were analyzed in terms

of communications, AI supervision, and the reactive agent structure. The com-

munication requirements of the ICAM system were analyzed and discussed

after having conducted a comprehensive review of middleware (i.e., communi-

cations) technologies. Among the middleware technologies the Message Passing

Interface (MPI) technology was chosen to meet ICAM’s high performance re-

quirements. The MPI communication requirements were further analyzed and

refined, where the remote memory access (RMA) one-sided protocol was cho-

sen due to its higher performance compared to other protocols. The artificial

intelligence (AI) requirements of the ICAM system were analyzed in terms of

knowledge representation and processing, and the appropriate AI paradigm.

The rule-based reasoning AI paradigm was chosen, in particular the G2 rule-

based expert system shell. The structure, implementation and deployment of

the system agents were designed based on the matlab simulation environment.

146

As a result of the implementation requirements analysis, we found that mat-

lab, the MPI communication library, and the G2 expert system shell form the

best development platform for designing and prototyping complex intelligent

multi-agent systems. In fact, the design space formed by these development

tools allows designers to design and prototype complex systems that meet any

degree of complexity.

• A simple prototype of the ICAM system was designed and developed in terms of

the middleware layer, the intelligent supervisory layer, and the reactive agents

layer. Three data communication channels were embedded in the middleware

layer, namely the raw data channel, the processed data channel, and the plant

model channel. A remote procedure call (RPC) based communication chan-

nel was incorporated in the middleware layer to connect the supervisory agent

with the reactive agents of the system. The intelligent supervisory agent was

designed, which supported a representative subset of the actual ICAM sys-

tem functionality. This representation was developed from the ontology of the

ICAM system, which also was designed as a class hierarchy. The supervisory

agent rule-base, which runs the ICAM system prototype, was designed to meet

the ICAM system pre-specified behavior. The design of the reactive agents

of the ICAM system prototype was described in terms of their functional al-

gorithms and their interaction with the supervisory agent. The deployment

scheme of the system was also thoroughly discussed, where we defined the

hardware, software development tools and network servers required to run the

ICAM system prototype.

• The oil production facility simulation model, upon which the system’s veri-

fication and validation were demonstrated, was described and discussed. We

modeled the main three-phase separation process in the production facility. In

fact, two main physical phenomena were modeled, namely, the hydrodynamics

147

of oil droplets separation in an aqueous phase, and the thermodynamics of light

hydrocarbon gas flashing out of the oil liquid phase. A two-phase separator

model was derived from the three-phase separator model. The two separation

models were combined together to form a model of an oil production facility.

A control system was also designed for the oil production facility model to

control it around a specified operating point [80]. In order to emulate instru-

mentation failures, five actuator and five sensor faults were embedded in the

facility model. The production facility simulation model can be used to de-

sign complex systems such as the ICAM system in both normal and abnormal

operating situations.

• The verification and validation of the system were demonstrated, where several

simulation scenarios were applied to the system to analyze its performance in

real-time and its logical behavior. The first simulation scenario dealt with a

bias sensor fault situation, in which the system showed good logical behavior

as illustrated by the simulation results of the system reactive agents and the

network activity analysis. The ICAM system prototype also behaved logically

during the bias actuator fault application scenario, which was the second sim-

ulation scenario. A more complex simulation scenario was applied during the

application of sensor fault of ramp type (i.e, a drifting sensor fault). The FDIA

agent was required to recursively estimate the fault size and to generate the

accommodation date in real time. The ICAM system behavior was satisfactory

in general during this simulation scenario. However, the fault accommodation

task was incomplete, as there was still a minor drift in the accommodated sen-

sor measurement. This is due to the real-time distributed nature of the ICAM

system prototype.

• To analyze the ICAM system prototype behavior and to identify its limitations

during unexpected situations, two simulation scenarios were set up. The first

148

simulation scenario was designed to simulate a faulty sensor with fast dynamics.

The FDIA agent decision making logic isolated a wrong fault, which led to

wrong supervisory decisions. A further simulation results analysis revealed a

mismatch between the faulty sensor measurement data records logged at the

pilot plant and the FDIA agents. The data records mismatch was because of

the fast dynamics nature of the sensor fault, which caused the outlier removal

task in the statistical preprocessor agent to clip the sensor data during the

fault application. The second simulation scenario was set up to emulate a

decrease in the oil-well productivity. This scenario was more complex than

the previous one, in which the FDIA agent isolated a fault that was not even

specified in the design requirements. Again the supervisory agent generated

the wrong decision. This highlights the importance of embedding a safety net

in the ICAM system prototype to compensate for the limitations of the system

agents.

• A thorough performance analysis of the ICAM system prototype was conducted

during the fault accommodation mode, which demonstrated an excellent sys-

tem performance in terms of computation/communication overlap. The execu-

tion cycles of the reactive agents nearly met the design specification of an agent

execution cycle of 100 milliseconds. However, there was a minor computation

bottleneck due to local data storage, which had a minor effect on the ICAM

system performance. The communications between the reactive agents and the

supervisory agent took an insignificant part of the agent execution cycle, which

verifies the system design specifications of the G2 communication link. The

overall performance of the ICAM system was excellent, but more research has

to be done to further enhance it in future work.

149

7.2 System Limitations, Design Challenges, and
Future Work

Designing an intelligent multi-agent system is a very challenging task, as all agents

are distributed and semi-autonomous. We faced several design challenges which

resulted in limited system capabilities. Some of these design challenges and the

future recommendations for solving them are suggested in the following points:

• Although we proposed the hierarchical colored petri nets approach to design

the internal logic of the ICAM system reactive agents in our development

plan [78], we did design the agents’ internal logic in an ad hoc manner. We

faced some difficulties during the design stage of the ICAM system prototype,

as more functionalities were added. For example, the ICAM system crashed

during early simulation runs due to communication deadlocks, in which two

agents were trying to send messages to each other simultaneously. The problem

was solved by imposing conditions on communicating agents to prevent such

deadlocks. Future designs should use the colored petri net approach to verify

the logical behavior of the ICAM system and its agents in different scenarios.

• Computation/communication coordination was another design problem, in which

computation and communication code blocks were not ordered correctly in the

agent code. For example, we combined the process model estimation (compu-

tation task) and sending the estimated model to other agents (communication

task) into one task in the model ID agent, which proved to be a design flaw.

Model estimation took a long time (i.e., over one minute), during which other

agents were locked waiting for the estimated model due to synchronization

failure. The problem was solved by separating the one functionality into two

separate computation and communication functionalities (i.e., separate agent

states) and modifying other agents accordingly. Although some design flaws

150

had to be corrected, the ICAM system prototype acted as a set of distributed

stochastic colored petri nets during real-time simulation. This implies that

a careful agent design should be done along with a thorough system logical

behavior analysis. Future design plans would take the stochastic nature of the

system and time into account to guarantee robust performance.

• The plant data characteristics also had a major impact on the ICAM system

performance. For example, the ICAM system prototype is not robust against

noisy data due to the design of the data differentiation-based steady state

detection algorithm. Likewise, the general parity vector (GPV) based FDIA

algorithm is not robust to noise, which significantly affects the fault isolation

task in moderate to high noisy data situation. We suggest embedding algo-

rithms that are more robust to noise to cope with real-world industrial plants

and their noisy measurements.

• Detection and isolation of fast dynamics faults (e.g., faulty gas pressure sensor)

is another limitation of the ICAM system prototype. The outlier removal algo-

rithm in the statistical processing agent treats fast dynamics faults as outliers,

which changes the nature of processed data sent to the FDIA agent. Data

filtering also may change the data characteristic, which may have an impact

on the system performance. In addition, the system logical behavior was un-

predictable and inconsistent in response to disturbances in process variables.

So we suggest developing a better safety net, in which the knowledge of agents’

limitations is embedded in the rule base of the supervisory agent. This allows

the system to have a better reasoning ability and robust performance during

undefined and unpredictable plant situations.

• In order to address the complete asset management solution in process plants,

several agents have to be embedded in the ICAM system prototype to manage

151

the process plants during normal situations. An optimization agent is essential

to generate optimal material recipes and process variable set-points to guaran-

tee higher product quality. Planning and scheduling agents are also essential

to schedule operation plans in accordance with long term production plans.

