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Abstract

The mechanical pulp bleaching process at Irving Paper is mostly manually con-

trolled, which degrades the quality of the produced paper due to the variations in

the pulp brightness. The objective of this research was to study the possibility of

controlling the pulp bleaching process at Irving Paper mill. This would improve

the pulp quality by minimizing the final pulp brightness variability, and achieve

some economical benefits by minimizing the consumption of the bleaching chemi-

cals. The bleaching process was thoroughly studied and modelled in this research.

A delay time estimator was designed to tackle the problem of the long variable

delay time, which is considered the biggest challenge in this process.

The model predictive control (MPC) strategy is chosen to control the bleaching

process taking into account the constraints, which are imposed by the operating

conditions of the process itself. In order for the MPC controller to handle such

constraints , a state of the art of optimization method, i. e. an interior point

method was incorporated in the controller. The designed MPC controller formed

a basis for an industrial control prototype. The control technology was designed

and implemented in the real-world bleaching process at Irving Paper mill, in order

to test and demonstrate the performance of the MPC controller in real time. This,

in turn, demonstrated the closed loop behaviour of the bleaching process itself in

real time.
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Chapter 1

The Technology of Mechanical
Pulp Bleaching
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1.1 Introduction

Pulp brightness is measured as reflectance in the blue portion of the visible spec-

trum. Complete reflectance provides a white color. Absorption of any part of the

visible spectrum by a material will result in the perception of color by the eye. Pulp

brightness is measured against a magnesium oxide (MgO) standard on a scale of

0-100, which defines the ISO standard. Bleached kraft for example has brightness

values ranging from 86 − 94 %ISO, unbleached kraft (brown paper bags) has a

brightness of 20 − 30 %ISO, and newsprint is around 55 %ISO. Pulp darkness is

due to lignin and lignin degradation products, and the specific compounds which

cause light absorption (and therefore a colored pulp) are termed chromophores.

There are two basic methods for improving brightness. One can retain the

lignin and remove only the chromophores. This is termed pulp brightening. This

is not a permanent brightness improvement, as UV light and oxygen will create

more chromophores and cause yellowing (reversion). Classical bleaching processes

are essentially a delignification reaction in which lignin is removed from the pulp.

This results in a permanent brightness improvement. Bleaching is typically done in

several stages. Bleaching chemically reduces the concentration of light absorbing

constituents so that paper reflects more light. Improved reflectance is both the

purpose of the bleaching process and the means of monitoring its progress.

Lignin is generally singled out as the constituent having the greatest direct

influence on the colour of wood. The objective in the bleaching of mechanical

pulps is to selectively remove the colour-contributing groups while simultaneously

preserving a high pulp yield. This involves mainly the use of bleaching agents such

as hydrogen peroxide and the sodium hydrosulfite. Hydrogen peroxide is the most

widely used oxidative bleaching agent in mechanical pulp bleaching, particularly

where high brightness is desired.

1.2 General description of peroxide bleaching processes

The bleaching of mechanical pulp with hydrogen peroxide is usually carried out

by pretreating the pulp with pentasodium diethylenetriaminepentaacetic DTPA

solution (an alkaline solution) to remove transitional metal ions in pulp, then the

pulp is mixed with an alkaline peroxide bleaching solution (bleach liquor). The

2



mixture of pulp and liquor is then held in a bleaching tower for several hours at

temperatures that range from 140◦ to 180◦F. After exiting the tower, the pulp

pH is lowered to prevent alkaline reversion and decompose the residual peroxide.

Then the pulp is sent to the paper machine or to dryers when produced as a market

pulp [1]. The typical peroxide bleach plant is the single-stage medium-consistency

bleach plant as shown in figure 1.1.

Figure 1.1: Flowsheet for single-stage peroxide bleach plant [1].

1.3 Factors affecting brightness response in peroxide bleaching

The raw material in mechanical pulping is wood. At present mechanical pulps

are made from a large variety of both soft woods and hard woods, all of which

have different responses in peroxide bleaching. Several factors have a significant

impact on the bleachability of the pulp, and in turn determine the desired target

brightness of the pulp.

1.3.1 Effect of initial brightness of wood and unbleached pulp

The initial brightness and potential brightness response of any pulp is highly de-

pendent on the wood species from which it is made. The wide range of brightness

values found after thermomechanical pulping (TMP) of a variety of softwoods is

shown by the data in figure 1.1. Generally a higher initial brightness implies a

higher bleached brightness when equivalent amounts of bleaching chemical are ap-

plied.
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Wood Species Unbleached TMP

Brightness, %ISO

Black spruce 59.4
Jack pine 59.5
Eastern larsh 41.6
Balsam fir 54.5
Lodgepole pine 56.7
Eastern hemlock 45.2
White pine 57.3
Red pine 61.1

Table 1.1: Unbleached brightness of softwood TMP [1].

1.3.2 Effect of the pulping process on initial brightness

Mechanical pulping refers to a wide variety of processes, but the major mechan-

ical pulping processes employ grinders and refiners to separate the wood fibres.

Ground wood pulping processes employ pulp stones at atmospheric temperatures

and pressures whereas the refiner pulping typically consists of two or more disc

refining stages. Thermomechnical pulping differs from refiner mechanical pulping

in that the chips are preheated to a temperature of 120◦– 133◦C., and refined un-

der pressure in the primary refiner. In general, the higher the temperature of the

pulping process the lower the relative bleachability of the mechanical pulps made

from the same wood species, as shown in figure 1.2.

Figure 1.2: Effect of pulping processes on initial pulp brightness, Stone GroundWood (SGW),
Pressurized GroundWood (PGW), and ThermoMechanical Pulping (TMP) [1].
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1.3.3 Effect of metal impurities

Metals, particularly transition metals, act as catalytic decomposition agents when

in contact with hydrogen peroxide. The most common metals routinely encoun-

tered in the peroxide bleaching of mechanical pulps are manganese, iron, copper,

and nickel. Of these, the most active decomposition element is manganese. The

first step in successful hydrogen peroxide bleaching is to minimize the occurrence

of catalytic decomposition. Two approaches are used to achieve this goal [1]:

1.3.3.1 Pretreatment of mechanical pulp with organic chelants

The purpose of pretreating mechanical pulps is to complex and wash out most of

the transition metals present in the pulp before applying the bleach liquor. The

pre-treatment is usually carried out at a pH of 4.0 − 6.0, using an organic chelant

which forms an organo-metallic complex with the free metal. Then the pulp is

thickened to medium consistency where the chelated metals are washed from the

pulp. The bleach response curve in figure 1.3 shows the effect of adding a common

chelant agent, namely DTPA, to the pulp.

Figure 1.3: Effect of DTPA addition on pulp brightness response [1].

1.3.3.2 Stabilization of peroxide bleach liquor with sodium silicate

Sodium silicate is a cost-effective stabilizer for alkaline peroxide bleaching and

produces two strong benefits. It significantly reduces peroxide decomposition oc-
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curring during bleaching, and it improves the internal stability of the bleach liquor

solution itself. The addition of silicate to the bleach liquor leads to a higher bright-

ness for the same peroxide application as shown in figure 1.4.

Figure 1.4: Impact of sodium silicate addition on brightness gain [1].

1.4 Process variables

1.4.1 Peroxide charge

Brightness response in the peroxide bleaching of mechanical is directly related to

peroxide application. Increased peroxide dosage leads to increased brightness as

shown in figure 1.5. However, for a given set of bleaching conditions and furnish,

there is a threshold beyond which increased peroxide dosage has a minimal effect

on brightness.

1.4.2 Total alkalinity pH

The most important relationship for the proper control of alkaline peroxide me-

chanical pulp bleaching is that between peroxide and alkalinity. If the alkali charge

is too low, inefficient bleaching is likely to result; too high an alkali charge may

lead to pulp darkening or yellowing.
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Figure 1.5: Effect of hydrogen peroxide application on pulp brightness [1].