Furthermore, the addition of a real-time database management agent is vital

for both high system performance and future scalability. Finally, a graphical

user interface (GUI) agent must be added to the ICAM system to meet process

operator interaction requirements.

• The incorporation of domain knowledge would definitely improve the perfor-

mance of the system. Such knowledge is represented by the topology of the

industrial plant and its operation procedure in different situations such as

startup, normal operation, and shutdown. This knowledge would be better

utilized if a learning agent were embedded to deal with new situations in the

plant and the internal behavior of the ICAM system itself.

• During abnormal situations hundreds of alarms are initiated, leading to alarm

flooding. This results in the operator missing important alarms. Proper asset

management requires proper alarm and event management techniques in addi-

tion to good operator decision support. The incorporation of alarm manage-

ment techniques that can dynamically prioritize important alarms and suppress

unnecessary alarms would definitely enhance the ICAM system performance.

The alarm management agent would interact with the FDIA agent to better

identify the most important alarms that have to be dealt with.

As can be appreciated, those enhancements will require years of additional research

and development.

152

Bibliography

[1] Asset management primer, Tech. report, US Department of Transportation,

December 1999.

[2] Middleware: Software technology roadmap, http://www.sei.cmu.edu/str/

descriptions/middleware.html, January 2007.

[3] L. Aldred, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede, On

the notion of coupling in communication middleware, International Symposium

on Distributed Objects and Applications (DOA) (Agia Napa, Cyprus), October

2005.

[4] K. D. Althoff, E. Auriol, R. Barletta, and M. Manago, A review of industrial

case-based reasoning tools, Tech. report, Al lntelligence, Oxford, UK, 1995.

[5] K. Arnold and M. Stewart, Surface production operation: Design of oil-

handling systems and facilities, 2nd ed., vol. 1, Butterworth-Heinemann,

Woburn, MA, 1999.

[6] S. B. Banks and C. S. Lizza, Pilot’s associate: a cooperative, knowledge-based

system application, IEEE Expert 6 (1991), no. 3, 18–29.

[7] P. A. Bernstein, Middleware: A model for distributed services, Communications

of the ACM 39 (1996), no. 2, 86–97.

153

[8] S. Cauvin, CHEM-DSS : Advanced decision support system for chemi-

cal/petrochemical industry, Fifteenth International Workshop on Principles of

Diagnosis (DX’04) (Carcassonne, France), AAAI, June 2004.

[9] S. Cauvin, CHEM-DSS: Advanced decision support system for chemi-

cal/petrochemical manufacturing processes, CHEM Project Annual Meeting

(Lille, France), http://www.chem-dss.org/, 25-26 March 2004.

[10] E. L. Cochran, C. Miller, and P. Bullemer, Abnormal situation management

in petrochemical plants: can a pilot’s associate crack crude, Proceedings of the

1996 IEEE National Aerospace and Electronics Conference, NAECON (Day-

ton, KY, USA), vol. v2, IEEE, Piscataway, NJ, USA, May 20-23 1996, pp. 806–

813.

[11] T. Cochran, P. Bullemer, and I. Nimmo, Managing abnormal situations in

the process industries parts 1, 2, 3, NIST Proceedings of the Motor Vehicle

Manufacturing Technology (MVMT) Workshop (Ann Arbor, MI), 1997.

[12] D. D. Corkill, Collaborating Software: Blackboard and Multi-Agent Systems &

the Future, Proceedings of the International Lisp Conference (New York, New

York), October 2003.

[13] M. Derriso, Intelligent vehicle health management for air force space systems,

ISHM/NASA session of the IEEE Sensors for Industry Conference (Houston,

TX, USA), IEEE/ISA, February 2005.

[14] M. M. Dionne, The dynamic simulation of a three phase separator, Master’s

thesis, University of Calgary, 1998.

[15] E. Durfee, V. R. Lesser, and D. D. Corkill, Trends in cooperative distributed

problem solving, IEEE Transactions on Knowledge and Data Engineering 1

(1989), no. 1, 63–83.

154

[16] E. Durfee and T. Montgomery, MICE: A flexible test bed for intelligent co-

ordination experiments, Proceedings of the 9th workshop on distributed AI

(Rosario, Washington), September 1989.

[17] E. Durfee and T. Montgomery, Coordination as distributed search in a hierar-

chical behavior space, IEEE Transactions on Systems, Man, and Cybernetics

21 (1991), no. 6, 1363–1378.

[18] W. Emmerich, Software engineering and middleware: a roadmap, Proc. of the

Conference on The Future of Software Engineering (Limerick, Ireland), IEEE

Computer Society, 2000, pp. 117–129.

[19] H. Wörn et al, DIAMOND: Distributed multi-agent architecture for monitor-

ing and diagnosis, Production Planning and Control 15 (2004), 189–200.

[20] W. Gropp et al, MPI: The complete reference, vol. 2, The MIT Press, 1998.

[21] F. Figueroa, Integrated health with networked intelligent elements (IHNIE)

prototype, ISHM/NASA session of the IEEE Sensors for Industry Conference

(Houston, TX, USA), IEEE/ISA, February 2005.

[22] F. Figueroa, R. Holland, J. Schmalzel, and D. Duncavage, Integrated system

health management (ISHM): systematic capability implementation, Proceed-

ings of the 2006 IEEE Sensors Applications Symposium, 2006, pp. 202–206.

[23] F. Figueroa, R. Holland, J. Schmalzel, D. Duncavage, A. Crocker, and

R. Alena, ISHM implementation for constellation systems, 42nd AIAA/AS-

ME/SAE/ASEE Joing Propulsion Conference and Exhibit (Sacramento, CA,

USA), 9-12 July 2006.

[24] G. C. Fox, M. S. Aktas, G. Aydin, H. Gadgil, S. Pallickara, M. E. Pierce,

and A. Sayar, Algorithms and the grid, Conference on Scientific Computing

(Vysoke Tatry, Podbanske), August 2005.

155

[25] P. M. Frank and B. Köppen-Seliger, New developments using AI in fault di-

agnosis, Engineering Applications of Artificial Intelligence 10 (1997), no. 1,

3–14.

[26] R. G. E. Franks, Modeling and simulation in chemical engineering, Wiley, 1972.

[27] A. Gaddah and T. Kunz, A survey of middleware paradigms for mobile com-

puting, Tech. Report SCE-03-16, Carleton University Systems and Computing

Engineering, July 2003.

[28] C. Garcia-Beltran, M. Exel, and S. Gentil, An interactive toot for causal graph

modeling for supervision purposes, In Proc. IEEE International Symposium on

Intelligent Control (ISIC) (Huston, Texas), 5-8 October 2003, pp. 866– 871.

[29] C. Garcia-Galan, Integrated system health management for exploration mission

systems, ISHM/NASA session of the IEEE Sensors for Industry Conference

(Houston, TX, USA), IEEE/ISA, February 2005.

[30] L. Geng, Z. Chen, C. W. Chan, and G. H. Huang, An intelligent decision sup-

port system for management of petroleum contaminated sites, Expert Systems

with Applications 20 (2001), 251–260.

[31] GenSym Corporation, Burlington, Massachusetts, G2 for application develop-

ers reference manual, 8.0 ed., December 2005.

[32] J. Gertler, Survey of model based failure detction and isolation in complex

plants, IEEE Conteol Systems Magazine (1988).

[33] J. Giarratano and G. Riley, Expert systems, principles and programming, 3rd

ed., PWS Publishing Company, 1998.

[34] W. Gropp and E. Lusk, Tuning MPI applications for peak performance,

www.mcs.anl.gov/Projects/mpi/tutorials/perf, Argonne National Laborary.

156

[35] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel program-

ming with the message-passing interface, 2nd ed., Scientific and Engineering

Computation, MIT Press, Cambridge, Massachusetts, 1999.

[36] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced features of

the message-passing interface, Scientific and Engineering Computation, MIT

Press, Cambridge, Massachusetts, 1999.

[37] B. Hafskjold, H. K. Celius, and O. M. Aamo, A new mathematical model for

oil/water separation in pipes and tanks, SPE Production & Facilities 14 (1999),

no. 1, 30–36.

[38] A. Hallanger, F. Soenstaboe, and T. Knutsen, A simulation model for three-

phase gravity separators, Proceedings of SPE Annual Technical Conference and

Exhibition (Denver, Colorado), SPE, October 1996, pp. 695–706.

[39] J. He, Neuro-fuzzy based fault diagnosis for nonlinear processes, Master’s thesis,

University of New Brunswick, May 2006.

[40] C. D. Holland, Fundamentals and modeling of separation processes: Absorp-

tion, distillation, evaporation, and extraction, Prentice-Hall, Englewood Cliffs,

N.J., 1974.

[41] R. Isermann and P. Balle, Trends in applications of model based fault detection

and isolation and diagnosis of technical processes, Control Engineering Practice

5 (1997), no. 5, 709–719.

[42] S. R. Jang, ANFIS adaptive network based fuzzy inference system, IEEE trans-

action on systems, man, and cybernetics 23 (1993), no. 3, 665–685.

[43] S. A. K. Jeelani, R. Hosig, and E. J. Windhab, Kinetics of low reynolds number

creaming and coalescence in droplet dispersions, AIChE Journal 51 (2005),

no. 1, 149–161.

157

[44] N. R. Jennings and E. M. Mamdani, Using ARCHON to develop real–world

DAI applications parts 1, 2, 3, IEEE Expert 11 (1996), no. 6, 64–86.

[45] G. Karsai, G. Biswas, S. Abdelwahed, N. Mahadevia, K. Keller, and S. Black,

Intelligent component health management: An architecture for the integration

of IVHM and adaptive control, ISHM/NASA session of the IEEE Sensors for

Industry Conference (Houston, TX, USA), IEEE/ISA, February 2005.

[46] I. S. Kim and M. Modarres, Application of goal tree-success tree model as the

knowledge-base of operator advisory systems, Nuclear Engineering and Design

104 (1987), 67–81.

[47] B. Köppen-Seliger, T. Marcu, M. Capobianco, S. Gentil, M. Albert, and

S. Latzel, MAGIC: An integrated approach for diagnostic data management

and operator support, Proceedings of the 5th IFAC Symposium Fault Detection,

Supervision and Safety of Technical Processes - SAFEPROCESS05 (Washing-

ton D.C.), 2003.

[48] M. Kramer and B. Palowitch, Rule based approach to fault diagnosis using the

signed directed graph, AIChE Journal 33 (1987), no. 7, 1067–1078.

[49] L. M. Kristensen, J. B. Jrgensen, and K. Jensen, Lectures on concurrency and

petri nets: advances in petri nets, ch. Application of coloured petri nets in

system development, pp. 626–685, Springer-Verlag, 2004.

[50] W. Larimore, Multivariable System Identification Workshop (Fredericton, New

Brunswick), University of New Brunswick, 31 October – 2 November 2005.

[51] W. E. Larimore, Canonical variate analysis in identification, filtering and adap-

tive control, In Proc. 29th IEEE Conference on Decision and Control (Hon-

olulu), 1990, pp. 596–604.

158

[52] M. Laylabadi and J. H. Taylor, ANDDR with novel gross error detection

and smart tracking system, 12th IFAC Symposium on Information Control

Problems in Manufacturing (Saint-Etienne, France), IFAC, May 17-19 2006.

[53] D. B. Leake, Case-based reasoning: experiences, lessons and future directions,

AAAI Press/MIT Press, Menlo Park, California, 1996.

[54] S. H. Liao, Expert systems: Methodologies and applications, a decade review

from 1995 to 2004, Expert systems with applications (2004), 1–11.

[55] J. Liebowitz, The handbook of applied expert systems, CRC Press, Boca Raton,

FL, 1998.

[56] L. Ljung, System identification - theory for the user, 2nd ed ed., PTR Prentice

Hall, Upper Saddle River, N.J., 1999.

[57] W. Mark, J. Dukes-Schlossberg, and R. Kerber, Towards very large knowledge

bases, ch. Ontological commitment and domain specific architectures: Experi-

ence with comet and cosmos., IOS Press/Ohmsha, msterdam/Tokyo, 1995.

[58] R. Matania1, Interoperability and integration oil and gas science and technolo-

gyof industrial software tools, Oil and Gas Science and Technology 60 (2005),

no. 4, 617–627.

[59] W. A. Maul, H. Park, M. Schwabacher, M. Watson, R. Mackey, A. Fijany,

L. Trevino, and J. Weir, Intelligent elements for the ISHM testbed and pro-

totypes (ITP) project, ISHM/NASA session of the IEEE Sensors for Industry

Conference (Houston, TX, USA), IEEE/ISA, February 2005.

[60] P. H. Menold, R. K. Pearson, and F. Allgower, Online outlier detection and re-

moval, Proc. of the 7th Mediterranean Conference on Control and Automation

(MED99) (Haifa, Israel), June 28–30 1999.

159

[61] C. A. Miller and M. D. Hannen, Rotorcraft pilot’s associate: Design and eval-

uation of an intelligent user interface for cockpit information management,

Knowledge-Based Systems 12 (1999), no. 8, 443–456.

[62] R. L. Moore and M. Kramer, Expert systems in online process control, Proceed-

ings of the 3rd international conference on chemical process control (Asilomar,

California), 1986.

[63] D. Mylaraswamy, DKit: a blackboard-based, distributed, multi-expert environ-

ment for abnormal situation management, Ph.D. thesis, Purdue University,

1996.

[64] D. Mylaraswamy and V. Venkatasubramanian, A hybrid framework for large

scale process fault diagnosis, Computers and Chemical Engineering 21 (1997),

S935–S940.

[65] J. Mylopoulos, B. Kramer, H. Wang, M. Benjamin, Q. B. Chou, and S. Men-

sah, Expert system applications in process control, In Proc. of the International

Syposium on Artificial Intelligence in Materials Processing Applications (Ed-

monton, Alberta, Canada), August 1992.

[66] A. Newell, Unified theories of cognition, Harvard University Press, Cambridge,

MA, 1990.

[67] A. Norvilas, A. Negiz, J. DeCicco, and A. Cinar, Intelligent process monitor-

ing by interfacing knowledge-based systems and multivariate statistical moni-

toring., Journal of Process Control (2000), no. 10, 341–350.

[68] A. Ogden-Swift, Reducing the costs of abnormal situations . . . the next profit

opportunity, IEEE Advanced Process Control Applications for Industry Work-

shop (APC2005) (Vancouver, Canada), May 2005.

160

[69] M. Omana, Robust fault detection and isolation using a parity equation

implementation of directional residuals, Master’s thesis, University of New

Brunswick, 2005.

[70] M. Omana and J. H. Taylor, Robust fault detection and isolation using a par-

ity equation implementation of directional residuals, IEEE Advanced Process

Control Applications for Industry Workshop (APC2005) (Vancouver, Canada),

May 2005.

[71] M. Omana and J. H. Taylor, Enhanced sensor/actuator resolution and robust-

ness analysis for FDI using the extended generalized parity vector technique,

Proc. of American Control Conference (Minneapolis, Minn.), IEEE, 14-16 June

2006, pp. 2560–2566.

[72] M. Omana and J. H. Taylor, Fault detection and isolation using the gener-

alized parity vector technique in the absence of a mathematical model, IEEE

Conference on Control Applications (CCA) (Singapore), 1-3 October 2007.

[73] R. J. Patton, Fault-tolerant control systems: The 1997 situation, IFAC Sym-

posium on Fault Detection Supervision and Safety for Technical Processes

(Kingston Upon Hull, UK) (R J Patton and J Chen, eds.), vol. 3, IFAC, Au-

gust 1997, pp. 1033–1054.

[74] H. Pinus, Middleware: Past and present a comparison, http:

//www.research.umbc.edu/~dgorin1/451/middleware/middleware.pdf,

June 2004.

[75] M. L. Powers, Analysis of gravity separation in freewater knockouts, SPE Pro-

duction Engineering 5 (1990), no. 1, 52–58.

[76] H. E. Rauch, Fault diagnosis and control reconfiguation, IEEE Control Systems

Magazine (1994).