In a peroxide bleaching system, the initial pH of the pulp slurry determines the

nature of the bleaching chemical reaction. If the initial pH is too high, the rate

of peroxide decomposition may exceed the rate of the bleaching reaction, thereby

reducing the brightness response. If the initial pH is too low, the lower perhydroxyl

anion concentration impedes the brightness development.

Total alkalinity is the sum of all sources of alkali in the bleach liquor, mainly

sodium hydroxide and sodium silicate. The total alkali application can be expressed

by:

%Total alkali = %NaOH + 0.115 × %Na2SIO3 (1.1)

A useful way of expressing the relationship between peroxide and total alkalinity

(TA) is the TA
[H2O2]

ratio. The optimum TA
[H2O2]

ratio decreases as the hydrogen

peroxide dosage increases, as shown in figure 1.6. This is partially explained by

the alkali demand from the wood acids present in the pulp. Because the alkali

demand is constant, it is more significant at low peroxide applications than at high

peroxide applications.

1.4.3 Consistency

Pulp consistency is defined as the ratio of the mass of fibrous material in a slurry to

the total mass of the wet slurry on a bonedry basis. The consistency of pulp slurries

is important to the papermaker since its control directly affects the uniformity of

the paper produced [5]. Hydrogen peroxide bleaching can be carried out over a wide
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Figure 1.6: Influence of TA

[H2O2] ratio on pulp brightness [1].

consistency range, from as low as 4% to as high as 35%. Figure 1.7 illustrates the

effect of consistency on bleaching response. It is clear that at low consistency, not

only does the pulp require more peroxide to achieve the same brightness, but there

is a definite ceiling for the brightness response which can not be exceeded by further

peroxide addition. The slope of the response curves for the higher consistency pulps

indicates that further brightness gains can be achieved. A continuous increase in

bleaching response occurs as consistency is increased up to 40% level.

Figure 1.7: Effect of consistency on pulp brightness [1].
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1.4.4 Time and temperature

Time and temperature are the most closely related variables affecting the bright-

ness response of mechanical pulp. An increase in bleaching temperature can com-

pensate for a reduction in the retention time up to a point. When TMP is bleached

at different temperatures under optimized total alkalinity, two effects are apparent,

as illustrated in figure 1.8.

1. At higher temperatures, brightness development is rapid, reaching a maximum

in 30 minutes or less.

2. Although brightness development is more rapid at higher temperatures, final

brightness is less than that achieved with the same chemical charge at lower

temperature.

Figure 1.8: The effect of temperature on the rate of brightness development [1].

The rapid decrease in brightness observed for the high temperature (85◦C and

above) bleach is a result of the peroxide being totally consumed. This occurs

because, at high temperatures, the reaction rates of both the bleaching and the

decomposition reactions are increased. The retention required for full brightness

development may be on the order of two or more hours at 60◦ − 70◦C. A detailed

discussion of all the parameters which affect the mechanical pulp bleaching process,

has been presented in this chapter. So that any process control engineer who is

interested in controlling the bleaching process, will have a clear and detailed picture

of the bleaching process in terms of its process variables.
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Chapter 2

The Identification of Mechanical
Pulp Bleaching Dynamics
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2.1 Introduction

Peroxide bleaching is today mostly manually controlled. The charges of bleaching

chemical are regulated principally by taking into consideration the production of

pulp and the desired final brightness. When a change in brightness occurs as a con-

sequence of disturbance such an altered pulp consistency and/or quality of wood,

there is a considerable passage of time before detection and before a correction can

be made. This can result in a waste of bleaching chemicals and uncontrolled final

brightness of the bleached pulp.

To achieve automatic control and optimization of the bleaching process, it is

advantagous to transform the elimination of chromophores and all other affecting

factors into a mathematical model. Basically there are two ways of constructing

the mathematical model of the process [6]:

• Mathematical modelling

• System identification

2.2 Mathematical modelling of the bleaching process

This approach uses the physical and chemical laws that dictate the mechanical

pulp bleaching process to describe its dynamic behaviour. Basically these laws can

be divided into two categories. The first category mainly involves the chemical

kinetics of the bleaching reaction itself, the other handles the dynamics of the pulp

transport and mixing in the continuous flow system, which mainly consists of the

bleaching tower, pipes, and storage tanks.

The bleaching reaction reduces the chromophores concentration, which are the

main color-contributing elements in the pulp. The kinetic model of the bleaching

reaction can be represented by the Moldenius’ empirical model [7],

−
dCk

dt
= Kr[H2O2]

0.67[OH−]
0.23

Ck
2.2 (2.1)

where Ck is the chromophores concentration, Kr is the reaction constant, [H2O2]

is the peroxide concentration, and [OH−] is the alkaline ion concentration.

Kinetic analysis has shown that peroxide bleaching has little effect on the light

scattering coefficient of the pulp, S. In fact, the peroxide bleaching reaction only
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affects the light absorption coefficient of the pulp, K, which is directly proportional

to the chromophores concentration [7],

K = αCk (2.2)

where α is a constant. The Kulbelka-Munk equation defines the relationship be-

tween the pulp brightness B and its light coefficients K and S [3].

B

100
= 1 +

K

S
−

√

2(
K

S
) + (

K

S
)
2

(2.3)

The bleaching tower is the main contributing element in the continuous flow

system of the bleaching process. In order to model the dynamics of the bleaching

tower, it is necessary to know the flow pattern of the pulp stock inside the tower.

The flow pattern not only determines the residence time distribution of the reacting

materials, but also controls the effectiveness of the bleaching process itself.

The pulp stock is virtually in a state of plug flow inside the tower. The bleaching

tower can therefore be represented by a continuous stirred tank reactor CSTR

followed by a plug flow reactor PFR. Consequently the mathematical model of the

tower assuming that the volume of the pulp inside the tower is constant, is given

by [8]:

˙Cko(t − Td(t)) = −
Q(t)

VCSTR
Cko(t − Td(t)) +

Q(t)

VCSTR
Cki(t) (2.4)

where Cki, Cko are the chromophores concentrations at the tower inlet and outlet

respectively, Q(t) is the pulp flow, VCSTR is the volume of the mixing part of the

tower, and Td is the delay time resulted from the pulp travel inside the plug flow

part of the tower.

Simulation studies [9] on the mathematical model given by equations 2.1, 2.2,

2.3, and 2.4, have shown that the bleaching process can be modelled by first order

nonlinear dynamics plus a delay time. The peroxide dosage may be treated as the

model input, and incoming pulp brightness and consistancy can be considered as

measured disturbances.

2.3 System identification of the bleaching process

System identification is performed by exciting the process and observing its input

and output over a time interval. Then a parametric model of the process is fitted to

12



the recorded input and output sequence. This involves choosing a model structure

and a fitting criterion. Once the parameters are estimated, the model is validated to

see if it is an appropriate representation of the process. If not, then a more complex

model structure must be considered. The estimation of the model structure and

parameters is done iteratively in practice [6].

The prediction error method is one of the primary approaches for system iden-

tification. It minimizes the prediction error of the process model, and has the

advantage of being applicable for all model structures as illustrated in figure 2.1.

The fitting criterion VN(θ, ZN) can be expressed in terms of the model parame-

ters θ, the data set with N samples ZN , and any function of the prediction error

l(ε(t, θ)) as [10]:

VN(θ, ZN) =
1

N

N
∑

i=1

l(ε(t, θ)) θ̂N = arg min
θ

VN(θ, ZN) (2.5)

Figure 2.1: Block diagram of the prediction error method.