161

[77] F. E. Ritter, N. R. Shadbolt, D. Elliman, R. Young, F. Gobet, and G. D. Bax-

ter, Techniques for modeling human performance in synthetic environments:

A supplementary review, Tech. report, Human Systems Information Analysis

Center (HSIAC), formerly known as the Crew System Ergonomics Information

Analysis Center (CSERIAC), Wright-Patterson Air Force Base, OH, 2003.

[78] A. F. Sayda and J. H. Taylor, An implementation plan for integrated control

and asset management of petroleum production facilities, IEEE International

Symposium on Intelligent Control ISIC06 (Munich, Germany), IEEE, October

4-6 2006, pp. 1212–1219.

[79] A. F. Sayda and J. H. Taylor, An intelligent multi agent system for inte-

grated control and asset management of petroleum production facilities, In Proc.

of The 17th International Conference on Flexible Automation and Intelligent

Manufacturing (FAIM) (Philadelphia, USA), 18-20 June 2007, pp. 851–858.

[80] A. F. Sayda and J. H. Taylor, Modeling and control of three-phase gravity

separators in oil production facilities, the American Control Conference (ACC)

(New York, NY), 11-13 July 2007.

[81] A. F. Sayda and J. H. Taylor, Toward a practical multi-agent system for inte-

grated control and asset management of petroleum production facilities, IEEE

International Symposium on Intelligent Control (ISIC) (Singapore), 1–3 Octo-

ber 2007.

[82] J. Schmalzel, F. Figueroa, J. Morris, S. Mandayam, and R. Polikar, An archi-

tecture for intelligent systems based on smart sensors, IEEE Transactions on

Instrumentation and Measurement 54 (2005), no. 4, 1612–1616.

[83] M. J. H. Simmons, E. Komonibo, B. J. Azzopardi, and D. R. Dick, Residence

time distribution and flow behavior within primary crude oil-water separators

162

treating well-head fluids, Chemical Engineering Research & Design 82 (2004),

no. A10, 1383–1390.

[84] A. Sloman, Varieties of affect and the CogAff architecture schema, proceed-

ings of symposium on Emotions, Cognition, and Affective Computing at the

AISB’01 convention (York, UK), 2001.

[85] A. Sloman and M. Scheutz, Framework for comparing agent architectures, Pro-

ceedings of the UK Workshop on Computational Intelligence (Birmingham,

UK), September 2002.

[86] R. L. Small and C. W. Howard, A real-time approach to information manage-

ment in a pilot’s associate, Proceedings of Digital Avionics Systems Confer-

ence, IEEE/AIAA, 14–17 Oct 1991, pp. 440–445.

[87] C. Smith, C. Gauthier, and J. H. Taylor, Petroluem Applications of Wireless

Sensors (PAWS) Workshop (Sydney, Nova Scotia), Cape Breton University,

22–23 August 2005.

[88] E. Tarifa and N. Scenna, Fault diagnosis, directed graphs, and fuzzy logic,

Computer and Chemical Engineering 21 (1977), S649–S654.

[89] E. Tatara and A. Cinar, An intelligent system for multivariate statistical pro-

cess monitoring and diagnosis., ISA Transactions 41 (2002), 255–270.

[90] J. H. Taylor, Expert systems for computer-aided control system design and

engineering, Proc. Chemical Process Control III (Asilomar, CA), January 1986,

pp. 807–838.

[91] J. H. Taylor, Petroleum applications of wireless systems - UNB’s control/in-

formation technology subproject, submitted to Cape Breton University on 11

December 2003 and subsequently to ACOA on 21 September 2004, 2004.

163

[92] J. H. Taylor, L. P. Harris, P. K. Houpt, H. P. Wang, and E. S. Russell, Intel-

ligent processing of materials: Control of induction-coupled plasma deposition,

Advanced Sensing, Modelling, and Control of Materials Processing (Warren-

dale, PA), Ed. by E. F. Matthys and B. Kushner, TMS Publications, 1991.

[93] J. H. Taylor and M. Laylabadi, A novel adaptive nonlinear dynamic data rec-

onciliation and gross error detection method, Proc. of IEEE Conference on

Control Applications (Munich, Germany), IEEE, October 4-6 2006, pp. 1783–

1788.

[94] J. H. Taylor and M. Omana, Fault detection, isolation and accommodation

using the generalized parity vector technique, submitted to the IFAC World

Congress (Seoul, Korea), July 6–11 2008.

[95] J. H. Taylor and A. F. Sayda, An intelligent architecture for integrated con-

trol and asset management for industrial processes, Proc. IEEE International

Symposium on Intelligent Control (ISIC05) (Limassol, Cyprus), June 2005,

pp. 1397–1404.

[96] J. H. Taylor and A. F. Sayda, Intelligent information, monitoring, and control

technology for industrial process applications, The 15th International Confer-

ence on Flexible Automation and Intelligent Manufacturing (FAIM) (Bilbao,

Spain), July 2005.

[97] J. H. Taylor and A. F. Sayda, Prototype design of a multi-agent system for inte-

grated control and asset management of petroleum production facilities, submit-

ted to the American Control Conference (ACC) (Seattle, Washington), June

11–13 2008.

[98] R. Taylor and A. Lucia, Modeling and analysis of multicomponent separation

processes, Separation Systems and Design (1995), 19–28.

164

[99] P. vanOverschee and B. DeMoor, Subspace identification of linear systems:

Theory, implementation, applications, Kluwer Academic Publishers, 1996.

[100] H. Vedam, Op-Aide: an intelligent operator decision support system for diag-

nosis and assessment of abnormal situations in process plants., Ph.D. thesis,

Purdue University, 1999.

[101] H. Vedam, S. Dash, and V. Venkatasubramanian, An intelligent operator de-

cision support system for abnormal situation management., Computers and

Chemical Engineering 23 (1999), S577–S580.

[102] V. Venkatasubramanian, Prognostic and diagnostic monitoring of complex sys-

tems for product lifecycle management: Challenges and opportunities., Com-

puters and Chemical Engineering 29 (2005), 1253–1263.

[103] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and K. Yin, A review

of process fault detection and diagnosis part 1, 2, 3, Computer & Chemical

Engineering 27 (2003), no. 3, 293–346.

[104] N. Viswanadham, J. H. Taylor, and E. C. Luce, A frequency domain approach

to failure detection and isolation with application to GE21 turbine engine con-

trol system, Control Theory and Advanced Technology 3 (1987), no. 1, 45–72.

[105] H. Wang and C. Wang, APACS: A multi-agent system with repository support,

Knowledge-Based Systems 9 (1996), no. 5, 329–337.

[106] H. Wang and C. Wang, Intelligent agents in the nuclear industry, Computer

30 (1997), no. 11, 28–34.

[107] L. Wang, On-line fault diagnosis using signed digraphs, Master’s thesis, Uni-

versity of New Brunswick, May 2006.

165

[108] M. Wilikens and C. J. Burton, FORMENTOR: Real-time operator advisory

system for loss control. application to a petro-chemical plant, International

Journal of Industrial Ergonomics 17 (1996), 351–366.

[109] M. J. Wooldridge, An introduction to multiagent systems, Wiley, Chichester,

England, 2002.

[110] S. Y. Yim, H. G. Ananthakumar, L. Benabbas, A. Horch, R. Drath, and N. F.

Thornhill, Using process topology in plant-wide control loop performance as-

sessment., Computers and Chemical Engineering (2006), no. 31, 86–99.

166

Appendix A

Modeling and Control of
Three-Phase Gravity Separators in
Oil Production Facilities

A.1 INTRODUCTION

The function of an oil production facility is to separate the oil well stream into three

components or “phases” (oil, gas, and water), and process these phases into some

marketable products or dispose of them in an environmentally acceptable manner.

In mechanical devices called “separators”, gas is flashed from the liquids and “free

water” is separated from the oil. These steps remove enough light hydrocarbons

to produce a stable crude oil with the volatility (i.e., vapor pressure) to meet sales

criteria. Separators are classified as “two-phase” if they separate gas from the total

liquid stream and “three-phase” if they also separate the liquid stream into its crude

oil and water components. The gas that is separated is compressed and treated

for sales [5]. Modeling such facilities has become very crucial for controller design,

fault detection and isolation, process optimization, and dynamic simulation. In this

appendix, we focus on three-phase gravity separators as they form the main processes

in the upstream petroleum industry, and have a significant economic impact on

produced oil quality.