2.4 Practical aspects

Since the bleaching process is complex and time-varying, neither mathematical

modelling nor standard system identification methods can be applied alone. Be-

sides, if linear time-invariant models are used in the identification procedure, the

time variability of the flow system will result in inaccurate linear time-invariant

models with unacceptably high variance of the parameters estimated [11].
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It often happens that a model structure with a number of unknown parameters

can be derived from physical laws in most real-world processes such as the bleaching

process at Irving Paper mill. Identification methods can then be applied to estimate

the unknown parameters.

Data records form Irving Paper mill as well as the bleaching process flowsheet,

as indicated in figure 2.2, have shown that the bleaching process model can be

intepreted as three separate dynamics [12] [2]:

• A pure gain K represents the bleaching reaction kinetics, since the reaction

location is far from the brightness sensor.

• A long variable delay time Td results from the plug flow pattern of the bleach-

ing tower.

• A first order dynamics with a time constant τ due to the SO2 mixing process

at the bottom of the tower.

In order to estimate the parameters of the bleaching process at Irving Paper

mill, a two-stage procedure has to be applied. The variable delay time is estimated

in the first stage, and in the second one the other process parameters are estimated.
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Figure 2.2: Flowsheet of the Bleaching process at Irving Paper [2].
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2.4.1 Delay time estimation

The material tranport in a plug flow reactor can be modelled by a delay time. If

the flow rate is not constant, the delay time becomes time-varying, which causes

difficulty in the analysis and simulation of the process. The traditional theory

characterizes the flow of material in a chemical reactor by using concepts like

residence time distribution, step response, and intensity functions. A new idea,

the volumetric time scale, has been derived form these concepts to estimate the

delay time.

The volumetric time scale introduces a new transformation of the time scale,

which makes the process model time-invariant even though the flow rate is contiu-

ously varying. It has been used in the application of control engineering because

it allows the use of classical time-invariant design methods [11, 13, 14]. If the

volume of the material inside the reactor is variable, the volumetric time scale is

not applicable.

Zenger et al [15] introduced the concept of a variable delay function, which

can be used to estimate the delay time even though the volume is varying. The

definition of the delay function has been derived from the theoretical definition of

plug flow in a vessel. During the time that a hypothetical concentration pulse stays

in the vessel, the volume of material must pass through the vessel irrespective of

the flow changes. This can be stated mathematically as:

∫ t

t−Td(t)

Qout(τ)dτ = V (t − Td(t)) (2.6)

where t is the time at which the material exits the reactor, Qout is the outflow,

and Td is the transport delay. Alternatively, the delay function can be expressed

in terms of inflow Qin by substituting V̇ (t) = Qin(t) − Qout(t) in equation 2.6:

∫ t

t−Td(t)

Qin(τ)dτ = V (t) (2.7)

An algorithm for time delay estimation can be developed by using either equa-

tion 2.6 or 2.7 as follows:

1. Store the inflow measurements over a time interval which equals the maximum

retention time of the reactor, with sampling time h.
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2. Measure the volume at time t and set the counter k = t − h.

3. Intergrate the inflow backwards from k to t.

4. If the integration result equals the volume at time t then stop and Td(t) = t−k.

5. Else set k = k − h and goto step 3.

This algorithm can be used for both identification and control purposes.

2.4.2 Model parameter estimation

Once the delay time sequence has been estimated for a certain data set, a least

square fitting procedure is then applied to estimate the model parameters (i.e., gain

and time constant). The bleaching process at Irving Paper is manually controlled

by changing the peroxide dosage depending on both the incoming and the target

pulp brightnesses, whereas the other process variables are kept constant. The two-

stage identification procedure has been implemented on two real different data sets

in order to examine its reliability.

Simulation results have shown that the gain of the process is nonlinear and

dependent on the peroxide dosage. The time constant of the bleaching process is

in the vicinity of 50 minutes. This is unobservable, due to the long residence time

in the reactor. Figures 2.3 and 2.5 show the the estimated delay time from the

pulp inflow and volume for the two data sets. The delay time estimation algorithm

seems to have worked well, because the transient parts of both the estimated and

the real brightness reponses take place nearly at the same time for the two data sets

as illustrated in figures 2.4 and 2.6. The results are not entirely accurate, because

of the noisy data, ignorance of the incoming pulp brightness, and the existence of

disturbances.
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Figure 2.3: The estimated delay time, first data set.
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Figure 2.5: The estimated delay time, second data set.
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Figure 2.6: The estimated and real pulp brightness, second data set.
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2.5 The SO2 effect on the brightness response

Sulphur dioxide is added to the pulp at the end of the bleaching process to destroy

the peroxide residual and to reduce the pH of the pulp to around 4− 5. The SO2

mixing process is done at the bottom of the bleaching tower at Irving Paper mill.

Data records and simulation results have shown that SO2 has a significant effect

on the final brightness response [12, 2]. This effect can be summerized by two

observations as illustrated in figure 2.7, where the SO2 dosage plot has been scaled

by a factor of 8 to have the same scale as the brightness plot magnitude:

1. Secondary dynamics with a smaller time constant compared to the mixing

process time constant, dominate the brightness response as SO2 is added to

the pulp at t ∼= 1000 min.

2. Any disturbance in the SO2 dosage will result in an exact corresponding

disturbance in the brightness response, as happens at t ∼= 1700 min. This has

been verified by running the identification procedure on the bleaching process

with two inputs, where the second input was the SO2 dosage. The simulated

brightness closely matches the actual one.

The alkalinity level at the top of the bleaching tower where the bleaching re-

action takes place, is not controlled at all. This implies that any increase in the

alkalinity level, for any reason, would result in a higher brightness gain. On the

other hand, it also means that more SO2 has to be added to compensate for the

higher level of pulp PH, which in turn causes a disturbance in the final brightness

response. This explains the second effect of SO2 on pulp brightness response.
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Chapter 3

Controller Design
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3.1 Model predictive control

Model predictive control (MPC) originated in the late seventies and has developed

considerably since then. Several studies contributed to the developement of the

MPC stategy including model algorithmic control (MAC) of Richalet in 1978, dy-

namic matrix control (DMC) of Cutler and Ramaker in 1979 [16], and generalized

predictive control (GPC) of Clarke in 1987 [17].

The objectives behind the development of these strategies were very different.

DMC and similar strategies were conceived to tackle the multivariable constrained

problems typical for oil and chemical industries. However, the GPC strategy was

intended to offer a new adaptive control alternative. The traditional transfer func-

tion model was employed in GPC. While the DMC formulation was completely

deterministic, stochastic aspects played a key role in GPC [18]. One may refer to

many survey papers to get a better idea about the history of the MPC control

strategy such as Qin and Badgwell 1997 [19], and Morari and Lee 1999 [18].

The MPC strategy presents many strengths that make it more attractive than

the classical PID controller. Among the strengths which stand out:

• It can be used to control a great variety of processes, including systems with

long delay times, non minimum phase response, and instability.

• It intrinsincally has compensation for dead times.

• It introduces feed-forward control in a natural way to compensate for mea-

surable disturbances.

• Its extension to the treatment of constraints is conceptually simple.

• The multivariable case can easily be dealt with.

• It is very useful when future reference trajectories are known, in cases such

as robotics and batch processes.

There are many successful applications of the MPC strategy in use, not only in

the process industry but also in the other industries. Mechanical pulp bleaching

process is a very challenging application, which is going to be controlled by using

the MPC strategy in this thesis.
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3.2 Dynamic matrix control

MPC is an optimal control strategy that uses a plant model to predict the effect

of an input profile on the evolving state of the plant. At each sampling instant, an

optimal control problem is solved and its optimal plant input profile is implemented

until another measurement becomes available. The updated plant information is

used to formulate and solve a new optimal control problem, and the process is

repeated. This strategy yields a receding horizon control problem [20]. Dynamic

matrix control DMC is the particular MPC method which is going to be analyzed

and used to control the bleaching process due to its simplicity and efficiency.