Three-phase separators have rich and complex dynamics, which span from hydro-

dynamics to thermodynamics and conservation laws. Many modeling techniques and

167

approaches have been used to model three-phase separators. As far as the thermo-

dynamics aspects of the separator are concerned (i.e., the oil and gas phases), many

modeling approaches have been suggested in the literature. The phase equilibrium

modeling approach has been used for 50 years and has provided satisfactory results

for such equipment as flash tanks and distillation columns [98]. The basic equations

in this approach are used to describe the material balances, equilibrium relations,

the composition summation equations, and the enthalpy equations. Non-equilibrium

models have been developed to describe real physical separation processes; other

modeling approaches were also considered such as the computational model, the

collocation model, and the bubble residence contact time model [14].

Historically, the hydrodynamics of the separator’s aqueous part have been mod-

eled using complex mathematical-numerical models, which describe the coalescence

and settling of oil droplets in oil-water dispersions. Such models take into account

separator dimensions, flow rates, fluid physical properties, fluid quality and drop

size distribution. The output of these models is the quality of the output oil [37].

Other models, which describe the kinetics of low Reynolds number coalescence of oil

droplets in water-oil dispersions, have been developed to give the volumes of sep-

arated continuous-phase and coalesced drops [43]. A computational fluid dynamic

(CFD) model was developed to model the hydrodynamics of a three-phase separator,

based on the time averaging of Navier-Stokes equations for three phases; it takes into

consideration the non-ideal flow due to inlet /outlets and internal equipment for sep-

aration enhancement [38]. The “alternative path model approach”, which exploits

the residence time distribution (RTD) of both oil and aqueous phases in three-phase

separators, was developed to give a quantitative description of hydrodynamics and

mixing in the aqueous phase [83]. Powers [75] extended the American Petroleum In-

stitute (API) gravity separator design criteria to design free-water knockout vessels

for better capacity and performance. Powers showed that the API design criteria

168

can handle non-ideal flow by performing practical RTD experiments.

We extend the API static design criteria to model the hydrodynamics of three

phase separators, which results in a simpler modeling approach. Furthermore, a

simple phase equilibrium model is developed to model the thermodynamic aspects of

the separator. We describe the operation of gravity three-phase separators in section

A.2. A dynamic model of the separator is developed for each phase in section A.3,

where it can be used to estimate the steady state flows and to study the separator

behavior during other operating conditions. An oil production facility simulation

model is designed, implemented and tested to validate and demonstrate the separator

behavior during normal operation and upsets in section A.4. Finally, simulation

results are discussed and summarized in section A.5.

A.2 Three-phase gravity separation process de-
scription

Three-phase separators are designed to separate and remove the free water from the

mixture of crude oil and water. Figure A.1 is a schematic of a three phase horizontal

separator. The fluid enters the separator and hits an inlet diverter. This sudden

change in momentum does the initial gross separation of liquid and vapor. In most

designs, the inlet diverter contains a downcomer that directs the liquid flow below

the oil /water interface. This forces the inlet mixture of oil and water to mix with

the water continuous phase (i.e., aqueous phase) in the bottom of the vessel and rise

to the oil /water interface. This process is called “water-washing”; it promotes the

coalescence of water droplets which are entrained in the oil continuous phase. The

inlet diverter assures that little gas is carried with the liquid and assures that the

liquid is not injected above the gas /oil or oil /water interface, which would mix the

liquid retained in the vessel and make control of the oil /water interface difficult.

Some of the gas flows over the inlet diverter and then horizontally through the

169

gravity settling section above the liquid. As the gas flows through this section, small

drops of liquid that were entrained in the gas and not separated by the inlet diverter

are separated out by gravity and fall to the gas-liquid interface. Some of the drops

are of such a small diameter that they are not easily separated in the gravity settling

section. Before the gas leaves the vessel it passes through a coalescing section or

mist extractor to coalesce and remove them before the gas leaves the vessel.

Water Out

Gas
Inlet

Gas Out

Oil Out

Inlet

diverter

Mist

 extractor

Water

Oil

Figure A.1: Three phase horizontal separator schematic.

A.3 Three phase gravity separator mathematical
modeling

When the hydrocarbon fluid stream enters a three-phase separator, two distinctive

phenomena take place. The first phenomenon is fluid dynamic, which is characterized

by the gravity separation of oil and water droplets entrained in the aqueous and

the oil phases respectively, the gravity separation of gas bubbles entrained in the

stream, and the gravity separation of liquid droplets which are dispersed in the

gas phase. The second phenomenon is thermodynamic, in the sense that some light

hydrocarbons and gas solution flash out the oil phase and reach a state of equilibrium

due to the pressure drop in the separator. Due to the complexity of such phenomena,

170

we are going to focus on the hydrodynamic separation of oil droplets entrained in

the aqueous phase and the thermodynamic separation of gas and light hydrocarbons

from the oil phase. This decision is justified by the fact that the water washing

process minimizes the water entrained in the oil phase. Furthermore, preceding

gravity separation processes minimize the amounts of gas entrained in the main

stream.

Figure A.2 illustrates the simplified separation process, where an oil-well fluid

with molar flow Fin and gas, oil, and water molar fractions Zg, Zo, Zw respectively

enters the separator. The hydrocarbon component of the fluid separates into two

parts; the first stream Fh1 separates by gravity and enters the oil phase, and the

second stream Fh2 stays in the aqueous phase due to incomplete separation. The

liquid discharge from the aqueous phase FWout is a combination of the dumped water

stream FW plus the unseparated hydrocarbon stream Fh2. The gas component in

the separated hydrocarbon stream, which enters the oil phase, separates into two

parts; the first gas stream Fg1 flashes out of the oil phase due to the pressure drop

in the separator, and the second gas stream Fg2 stays dissolved in the oil phase. The

oil discharge Foout from the separator contains the oil component of the separated

hydrocarbon Fo and the dissolved gas component Fg2. The flashed gas Fgout flows

out of the separator for further processing.

Fwout

Oil

Gas

Water

Fin

F
h
1

F
g
1

Foout

Fgout

Fh2

Fw

Fg2

Fo

+

+

Zg, Zo, Zw

Figure A.2: Main separated component streams in three-phase gravity separator

We model the dynamics of each phase of the separator in the subsequent sections,

171

to simplify the modeling process. Additionally, some simplifying assumptions have

to be made. The separation processes are assumed to be isothermal in all phases of

the separator at 100 oF . We also assume that the flow pattern in the liquid phases

is plug flow, especially in the aqueous phase. Furthermore, the oil droplets in the

aqueous phase have a uniform droplet size distribution with a diameter of dm = 500

micron. The oil droplets’ rising velocities are assumed to obey Stokes’ law. We model

the equilibrium thermodynamics phenomenon under the assumption that Raoult’s

law is valid. We assume that only one light hydrocarbon gas flashes out the oil phase

into the gas phase, namely methane. Methane in the vapor phase is also assumed

to be an ideal gas (i.e., the ideal gas law applies). Finally, there is liquid-vapor

equilibrium at the oil surface and liquid-liquid equilibrium at the water-oil interface.

A.3.1 The aqueous phase

In order to model the aqueous phase of the separator, we will follow the API static

design criteria under the usual simplifying assumptions. The API specification per-

mits hydrocarbon droplets (i.e., oil and dissolved light gas) of design diameter to rise

from the bottom of the separator to the surface during the water retention period, as

illustrated in figure A.3. A hydrocarbon droplet located on the cylinder bottom has

the greatest distance to traverse to the oil-water interface. Therefore, modeling the

oil separation hydrodynamics based on removal of this droplet would ensure removal

of all others of the same or larger diameter. Given the simplifying assumptions, the

traversing hydrocarbon droplet on its path to the oil-water interface is subjected to

a vertical rising velocity component vv governed by Stokes’ law, and a horizontal

velocity component vh governed by the plug flow pattern of the aqueous phase. The

vertical velocity component is estimated from Stokes’ law by equation (A.1):

vv = 1.7886× 10−6 (SGh − SGw)d2
m

µw

(A.1)

172

where SGh, SGw are the specific gravities of the hydrocarbon droplets and water,

respectively, dm is the droplet diameter in microns, and µw is the water viscosity

in CP at 100 oF . The horizontal velocity component is estimated from the aqueous

phase retention as vh = L / τ , where L is the length of the separator and τ =

Vwat /Fwat is the retention time of the aqueous phase; Vwat is the volume of the

aqueous phase, and Fwat is the water outflow. The level of the oil-water interface h

is determined from equations (A.2):

Ac = Vwat/L

= R2θ − 0.5R2 sin(2θ)

h = R(1− cos(θ)) (A.2)

where Ac is the cross-sectional area of the aqueous phase, R is the separator radius

and θ is the angle which defines the circle sector of the cross sectional area Ac. The

angle Φ of the longest droplet path to the oil-water interface can be estimated from

equation (A.3):

Φ = arctan
vv

vh

(A.3)

R Lon
ges

t dr
ople

t pa
th

θ

φ

h

Vh

V
v

Fwat

Oil droplets

in water

Water

Fin

Ac

L

Gas

Oil

Figure A.3: Oil separation hydrodynamics under normal operation conditions

173

The design parameters {Ac, h, θ, Φ} of the aqueous phase will take their nominal

values under normal operating conditions of the three-phase separator, i.e., for the

nominal value of Fwat which leads to complete separation, as shown in figure A.3.

However, our model must also be valid for off-nominal values. This is complicated at

higher flow values, since we can no longer achieve complete separation. Let us assume

that the water outflow Fwat has increased by a value of ∆Fwat due to a corresponding

increase in inflow. This will result in an increase in vh to vh + ∆vh and an angle

change of the longest path of a traversing hydrocarbon droplet from Φ to Φ1 < Φ.

Figure A.4 illustrates the concept of virtually extending the tank so that complete

separation would be achieved at L1 = L + ∆L, although this is fictional. Assuming

that the design parameters {Ac, h, θ} remain the same, as shown in figure A.4, we

have:

Φ1 = arctan
(vv + δvv)

vh

(A.4)

L1 = h cot(Φ1)

We have to make a simplifying assumption in order to estimate the volume frac-

tion of unseparated hydrocarbon, ε. As shown in figure A.5 (top), we assume that

the unseparated oil droplets in the aqueous phase form a “tail” extending into the

virtual separator extension, as also shown by dashed lines in figure A.5 (bottom,

labeled S3) that undergoes turbulent flow and exits with the water. The accuracy of

this assumption is, of course, dependent upon the geometry of the tank and structure

of the water and oil outlets.

Under this assumption, region S3 in the bottom figure represents the volume of

the unseparated hydrocarbon fluid VS3. It can be seen from figure A.5 that region S3

is the difference between the hydrocarbon fluid volume in the virtual separator (rep-

resented by region S1), VS1 and the hydrocarbon fluid volume in the actual separator,

174

R

θ

h

Fwat + ∆Fwat

Fin

Ac

h
1

L1

θ1

Oil

Gas

Oil droplets

in water

L

WaterV
v

∆Vh
φ1φ

Vh

Figure A.4: Oil separation hydrodynamics under high water outflow condition

VS2 (represented by region S2). The volume VS1 can be calculated as the difference

between the volume of the cylindrical segment defined by the parameters {h, L1, θ}
and the cylindrical wedge parameterized by {h, L1, Φ1}, as in equation (A.5):

VS1 = R2L1{θ − 0.5 sin(2θ)− 3 sin θ − 3θ cos θ − sin3 θ

3(1− cos θ)
} (A.5)

Furthermore, again referring to figure A.5, the volume VS2 can be estimated as the

difference between the volume of the cylindrical segment parameterized by {h, L, θ}
and the cylindrical wedge parameterized by {h1, θ1, L, Φ1}, as in equation (A.6):

VS2 = R2L{θ − 0.5 sin(2θ)− 3 sin θ1 − 3θ1 cos θ1 − sin3 θ1

3(1− cos θ1)
} (A.6)

where the virtual oil-water interface h1 and angle θ1 are defined by equations (A.7):

h1 = L tan(Φ1)

θ1 = arccos(1− h1

R
) (A.7)

Consequently, we can estimate the unseparated hydrocarbon fluid volume fraction

ε from equation (A.8):

175

ε =

1− VS2

VS1
, L1 > L

0 else
(A.8)

R

θ

h

Fin

Ac

h
1

L1

L

θ1

R

θ

h

Fwat + ∆Fwat

Fin

Ac

h
1

L1

L

θ1

S1

S2

S3

Water

Oil droplets
 in water

Oil

Oil

Gas

Gas

Ś3

Water

Fwat + ∆Fwat

Oil droplets
 in water

φ1

φ1

Figure A.5: Unseparated hydrocarbon fluid volume under high water outflow condi-
tion

Having estimated the unseparated hydrocarbon fluid volume fraction ε, we can

calculate the separated and unseparated volumetric flow components of the hydrocar-

bon fluid Fh1v , Fh2v respectively. Finally we can write the dynamic material balance

of the aqueous phase by using equations (A.9), after we convert the molar flows to

volumetric flows:

176

Fh1v =
ε(Zg + Zo)FinMwh

62.43SGh

Fh2v =
(1− ε)(Zg + Zo)FinMwh

62.43SGh

FWout =
ZwFinMww

62.43SGw

+ Fh2v

dVwat

dt
=

FinMwin

62.43SGin

− FWout − Fh1v (A.9)

where {Mwh, Mww, Mwin} are the hydrocarbon, water, and incoming mixture

molecular weights; {SGh, SGw, SGin} are the hydrocarbon, water, and incoming

mixture specific gravities; Vwat is the aqueous phase volume; and FWout is the water

discharge volumetric outflow.

A.3.2 The oil phase

In order to model the thermodynamic phenomenon in the oil phase, we first do

the flash calculations to estimate the amounts of gas which will flash out of solu-

tion. Since we assumed that ideal phase equilibrium state is valid, then by applying

Raoult’s law we can tell how much methane will stay entrained in the oil phase.

Raoult’s law relates the vapor pressure of components to the composition of the so-

lution. This can be formulated mathematically as yiP = xiPvi
where yi is the mole

fraction of the component i in the vapor phase, xi is the mole fraction of component

i in the liquid phase, P is the total pressure of the vapor phase (i.e., the separator

working pressure), and Pvi
is the vapor pressure of component i [26, 40].

Since we have only one flashing light hydrocarbon (i.e., methane), this implies

that the mole fraction of methane in the vapor phase is y = 1, and that the mole

fraction of methane entrained in the liquid phase is x = P/Pv. Given the composition

{Zg1, Zo1} of the separated hydrocarbon stream Fh1, we can estimate the amounts of

flashing methane Fg1 and dissolved methane in the oil phase Fg2. The oil discharge

flow Foout can also be estimated along with its average molecular weight Mwo1 and

177

its specific gravity SGo1. The complete dynamic model of the oil phase, which is

given by equations (A.10), can be then formulated by taking the material balance:

Fg1 = (1− x)Zg1Fh1

Fg2 = xZg1Fh1

Foout = Fo + Fg2

dNoil

dt
= Fh1 − Fg1 − Foout

Mwo1 = xMwg + (1− x)Mwo

SGo1 =
xMwgNoil + (1− x)MwoNoil

xMwgNoil

SGg
+ (1−x)MwoNoil

SGo

(A.10)

where Noil is the number of liquid moles in the oil phase; Fo is the molar oil com-

ponent in the oil discharge flow Foout ; {Mwg, Mwo} are the gas and oil molecular

weights; and {SGg, SGo} are the gas and oil specific gravities.

A.3.3 The gas phase

Given the ideal gas law assumption, the gas phase of the separator is modeled by

taking the material balance. We can estimate the gas pressure P by applying the

ideal gas law, as described by equations (A.11):

dNgas

dt
= Fg1 − Fgout

Voil =
Mwo1Noil

62.43SGo1

Vgas = Vsep − Vwat − Voil

P =
NgasRT

Vgas

(A.11)

where Ngas is the number of gas moles in the gas phase; Fgout is the gas molar

outflow from the separator; {Voil, Vgas, Vsep} are the volumes of the oil phase, gas

phase, and separator respectively; R is the universal gas constant; and T is the

178

absolute separator temperature.