3.2.1 Prediction

The process model employed in the DMC formulation is the step response of the

plant, while the disturbance is considered to keep constant along the horizon. The

procedure to obtain the prediction is as follows [20]: The discrete-time response

model of the plant is y(t) =
∑∞

i=1 gi∆u(t − i) where gi are the sampled output

values for the step input and ∆u(t) = u(t) − u(t − 1) is the input increment, so

the prediction values along the horizon will be:

ŷ(t + k|t) =
∞

∑

i=1

gi∆u(t + k − i) + n̂(t + k|t) (3.1)

=
k

∑

i=1

gi∆u(t + k − i) +
∞

∑

i=k+1

gi∆u(t + k − i) + n̂(t + k|t) (3.2)

Disturbances are considered to be constant n̂(t + k|t) = n̂(t|t) = ym(t) − ŷ(t|t),

where ym is the measured output. This leads to:

ŷ(t+k|t) =

k
∑

i=1

gi∆u(t+k−i)+

∞
∑

i=k+1

gi∆u(t+k−i)+ym(t)−

∞
∑

i=1

gi∆u(t−i) (3.3)

The prediction of the output sequence can be separated into two parts [20]. One

of them , the free response, corresponds to the evolution of the present state of the

process due to the past control moves. The other part, the forced response, is due

to the future control moves, as illustrated in figure 3.1.
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Figure 3.1: Forced and free response.

The prediction can then be expressed as:

ŷ(t + k|t) =

k
∑

i=1

gi∆u(t + k − i) + f(t + k|t) (3.4)

f(t + k|t) = ym −
∞

∑

i=1

(gk+i − gi)∆u(t − i) (3.5)

where f(t + k|t) is the free response. If the process is asymptotically stable, the

coefficients gi of the response model tend to be constant after NP sampling periods,

which implies that gi+k − gi ≈ 0 for i > NP . Therefore, the free response can be

approximated as:

f(t + k|t) = ym −

NP
∑

i=1

(gk+i − gi)∆u(t − i) (3.6)

Now the prediction can be computed along the prediction horizon NP , considering

NU control actions:

ŷ(t + 1|t) = g1∆u(t) + f(t + 1|t) (3.7a)

ŷ(t + 2|t) = g2∆u(t) + g1∆u(t + 1) + f(t + 2|t) (3.7b)
... (3.7c)

ŷ(t + NP |t) =

NP
∑

i=1

gi∆u(t + NP − i) + f(t + NP |t) (3.7d)

hence the prediction can be expressed in terms of the system’s dynamic matrix G,

27



the control increments vector U , and the free response vector F as:

Ŷ = GU + F (3.8)

where G is made up of NU columns of the system’s step response appropriately

shifted down in order.

G =



















g1

g2
...

gNU

...
gNP

0
g1
...

gNU−1
...

gNP−1

. . .

. . .

. . .

. . .

. . .

. . .

0
0
...
g1
...

gNP−NU−1



















3.2.2 Measurable disturbances

Measurable disturbances can easily be added to the prediction equations, since

they can be treated as inputs. Equation 3.8 can be used to calculate the predicted

disturbances,

Ŷd = Dd + Fd

where Ŷd is the contribution of the measurable disturbance to the system output,

D is a matrix containing the coefficients of the sysem response to a step in the

disturbance, d is the vector of disturbance increments, and Fd is the part of the

response that does not depend on the disturbance.

The complete free response of the system can be considered as the sum of two

effects: the response to the past input FU and to the measurable disturbance effect

F = FU + Dd + Fd. Therefore the prediction can be computed by the general

expression given previously by equation 3.8.

3.2.3 Objective function

The objective of a DMC controller is to drive the future output sequence Ŷ as close

to a specified future reference trajectory W = {w(t + 1), w(t + 2), · · · , w(t + Np)}

as possible in a least square sense, with the possibility of the inclusion of a penalty

term on the input moves. Specifically, the manipulated variables are selected to

minimize a quadratic objective based on the future errors and the control effort:

J =

NP
∑

j=1

[ŷ(t + j|t) − w(t + j)]2 +
Nu
∑

j=1

λ[∆u(t + j − 1)]2 (3.9)
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where λ is a positive constant that can be used to tune the DMC controller to

meet the required performance. The cost function can be expressed in terms of

the future error along the prediction horizon e = Ŷ − W and the future control

sequence U as J = eT e + λUT U .

3.2.4 Reference trajectory

The future evolution of the reference r(t + k) is known beforehand in many ap-

plications such as robotics, servos, or batch processes. The DMC method usually

uses a reference trajectory w(t + k), which does not necessarily have to coincide

with the real reference r(t + k). It is normally a smooth approximation from the

current value of the output y(t) towards the known reference r(t) by means of the

first order system,

w(t) = y(t), w(t + k) = αw(t + k − 1) + (1 − α)r(t) k = 1 . . .NP

where the parameter 0 ≤ α ≤ 1 constitutes an adjustable value that will influence

the system’s dynamic response. The closer the value of α to 1 the smoother the

approximation, as illustrated in figure 3.2.

Figure 3.2: Reference trajectory.

3.2.5 The unconstrained DMC case

In order to obtain the optimal input profile, it is necessary to minmize the cost

function 3.9. The number of variables in the optimization problem can be reduced
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significantly by introducing the control horizon concept, which considers that after

a certain interval NU < NP there is no variation in the proposed control signal.

∆u(t + j − 1) = 0 for j > NU

The future control increments can be obtained analytically for this case by

computing the derivative of the cost function 3.9 and making it equal to 0. This

leads to the optimal input profile:

U = (GT G + λI)−1GT (W − F ) (3.10)

3.2.6 The constrained DMC case

In real world applications, all processes are subject to constraints. Actuators have

a limited range of action and a limited slew rate. Safety reasons as well as sensor

range cause bounds in process variables. Furthermore, the operating points of a

plant are determined to satisfy economic goals and lie at the intersection of certain

constraints.

The constraints acting on a SISO process over a over a receding horizon NU ,

originate from amplitude limits in the control signal, slew rate of the actuator,

and limits on the output signal. They can be expressed in terms of the control

increments vector U as:

uminl ≤ TU + u(t − 1)l ≤ umaxl (3.11a)

duminl ≤ U ≤ dumaxl (3.11b)

yminl ≤ GU + F ≤ ymaxl (3.11c)

where l is an NU × 1 vector whose all elements are ones, and T is an NU × NU

lower triangular matrix whose non null entries are ones. The constraints can be

expressed in a condensed form as [20]:

RU ≤ C (3.12)

where

R =















INU×NU

−INU×NU

T
−T
G
−G















C =















dumaxl
−duminl

umaxl − u(t − 1)l
−uminl + u(t − 1)l

ymaxl − F
−yminl + F














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The cost function of the DMC strategy is quadratic and can be rewritten in terms

of the control increments by substituting equation 3.8 in equation 3.9 as:

J(U) =
1

2
UT HU + bT U + c (3.13)

where H = 2(GT G + λI) is the hessian of J(U), bT = 2(F − W )TG is a 1 × NU

vector, and c = (F − W )T (F − W ) is a constant.

It is easy to show that the DMC optimal control problem is a convex quadratic

programming problem since:

• The cost function is quadratic with a positive definite hessian, which results

in a convex cost function.

• The constraints are linear inequalities which comprise a convex set.

In order to solve the optimal control problem imposed by the constrained DMC

strategy, numerical optimization algorithms have to be implemented. They are

discussed in the next chapter.

3.3 The effect of penalizing the control moves

Structuring the control law in the DMC controller produces an improvement in

robustness and in the general behaviour of the system. This is done by introducing

the principle of a finite control horizon and adding a penalty term on the control

moves to the objective function. However, allowing the free evolution of the control

signal without being structured may lead to undesirable high frequency control

signals and, in the worst case, to instability [20].