A.4 Separator model validation

Having obtained the dynamic model of the three-phase gravity separator, we design

a simulation model which emulates an oil production facility to validate the model

behavior under several scenarios. The simulation model basically consists of three

processes, as depicted in figure A.6. The first is a two-phase separator in which

hydrocarbon fluids from oil wells are separated into two phases (gas, oil + water)

to remove as much light hydrocarbon gases as possible. The separator is 15 ft long

and has a diameter of 5 ft. The two-phase separator model was developed based

on the models of the oil and gas phases of the three-phase separator. That is, we

have modeled only the thermodynamic phenomenon of gas flashing out the liquid

phase. The liquid produced is then pumped to the three-phase separator (i.e., the

second process), where water and solids are separated from oil. The oil produced

is then pumped out and sold to refineries and petrochemical plants if it meets the

required specifications. The three-phase separator has length of 8.6 ft and a diameter

of 4.8 ft. Flashed light and medium gases from the separation processes are sent to

a gas scrubber where medium hydrocarbon and other liquid remnants are separated

from gas and sent back for further treatment. Produced gas is then compressed by

a compressor (i.e., the third process) and pumped out for sales. The third process

model was not included in the simulation model for the sake of simplicity.

The two separation processes in the simulation model are controlled to maintain

the operating point at its nominal value, and to minimize the effect of disturbances

on the produced oil quality. As shown in figure A.6, the first separation process is

controlled by two PI controller loops. In the first loop, the liquid level is maintained

by manipulating the liquid outflow valve. The second loop controls the pressure

inside the two-phase separator by manipulating the amount of gas discharge. The

179

second separation process has three PI controller loops. An interface level PI con-

troller maintains the height of the oil /water interface by manipulating the water

dump valve, while the oil level is controlled by the second PI controller through the

oil discharge valve. The vessel pressure is maintained constant by the third PI loop.

180

T
w

o
-p

h
as

e
o

il
se

p
ar

at
or

T
h

re
e-

p
h

as
e

o
il

se
p

ar
at

o
r

G
as

S
cr

u
b

b
er

G
as

co
m

p
re

ss
o

r

O
il

w
el

l

W
at

er
 t

re
at

m
en

t

W
at

er

W
at

er

O
il

&
 w

at
er

 m
ix

W
at

er

O
il

P

P

P

T
o

 w
at

er
 t

re
at

m
en

t

O
il

sa
le

s

G
as

 s
al

es

D
is

p
o

sa
lP

G
as

G
as

G
as

P
ip

e
lin

e
S

ig
n

al
 li

n
e

L
C

L
 :

 L
ev

el
 c

o
n

tr
o

l l
o

o
p

L
C

L
 1

L
C

L
 2

L
C

L
 3

L
C

L
 4

P
C

L
 :

 P
re

ss
u

re
 c

o
n

tr
o

l l
o

o
p

P
C

L
 1

P
C

L
 2

P
C

L
 3

P
C

L
 4

F
ig

u
re

A
.6

:
T

h
e

oi
l
p
ro

d
u
ct

io
n

fa
ci

li
ty

sc
h
em

at
ic

d
ia

gr
am

181

A.5 Simulation results

The two-phase separator process operates at a liquid phase volume of 146 ft3 and

working pressure of 625 PSI. In contrast, the three-phase separator operates at water

phase volume of 77.5 ft3, oil phase volume of 46.5 ft3, and working pressure of 200

PSI. The working temperatures of the two separation processes are 100 oF. The

facility processes hydrocarbon streams of 25.23 moles/s from oil wells under pressure

of 1900 PSI. The incoming stream has mole fractions of 22.61% gas, 7.79% oil, and

69.6% water. In order to demonstrate the dynamic behavior of the separators, the

oil content of the incoming stream has been increased linearly by 2 moles/s between

the time instants t1 = 150 s and t2 = 250 s of the simulation time. Figure A.7

portrays this change in the incoming stream flow and in its molar composition; the

oil mole fraction increased while the water and gas mole fractions decreased.

The ramp increase in the oil component of the incoming stream caused the liquid

volume and gas pressure in the two-phase separator to peak to 167 ft3 and 630

PSI respectively, as shown in figure A.8. The two PI control loops of the two-

phase separator intervened to correct such operating point errors by manipulating

the liquid and gas outflows. This operating point disturbance took approximately

300 s to be totally rejected by the separator control system. Figure A.8 also reveals

the difference between the dynamics of the two phases of the separator. The liquid

phase has slower dynamics than the gas phase dynamics, i.e., the pressure changes

faster than the liquid volume. It is interesting to notice that the liquid molar outflow

increased by 2 moles/s, which is the same applied change in the incoming stream.

This reflects on the quality of the liquid produced in terms of its specific gravity,

which increased from 31.7 oAPI to 35.3 oAPI. The quality change can be verified

by plotting the molar composition of the liquids produced, as shown in figure A.9.

The oil mole fraction of the produced liquid increased, while the mole fractions of

dissolved gas and water decreased.

182

0 100 200 300 400 500 600
25

25.5

26

26.5

27

27.5

Time (s)

F
in

 (
m

o
le

/s
)

Liquid inflow

0 100 200 300 400 500 600
0.205

0.21

0.215

0.22

0.225

0.23

Time (s)

Z
g

Incoming fluid gas mole fraction

0 100 200 300 400 500 600
0.06

0.08

0.1

0.12

0.14

0.16

Time (s)

Z
o

Incoming fluid oil mole fraction

0 100 200 300 400 500 600
0.64

0.65

0.66

0.67

0.68

0.69

0.7

Time (s)

Z
w

Incoming fluid water mole fraction

Figure A.7: Incoming hydrocarbon fluid and its molar composition

183

0 100 200 300 400 500 600
140

145

150

155

160

165

170

Time (s)

V−
liq

 (f
t3)

Liquid volume & its setpoint

0 100 200 300 400 500 600
20

20.5

21

21.5

22

22.5

23

Time (s)

Fo
ut

−l
iq

 (m
ol

e/
s)

Liquid outflow

0 100 200 300 400 500 600
620

622

624

626

628

630

632

Time (s)

P−
va

p
(P

SI
)

Gas pressure & its setpoint

0 100 200 300 400 500 600
4.95

5

5.05

5.1

Time (s)

Fo
ut

−v
ap

 (m
ol

e/
s)

Gas outflow

0 100 200 300 400 500 600
31

32

33

34

35

36

Time (s)

SG
 (o AP

I)

Liquid API gravity

Figure A.8: Two-phase separator process variables change during the incoming
stream upset

184

0 100 200 300 400 500 600
0.031

0.032

0.033

0.034

0.035

0.036

Time (s)

Xm
−v

ap

Gas mole fraction

0 100 200 300 400 500 600
0.08

0.1

0.12

0.14

0.16

0.18

Time (s)

Xm
−o

il

Oil mole fraction

0 100 200 300 400 500 600
0.78

0.8

0.82

0.84

0.86

0.88

Time (s)

Xm
−w

at

Water mole fraction

Figure A.9: Two-phase separator liquid discharge molar composition

185

Although the incoming stream upset was rejected and corrected in the two-phase

separator, the resulting change in the quantity and quality of the produced liquid

transmitted the upset to the three-phase separator and other downstream processes.

As portrayed in figure A.10, the upsets in the separator process variables did not

have much impact, as the three PI control loops corrected such an upset. Given

the difference between the three phases’ dynamics (i.e., the fast gas phase dynamics

compared to the two liquid phases), the upsets are rejected in approximately 300

seconds. However, two main events should be noticed; the first event is the slight

increase in the water discharge molar flow. This can be attributed to inefficiency

in the gravity separation hydrodynamics, which implies that some oil could not be

separated and was discharged with water. We can verify this event by plotting the

volumetric composition of the dumped water (“1st phase”), as shown by the top

plots in figure A.11. The dumped water volumetric composition reveals that some

amounts of unseparated oil has been lost.