A first order system controlled by the DMC strategy was simulated to study the

effect of penalizing the control moves on the system response. The simulation has

addressed both the unconstrained and the constrained cases and the control horizon

was chosen fairly large, NU = 20. Penalizing the control moves has a great impact

on the system performance, as the simulation has shown. The system became

unstable in the absence of the control penalty term in the objective function,

as illustrated in figure 3.3, which is clear from the large control signal in the

optimal input profile (top trace). However the system becomes stable and its
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performance is considerably improved in the presence of the control penalty term

for the unconstrained case (middle & bottom traces).
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Figure 3.3: The effect of structuring the control law for the unconstrained case.

The system performance seems to be better in the presence of constraints even

though the control moves are not penalized, as the simulations have shown. But

when a comparison between the system responses with and without structuring the

control law is made in the presence of input constraints U as illustrated in figure

3.4, the system has shown a better response when the control law was structured.

Simulations have shown that structuring the control law is a necessity regardless

of the presence of constraints.
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Figure 3.4: The effect of structuring the control law for the constrained case.

3.4 DMC strategy for variable delay-time systems

A plant with delay-free part G(s) and a series delay Td represented by G(s)e−sTd can

be controlled effectively by delay free methods if a series controller could cancel

the delay term. Predictive control methods are techniques in which a predictor

is included to cancel the delay term of the plant. Smith predictor and model

predictive control MPC are examples of such techniques.

In order for the DMC strategy to handle systems with constant delay time,

the prediction horizon NP should be extended to include the delay time Td. This

implies that the first Td rows of the dynamic matrix G should be zeros, to capture

the delay time. The DMC strategy can also handle variable delay time Td(t) if the

delay time is accurately estimated at each sampling instant, so that the dynamic

matrix G includes the right number of zero rows at its top at each sampling instant.
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A first order system with variable delay time controlled by the DMC strategy,

is simulated to study the effect of variable delay time on the system performance.

Two approaches were tested; in the first one the same variable delay time function

acting on the plant was applied to the DMC controller, and a constant delay time

was applied to the controller in the second approach. As illustrated in figure 3.5,

the system responded differently in the two cases when it was excited by a train

of unit pulses occuring at different levels of the variable delay time function (top

trace). The system showed a better performance (middle and bottom trace) for

the first approach (solid line) rather than the constant delay time approach (dash-

dotted line). Simulations have shown that variable delay time systems do require

that the same variable delay time acting on the plant should be applied to the

DMC controller.

The prediction in predictive control techniques depends on how well the plant

is modelled. The performance in such techniques is sensitive to the differences

between the actual parameters of the plant and its model. The effects of these

differences between a plant and its model are called mismatch problems. Temporal

mismatch is the difference between the actual delay and its nominal value, whereas

parametric mismatch denotes to the difference between the delay-free part of a

plant and its model. Several research studies have addressed the importance of

mismatch problems where a high performance predictive controller is required.

They have indicated that temporal mismatch poses the biggest challenge to both

performance and stability of variable delay time systems [21, 22, 23].
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Figure 3.5: Comparison between variable and constant delay time DMC controllers.
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Chapter 4

Optimization Algorithms For
Convex Quadratic Programming
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4.1 Introduction

It has been shown in the previous chapter that the optimal control problem imposed

by the DMC controller of the bleaching process is a convex quadratic programming

(QP ) problem. The QP problem represents a special class of nonlinear program-

ming, in which the objective function is quadratic and the constraints are linear.

There are several classes of algorithms for solving the QP problem.

One class is comprised of the penalty and the barrier function methods such

as the augumented lagrangian method. In this class the constrained problem is

transformed to a single unconstrained problem or a sequence of unconstrained

ones. Another class includes the feasible directions approaches, such as the active

set method and the gradient projection method. The active set strategy is a

combinatorial approach to iteratively determine the set of binding constraints of

optimality. This is done by solving a sequence of constrained equality QP problems.

The gradient projection method attempts to accelerate the solution process by

allowing rapid changes in the active set. It is efficient when the only constraints

in the problem are bounds on the variables [24, 25].

One of the popular schemes for solving a quadratic program is to solve the

Karush-Kuhn-Tucker KKT system. The class that follows this scheme includes

the complimentary pivoting methods such as Lemke’s method, and the interior

point methods which are effective for solving large scale convex QP problems

[24, 26]. Only the two most popular methods for solving convex QP problems are

discussed in this chapter.

4.2 Convex quadratic programming

The convex optimization problem is called a convex quadratic program if the objec-

tive function is quadratic with a positive semi definite hessian, and the constraints

are linear. A general quadratic program can be expresses in its primal form as:

min
x

1
2
xT Qx + cT x (4.1a)

subject to aT
i x ≤ bi i ∈ I (4.1b)

aT
i x = bi i ∈ E (4.1c)
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where Q = QT ≥ 0 is a symetric positive semi definite matrix, and the index sets

I, E specify the inequality and equality constraints respectively. Figure 4.1 illus-

trates the minimization of a convex quadratic function over an inequality constraint

set that defines a polyhydron.

Figure 4.1: Illustration of convex quadratic programming.

The dual of the general QP can be expressed as:

max
x

−1
2
xT Qx −

∑

i∈I λibi −
∑

i∈E λibi (4.2a)

subject to Qx + c +
∑

i∈I

aT
i λi +

∑

i∈E

aT
i λi = 0 (4.2b)

λi ≥ 0 for i ∈ I (4.2c)

where λi is the lagrange multiplier for the equality and inequality constraints.

Since the QP problem is convex, the KKT conditions become the necessary and

sufficient conditions for optimality. The KKT conditions can be expressed as:

Qx + c +
∑

i∈I

aT
i λi +

∑

i∈E

aT
i λi = 0 (4.3a)

aT
i xi − bi + si = 0 i ∈ I (4.3b)

aT
i xi − bi = 0 i ∈ E (4.3c)

λisi = 0 i ∈ I (4.3d)

(λi, si) > 0 i ∈ I (4.3e)

38



where si, i ∈ I, is a slack variable for the ith inequality constraint.

4.3 Active set method for convex QP

Active set methods usually start by computing a feasible initial iterate x0, and

then ensure that all subsequent iterates remain feasible. They find a step from one

iterate to the next by solving an equality constrained QP subproblem. First the

working set Wkis defined, consisting of all the equality constraints together with

the active inequality constraints, all other constraints are temporarily disregarded

[26]. Then given an iterate xk and the working set Wk, if xk does not minimize the

cost function in the QP subproblem defined by the working set, then a direction Pk

is computed by solving the QP subproblem. The QP subproblem can be expressed

in terms of the direction Pk and the gradient of the cost function ∇k = Qxk + c as:

min
Pk

1
2
P T

k QPk + ∇T
k Pk (4.4a)

subject to aT
i Pk = 0 for all i ∈ Wk (4.4b)

Since the hessian Q is positive semi definite, methods such as the range space and

the null space techniques can be used for solving the QP subproblem. In order to

decide how far to move along the direction Pk, a step length parameter is chosen

to be the largest value in the range [0, 1] for which all the constraints are satisfied.

The step length αk is given by the following definition:

αk
def
= min(1, min

i/∈Wk

aT

i
Pk<0

bi − aT
i xk

aT
i Pk

) (4.5)

The constraints i for which the minimum in equation 4.5 is achieved, are called

the blocking constraints. If αk < 1, that is the step along Pk was blocked by some

constraints not in Wk, a new working set Wk+1, is constructed by adding one of

the constraints to Wk. The signs of the lagrange multipliers λ̂i corresponding to

the inequality constraints in the working set are examined. If the multipliers are

all non negative then xk is the optimal solution of the original problem. However

if any of the multipliers are negative, then the most negative one is removed from

the working set and a new QP subproblem is solved. The lagrange mutipliers can
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be estimated from the following expression:

∑

j∈Wk

aiλ̂i = gk = Qxk + c (4.6)

Having given a complete discription of the active set algorithm for convex QP ,

the algorithm can be summarized as follows:

1. Compute a feasible initial point x0

2. Set W0, the subset of the active constraints at x0

3. For i = 0, 1, 2, · · · , M (M = maximum number of iterations)

(a) Solve the QP subproblem in 4.4a to find the direction Pk

(b) If Pk = 0

i. Compute the lagrange multipliers λ̂i from equation 4.6

ii. If λ̂i ≥ 0 for all i ∈ Wk ∩ I, then stop with solution x? = xk

iii. Else

A. Set j = arg min
j∈Wk∩I

λ̂j

B. Set xk+1 = xk

C. Set Wk+1 = Wk\{j}

(c) Else (Pk 6= 0)

i. Compute The step length αk from equation 4.5

ii. Set xk+1 = xk + αkPk

iii. If αk < 1 (there are blocking constraints), then obtain Wk+1 by adding

one of the blocking constraints to Wk

iv. Else set Wk+1 = Wk

(d) If i = M stop with semioptimal solution

4. End (for)

4.4 Interior point methods

Since the presentation of the new polynomial-time algorithm by Karmarker in his

landmark paper in 1984, the new field of interior point methods has witnessed

40



rapid development and expansion. On the theoretical side, subsequent research

led to improved computational complexity bounds for LP , convex QP , and other

classes of convex programming. On the computational side, high quality software

was eventually produced.

Interior point methods can be divided to primal and primal-dual methods. They

differ from each other in that the primal-dual framework treats the dual variables

explicitly in the problem, rather than as adjuncts to the calculation of the primal

iterates as in the primal approach. The primal-dual framework has always been

popular because it yielded new algorithms with interesting theoretical properties,

formed the basis of the best practical algorithms, and allowed the transparent

extentions to convex QP and the linear complementary problem (LCP). Potra and

Wright [27] reviewed the history of the development of interior point methods and

gave a good survey in their paper.

Primal-dual interior point methods for LP and convex QP can be classified as

[28, 29]:

• Potential reduction algorithms

• Path following methods, such as the short step path following algorithm and

the predictor-corrector algorithm

• Affine scaling algorithms

• Infeasible interior point algorithms

The various algorithms that use the primal-dual framework differ in the way

that they choose the starting point, the centering parameter, the step length, and

also in their computational complexity. In 1989 Mehrotra described a practical

algorithm which is considered the most efficient algorithm for LP and convex QP ;

his work appeared in 1992 [30].

Mehrotra’s predictor-corrector algorithm builds on the theory of all primal-

dual interior point algorithms together with other ideas from optimization and

numerical analysis. It also incorporates a number of heuristics that have been

developed during ten years of computational experience. Another key ingredient

is the infeasible initial point [29]. Mehrotra’s algorithm can be extended to convex

QP problems. This has made it attractive to many applications such as optimal
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control and model predictive control [31, 32, 33]. Mehrotra’s algorithm has been

chosen to solve the optimal control problem inherent in the DMC controller of the

bleaching process.

4.5 Mehrotra predictor corrector algorithm for convex QP

The optimal control problem involved in the DMC controller for the bleaching

process is a convex QP problem with only inequality constraints. The primal

problem can then be expressed as:

min
x

f(x) = 1
2
xT Qx + cT x (4.7a)

subject to Ax ≤ b (4.7b)

where Q ∈ Rn×n is positive semi-definite matrix, A ∈ Rm×n, b ∈ Rm, and c ∈ Rn.

The strong lagrangian dual (QD) problem can be expressed in terms of the

lagrange multiplier λ as:

max
x

d(x, λ) = −1
2
xT Qx − bT λ (4.8a)

subject to Qx + c + AT λ = 0 (4.8b)

λ ≥ 0 (4.8c)

Given a slack variable for the inequality constraints, s = Ax−b, the Karush-Kuhn-

Tucker (KKT ) conditions for QP can be written as:

Qx + c + AT λ = 0 (4.9a)

Ax + s − b = 0 (4.9b)

siλi = 0, i = 1, 2, . . . , m (4.9c)

(λ, s) ≥ 0 (4.9d)

The KKT conditions can be written in terms of the primal-dual feasible set F as

follows:

F = {(x, λ, s)|F (x, λ, s) = 0, (λ, s) ≥ 0} (4.10a)

where F (x, λ, s) =









Qx + c + AT λ
Ax + s − b

ΛSe









(4.10b)
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where

Λ = diag(λ1, λ2, · · · , λm)

S = diag(s1, s2, · · · , sm), e = (1, 1, · · · )

Based on the KKT conditions, x? is an optimal feasible solution for QP if and

only if the three optimality conditions hold [28, 29]:

• Primal feasibility: x? is feasible for QP .

• Dual feasibility: x?, λ? are feasible for QD.

• Complimentary slackness: f(x?) = d(x?, λ?)

Mehrotra’s algorithm, like many interior point algorithms, generates a sequence

of infeasible iterates along the central path, which connects the analytic center and

the solution set. The central path for convex QP is defined by the following:

C = {(x, λ, s) ∈ F| ΛS = µe, µ ≥ 0} (4.11)

where µ = λT s
m

is the duality gap, which is a measure of the desirability of each

point in the search space. The search direction at each iterate consists of three

components [29]:

• an affine-scaling “predictor” direction which is the pure newton direction for

the function F (x, λ, s) defined in equation 4.10b,

• a centering term whose size is governed by the adaptively chosen centering

parameter σ; if the affine-scaling direction makes good progress in reducing

the duality measure µ while remaining inside the positive orthant (λ, s) > 0,

a little centering is needed and a small value is assigned to σ, on the other

hand, a significant amount of centering is needed and σ is chosen near 1, if the

affine-scaling direction is only a short distance from violating the constraint

(λ, s) > 0, and

• a corrector direction that attempts to compensate for the nonlinearity in the

affine-scaling direction.
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Having briefly discribed Mehrotra’s predictor-corrector algorithm for convex

QP , the general steps of the algorithm can be specified as follows [30, 26]:

1. Choose a starting point (x0, λ0, s0) such that (λ0, s0) > 0.

The approach that was proposed by Mehrotra for estimating an initial infea-

sible point for linear programming LP [30], is extended for the convex QP

problem as follows:

x̃ = (AT A)−1AT b (4.12a)

λ̃ = A(AT A)−1b (4.12b)

s̃ = b − Ax̃ (4.12c)

δλ = max(−1.5min(λ̃), ε) (4.12d)

δs = max(−1.5min(s̃), ε) (4.12e)

δ̃λ = δλ + 0.5
(λ̃ + δλ)T (s̃ + δs)
∑

i≤m(s̃i + δsi)
(4.12f)

δ̃s = δs + 0.5
(λ̃ + δλ)T (s̃ + δs)
∑

i≤m(λ̃i + δλi)
(4.12g)

x0 = x̃ (4.12h)

λ0 = λ̃ + δ̃λ (4.12i)

s0 = s̃ + δ̃s (4.12j)

where ε is a small positive constant. Mehrotra et al discussed the validity

and the properities of his approach [30]. Lustig, Marsten, and Shanno sug-

gested a different approach for generating the initial point and stated that

the predictor-corrector algorithm is quite sensitive to the initial guess to the

optimal solution [34].

2. Evaluate the stopping criteria: Given the feasibility residuals rb = Ax + s− b

and rc = Qx + c + AT λ, the following three condition must hold:

• Primal feasibility: ‖rb‖/(1 + ‖b‖) ≤ ε

• Dual feasibility: ‖rc‖/(1 + ‖c‖) ≤ ε

• Complementary slackness: |xT Qx + bT λ + cT x| ≤ ε
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3. Compute the affine-scaling direction: It can be obtained from the first order

approximation of the function F (x, λ, s) defined in equation 4.10b.