Although the volume loss of oil is slight (around 1.6%), it represents a major

economic loss of approximately $ 50 million per year at current prices. On the other

hand, the separator did compensate for the incoming fluid upset by increasing the

produced oil outflow, as illustrated in figure A.10. The second interesting event is

the decrease in the flashed gas amounts (i.e., gas outflow) due to the quality change

in the incoming fluid stream. This can be verified by plotting the molar composition

of the produced oil, as shown in the bottom plots of figure A.11. While the oil mole

fraction in the produced oil increased, the dissolved gas mole fraction decreased. This

simulation study demonstrated the sophistication of the three-phase separator model,

in spite of its simplicity. Not only did the model address the quantity dynamics of

separator process variables, but the quality of the produced oil and water also.

186

0 200 400 600
76

76.5

77

77.5

78

78.5

79

Time (s)

V
−

w
at

 (
ft

3)

Water volume & its setpoint

0 200 400 600
17.6

17.7

17.8

17.9

18

18.1

18.2

18.3

Time (s)

F
ou

t−
w

at
 (

m
ol

e/
s)

Water outflow

0 200 400 600
46

46.5

47

47.5

48

48.5

49

Time (s)

V
−

oi
l (

ft
3)

Oil volume & its setpoint

0 200 400 600
1.5

2

2.5

3

3.5

4

Time (s)

F
ou

t−
oi

l (
m

ol
e/

s)

Oil outflow

0 200 400 600
199.2

199.4

199.6

199.8

200

200.2

200.4

Time (s)

P
−

va
p

(P
S

I)

Gas pressure & its setpoint

0 200 400 600
0.66

0.67

0.68

0.69

0.7

0.71

Time (s)

F
ou

t−
va

p
(m

ol
e/

s)
Gas outflow

Figure A.10: Three-phase separator process variables change during the incoming
stream upset

187

0 100 200 300 400 500 600
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

Time (s)

X
v−

w
at

Water volume fraction in 1st phase

0 100 200 300 400 500 600
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Time (s)

X
v−

hy
d

Hydrocarbon volume fraction in 1st phase

0 100 200 300 400 500 600
0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

Time (s)

X
m

−
va

p

Gas mole fraction 2nd phase

0 100 200 300 400 500 600
0.985

0.986

0.987

0.988

0.989

0.99

0.991

0.992

0.993

0.994

Time (s)

X
m

−
oi

l

Oil mole fraction in 2nd phase

Figure A.11: Three-phase separator produced water and oil compositions

188

A.6 Conclusions

A dynamic mathematical model was developed for an oil production facility. The

focus of this study was on the three-phase separator, where each phase’s dynamics

were modeled. The hydrodynamics of liquid-liquid separation were modeled based

on the API design criteria, which were extended to address the process dynamics

in addition to its statics. The oil and gas phases’ dynamic behaviors were modeled

assuming vapor-liquid phase thermodynamic equilibrium at the oil surface.

An oil production facility simulation was designed based on such a model, in

order to test and validate the developed mathematical model. The simulation model

consisted of a two-phase separator followed by a three-phase model. The separation

processes were controlled by PI control loops to maintain the operating point at its

nominal value. An upset in the oil component of the incoming oil-well stream was

introduced to analyze its effect of the different process variables and produced oil

quality. The simulation results proved the sophistication of the model in spite of its

simplicity. Furthermore, this study demonstrated the challenging task of modeling

and controlling oil and gas production facilities, and that more work has to be done

to develop higher fidelity models.

189

Vita

Candidate’s full name: Atalla F. Sayda
University attended:

University of New Brunswick M.Sc.EE. 2002
University of Damascus B.Sc.EE. 1996

Publications:

1. J. H. Taylor and A. F. Sayda, “Prototype design of a multi-agent system for
integrated control and asset management of petroleum production facilities”,
submitted to the American Control Conference (ACC), Seattle, Washington,
USA, 11-13 July 2008.

2. A. F. Sayda and J. H. Taylor, “Toward a practical multi agent system for
integrated control and asset management of petroleum production facilities”,
accepted for the IEEE International Symposium on Intelligent Control, Singa-
pore, 1-3 October 2007.

3. A. F. Sayda and J. H. Taylor , “Modeling and control of three-phase gravity
separators in oil production facilities”, Proc. American Control Conference
(ACC), New York, NY, United States, 11-13 July 2007.

4. A. F. Sayda and J. H. Taylor, “An intelligent multi agent system for inte-
grated control and asset management of petroleum production facilities”, Proc.
of the Flexible Automation and Intelligent Manufacturing (FAIM), Philadel-
phia, 18-20 June 2007.

5. A. F. Sayda, “Approach to criticality on initial core startup of CANDU
reactors”, Proc. 28th Annual Conference of the Canadian Nuclear Society,
Saint John, New Brunswick, Canada, 3-6 June 2007.

6. A. F. Sayda and J. H. Taylor, “An implementation plan for integrated control
and asset management of petroleum production facilities”, Proc. IEEE Inter-
national Symposium on Intelligent Control, Munich, Germany, 4-6 October
2006.

7. A. F. Sayda, “Model identification and robust h-infinity controller design of
a motor-synchronous generator group”, Proc. IEEE International Conference
on Control Applications, Munich, Germany, 4-6 October 2006.

8. A. F. Sayda, “Modeling and control of three-phase gravity separators in
oil production facilities”, Rocky Mountain/Mid-Continent/Eastern Region Stu-
dent Paper/Presentation Contest, Society of Petroleum Engineers (SPE), Uni-
versity of Alberta, Edmonton, Alberta, 30 April - 1 May 2006.

9. J. H. Taylor and A. F. Sayda, “Intelligent information, monitoring, and con-
trol technology for industrial process applications”, Proc. FAIM 2005 (Flexible
Automation and Intelligent Manufacturing), Bilbao, Spain, July 18-20, 2005.

10. J. H. Taylor and A. F. Sayda, “An intelligent architecture for integrated con-
trol and asset management for industrial processes”, Proc. IEEE International
Symposium on Intelligent Control, Limassol, Cyprus, 27-29 June 2005.

11. A. F. Sayda and J. H. Taylor, “Model predictive control of a mechanical
pulp bleaching process”, 4th IFAC Workshop on Time Delay Systems (TDS),
INRIA, Rocquencourt, France, September 8-10, 2003.

Conference Presentations:

1. A. F. Sayda and J. H. Taylor, “Toward a practical multi agent system for
integrated control and asset management of petroleum production facilities”,
IEEE International Symposium on Intelligent Control, Singapore, 1-3 October
2007.

2. A. F. Sayda and J. H. Taylor , “Modeling and control of three-phase gravity
separators in oil production facilities”, American Control Conference (ACC),
New York, NY, United States, 11-13 July 2007.

3. A. F. Sayda, “Approach to criticality on initial core startup of CANDU re-
actors”, 28th Annual Conference of the Canadian Nuclear Society, Saint John,
New Brunswick, Canada, 3-6 June 2007.

4. A. F. Sayda and J. H. Taylor, “An implementation plan for integrated control
and asset management of petroleum production facilities”, IEEE International
Symposium on Intelligent Control, Munich, Germany, 4-6 October 2006.

5. A. F. Sayda, “Model identification and robust h-infinity controller design
of a motor-synchronous generator group”, IEEE International Conference on
Control Applications, Munich, Germany, 4-6 October 2006.

6. A. F. Sayda, “Modeling and control of three-phase gravity separators in
oil production facilities”, Rocky Mountain/Mid-Continent/Eastern Region Stu-
dent Paper/Presentation Contest, Society of Petroleum Engineers (SPE), Uni-
versity of Alberta, Edmonton, Alberta, 30 April - 1 May 2006.

7. J. H. Taylor and A. F. Sayda, “An intelligent architecture for integrated
control and asset management for industrial processes”, IEEE International
Symposium on Intelligent Control, Limassol, Cyprus, 27-29 June 2005.

8. A. F. Sayda and J. H. Taylor, “Model predictive control of a mechanical
pulp bleaching process”, 4th IFAC Workshop on Time Delay Systems (TDS),
INRIA, Rocquencourt, France, September 8-10, 2003.