Q AT 0
A 0 I
0 S Λ









∆xaff

∆λaff

∆saff



 =





−rc

−rb

−ΛSe



 (4.13)

4. Compute steps to the boundary along the affine scaling direction:

αaff = max{α ∈ [0, 1]|(λ, s) + α(∆λaff , ∆saff ) ≥ 0} (4.14)

In order to measure the efficiency of the affine-scaling direction, the duality

gap attained from a full step to the boundary is defined as:

µaff =
(λ + αaff∆λaff )

T (s + αaff )saff

m

5. Compute the centering-corrector direction: The centering parameter σ is com-

puted from the following heuristic:

σ = (
µaff

µ
)3

Given a centering parameter σ ∈ [0, 1], the centering-corrector direction is

estimated by solving the following linear system:




Q AT 0
A 0 I
0 S Λ









∆xcc

∆λcc

∆scc



 =





0
0

µσe − ∆Λaff∆Saff



 (4.15)

where ∆Λaff = diag(∆λaff ), and ∆Saff = diag(∆saff ) are diagonal matrices.

6. Compute the search direction:

∆x = ∆xAff + ∆xcc (4.16a)

∆λ = ∆λAff + ∆λcc (4.16b)

∆s = ∆sAff + ∆scc (4.16c)

7. Determine the step size and update:

αmax = argmax{α ∈ [0, 1]|(λ, s) + α(∆λ, ∆s) ≥ 0} (4.17)

x = x + min(1, 0.995αmax)∆x (4.18a)

λ = λ + min(1, 0.995αmax)∆λ (4.18b)

s = s + min(1, 0.995αmax)∆s (4.18c)
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8. Compute the duality gap µ = λT s
m

and go to step 2.

When compared with other optimization methods and other interior point meth-

ods, the Mehrotra’s predictor corrector algorithm is to date the most computation-

ally efficient method for solving large scale convex QP and other convex program-

ming classes as computational and numerical analysis studies have shown [30, 34].

4.6 Hot starting

Model predictive control solves a sequence of similar optimal control problems in

succession. These problems vary only slightly from one problem to the next. It is

highly desirable that the optimization algorithm should be able to take advantage

of this fact. The information would be used to choose good starting values for all

the variables. The process of using the information is called hot starting.

Several studies proposed different approaches for applying hot starting to inte-

rior point methods [29, 32, 35]. One approach is to use a shifted version of one

of the earlier interior point iterates from the previous problem. Since the interior

point algorithm tends to follow the central path, this strategy produces an iterate

which is close to the central path for the new optimal control problem.

In the presence of disturbances, the previous solution may have little relevance

to the new optimal control. A starting point in this case can be constructed from

the unconstrained solution or from a cold start using a well centered point. It has

been shown that for LP problems, interior point methods gain about a factor of

three in compute time efficiency when they are hot started in comparison with cold

start (no prior information).

4.7 Interior point methods vs. active set methods

The interior point approach has a number of advantages over the active set ap-

proach from a computational point of view [27, 26]. It is difficult for the active set

algorithm to exploit any structure inherent in the QP problem without redesigning

most of its complex linear algebra operations. In an interior point algorithm, on

the other hand, the only complex linear algebra operation is the solution of the

linear system. Hence the interior point approach can exploit fully the properties

of the system arising for each problem class.
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The active set approach is very efficient for small and medium scale problems,

whereas the interior point approach is efficient for large scale problems. The active

set approach requires much less execution time than the interior point approach in

many contexts, especially when a hot starting technique is applied and the problem

is generic enough that not much benefit is gained by exploiting its structure. How-

ever, an active set approach requires large number of steps in which each search

direction is relatively inexpensive to compute, while interior point approach takes

a smaller number of more expensive steps.
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Chapter 5

Simulation and Implementation
Results
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5.1 The bleaching process controller design issues

The mechanical pulp bleaching process at Irving Paper mill is a very complex

process. For the sake of simplicity, the bleaching process is handled as a SISO

system whose input and output are the peroxide dosage and the finel pulp bright-

ness respectively. Since the bleaching process has a variable delay time, a delay

time esimator is embedded in the controller. The DMC strategy is used to control

the bleaching process with a control horizon NU = 1 and a prediction horizon

NP , which is a function of the estimated delay time Td to compensate for the

time-variability of the process:

NP (k) = Td(k) + NPo

where NPo = 4τ is the prediction horizon of the bleaching process whose time

constant is τ . Identification studies have shown that the gain of the process is

nonlinear and depends on the peroxide dosage. A gain scheduling technique has

been applied in the controller to cope with nonlinear gain of the process. Figure 5.1

illustrates the relationship between the brightness gain and the peroxide dosage. A

combination of a Smith predictor and feed-forward techniques has been embedded

in the controller to compensate for the incoming pulp brightness variations, and

hence improve the performance of the controller. Figure 5.2 shows the scheme of

the DMC controller.

Figure 5.1: The nonlinear brightness gain with respect to peroxide dosage.
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Figure 5.2: The bleaching process DMC controller.
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5.2 Nominal performance

The objective of this simulation is to study the behaviour of the closed loop sys-

tem in terms of its nominal performance. The DMC controller parameters were

chosen appropriately, the prediction horizon NP = 4τ + Td(k) where τ is the time

constant of the bleaching process, the control horizon NU = 1, the peroxide dosage

constraints 0.0% ≤ U ≤ 0.5%, and the slew rate constraints |du| ≤ 0.1%/minute.

It is important to mention that all the process parameters (i.e., the pulp brightness

and the peroxide dosage) in this simulation are incremental ones without any bias.

When a stair signal is applied to the reference input at different points on the

variable delay time function (top trace), the final brightness exactly tracks the

reference brightness signal at different delay times (bottom trace) as illustrated in

figure 5.3. This implies that the DMC controller works well even though the delay

time is varying.

0 500 1000 1500 2000 2500 3000 3500 4000
400

450

500

550

600

Time (min)

V
ar

ia
bl

e 
de

la
y 

tim
e 

(m
in

)

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

Time (min)

P
er

ox
id

e 
do

sa
ge

 %

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

Time (min)

Fi
na

l b
rig

ht
ne

ss
 (%

IS
O

)

Final brightness response
Setpoint

Figure 5.3: System response to stairs signal at different delay times
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In order to study the behaviour of the system in the presence of disturbances,

a disturbance in the incoming pulp brightness was applied at the time instant

t = 2000 min as shown in figure 5.4. When there is no feedforward compensa-

tion included in the DMC controller, the effect of the disturbance appears on the

final brightness response (dash-dotted line) after some delay time and lasts for a

long time (more than 500 min) before it is completely rejected. However the distur-

bance is immediately rejected when the feedforward plus smith predictor technique

is included in the DMC controller (solid line), and the system performance is im-

proved in comparison with the previous case. This is obvious from the peroxide

dosage response (control signal) where it responds to the disturbance earlier in the

feedforward compensated case.
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Figure 5.4: The effect of disturbance rejection on the system performance
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5.3 Robust performance

This simulation is aimed at studying the behaviour of the system in the presence

of parameter uncertainties in the bleaching process model. The parameters of the

DMC controller are still the same as the previous simulation. It is important to

mention that all the process parameters (i.e., the pulp brightness and the peroxide

dosage) in this simulation are incremental ones without any bias.

As illustrated in figure 5.5, when the process has a gain uncertainty of ∓20%

(dash-dotted line for the +20% case and dotted line for the −20% case), the final

brightness response to a step at the reference input is markedly different from the

nominal case. The final brightness does not track the reference for a fairly long

time (an additional process delay time). It finally corrects itself, steping up or

down according to the sign of the uncertainty, and eventually gets back to track

the reference. This implies that the DMC controller sets the peroxide dosage (top

trace) for the nominal case for some time, and then it corrects the dosage according

to the sign and size of the gain uncertainty.

The system response does not show much difference, when the time constant

of the bleaching process is perturbed by ∓20%, as can be seen in figure 5.6 (dash-

dotted line for the +20% case and dotted line for the −20% case). The effect of

uncertainty in the time constant on the final brightness (closed loop response) will

change according to the sign and size of the time constant uncertainty, as shown.

As previous simulations have demonstrated, introducing uncertainty in the pa-

rameters of the delay-free part of the bleaching process has only led to moderate

changes in the system performance, without affecting its stability. However, if

there is an uncertainty in the delay time of the process, then both the performance

and the stability of the closed loop system will be affected. When introducing a

delay time uncertainty of ∓5% in the process, as can be observed in figure 5.7

(dash-dotted line for the +5% case and dotted line for the −5% case), the final

brightness starts to exhibit peaking, which only slowly decreases. In fact, the

brightness response shows some “blips” every 500 minutes which will develop to a

stable or unstable oscillation depending on the sign and size of the uncertainty as

time elapses. In order to explain those blips let’s consider the −5% case, in which

the brightness response occurres earlier than it is supposed to. This implies that
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Figure 5.5: The system response to ∓20% gain uncertainty.

the early measurement of the brightness will cause an error in the estimation of

the free response in the DMC control algorithm. Consequently the future error

between the predicted free response and the set point profile will no longer be

zero, which causes a downward blip in the control action as time elapses. This will

cause a blip in the brightness response after some delay time that will result in

another error, and the story will be repeated every delay time, resulting in peak-

ing. Fortunately the blips decay after some time, which indicates that the system

is still stable. If the size of the delay time uncertainty is increased to ∓10%, the

amplitude of the oscillation in both the final brightness response and the peroxide

dosage is increased. The system in this situation becomes unstable for both un-

certainty cases as illustrated in figure 5.8. It can be concluded that the delay time

uncertainty must be small in order to obtain a high performance from the DMC

controller and preserve its stability.
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Figure 5.6: The system response to ∓20% time-constant uncertainty.
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Figure 5.7: The system response to ∓5% delay time uncertainty.

56



0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

Time (min)

P
er

ox
id

e 
do

sa
ge

 %

Nominal case
+10% Delay time uncertainty
−10% Delay time uncertainty

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

Time (min)

Fi
na

l b
rig

ht
ne

ss
 (%

IS
O

)

Figure 5.8: The system response to ∓10% delay time uncertainty.
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5.4 Implementation results

Simulation results have shown some very promising results in terms of the nominal

performance of the closed loop system. However, those results were conservative

when the system was simulated against different types of uncertainties (i.e., robust

performance). The true performance of the DMC controller would only be revealed

if it is implemented and tested on the real bleaching process at the Irving Paper

mill. Therefore a control prototype was designed and implemented in the Irving

Paper mill (refer to appendix B for more details about this implementation).

The technology was implemented as an advisor, so the tests were made in a

semiautomatic way. This implies that the control program was not allowed to write

the optimal peroxide dosage directly to the process, which guarantees smoothness

of controlling the process without being affected by any undesirable actions from

the controller.

5.4.1 DMC controller test: objectives and difficulties

Two tests have been done to validate the performance of the DMC controller in

real time (i.e., during the normal operating the conditions of the bleaching process

at Irving Paper mill). A set of objectives was defined to be met during the tests:

1. validation of the delay time estimator,

2. study of the effect of the incoming pulp brightness,

3. study of robustness w.r.t. Td,

4. study of nonlinearity of the process, and

5. study of SO2 effect.

The tests were done by applying a step change in the pulp brightness reference

input and changing the hydrogen peroxide dosage according to the recommended

dosage for the control advisor. However, working with real complex processes such

as the bleaching process implies that difficulties and problems may take place and

may degrade the performance of the controller during the tests.

One of the difficulties that contributed to the degradation of the controller

performance is the high sensitivity of the bleaching process to the SO2 dosage.
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In fact the SO2 dosage has a great influence on the pulp pH and the brightness

measurement (refer to the second chapter for more details). Fortunately the SO2

dosage was constant during the first test, which resulted in very promising results.

However, the SO2 dosage was varying during the second test, to compensate for

the variation of the pulp pH, which severely degraded the performance of the DMC

controller to the extent that there was no change in the final brightness when a

step change was applied at the reference input.

Although the incoming pulp brightness sensor was repaired by the technical

staff of Valmet Automation before making the tests, the sensor was not measuring

the incoming pulp brightness properly. This implies that the study of the effect

of the incoming pulp brightness (second objective) had to be cancelled during the

tests.

Another less serious problem was the inaccurate measurement provided by the

final pulp brightness sensor. In other words, there was a difference between the real

brightness and the measured one, which resulted in a parametric uncertainty in

the gain of the bleaching process model. Although the tests were done in a highly

uncertain environment, the results of the first test revealed some very significant

facts.

5.4.2 First test results

The test was done by applying a step change at the brightness reference input

and changing the peroxide dosage of the real bleaching process according to the

recommended dosage of the control advisor. The operators of the bleaching process

at Irving Paper mill were asked to follow the recommended dosage by the control

advisor as much as possible, in order to simulate nearly the closed loop behaviour

of the DMC controller.

Figure 5.9 shows the dosages of the secondary bleaching process chemicals dur-

ing the first test, where the silicate dosage was constant around 3% (middle plot).

Fortunately the SO2 (bottom plot) was remarkably constant, thus not degrad-

ing the performance of the DMC controller. The caustic dosage (top plot) was

changed as the peroxide dosage changed (see figure 5.10), in order to meet a spec-

ified TA/H2O2 ratio.
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Figure 5.9: The dosages of secondary bleaching chemicals, first test.

Returning to the brightness controller, a step change of 4%ISO was applied at

the reference input at time instant t = 418 minutes and the setpoint was adjusted

to corresponde to 65.827%ISO (i.e., the initial conditions), as demonstrated in

figure 5.10. The change in final brightness response (bottom plot) occurred at

time instant t = 700 minutes. The figure also shows the recommended peroxide

dosage by the control advisor (noisy trace, top plot) and the actual peroxide dosage

applied to the real bleaching process (solid trace, top plot).

5.4.3 Discussion and analysis of the first test results

Having shown the results of the first test, the analysis of these results would reveal

whether the objectives of this test have been met or not. The initial conditions

of the peroxide dosage and the final pulp brightness before making the test were

0.864% and 65.827%ISO respectively. Both the recommended peroxide dosage
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Figure 5.10: The final pulp brightness to a step change at the reference, first test.

(noisy trace, top plot) and the actual one (solid trace, top plot) were simulated by

using a brightness model that has the same parameters used in the control advisor.

The simulated brightness responses (solid and dashed traces, bottom plot) were

then plotted along with the measured final brightness (noisy trace, bottom plot)

after removing the bias as figure 5.11 demonstrates.

Clearly the bottom plot reveals two interesting and yet significant observations:

1. It is obvious that both the simulated and the measured brightness responses

failed to track the set point. This due to the inaccurate measurement of the

final brightness sensor, which resulted in an apparent gain uncertainty in the

bleaching process. However, the DMC controller increased the peroxide dosage

(noisy trace, top plot) at time instant t = 770 minutes to compensate for

the gain uncertainty. As a result, the simulated brightness response (dashed

trace, bottom plot) was changed at time instant t = 1090 minutes to attempt
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Figure 5.11: The final pulp brightness responses after removing the bias, first test.

to track the set point. This indicates that the DMC controller can handle

gain uncertainty, as the robust performance simulation has exactly shown.

But the real peroxide dosage (solid trace, top plot) was not allowed to follow

the recommended peroxide dosage exactly for economic considerations.

2. It is interesting to observe that the change in the real brightness response

(noisy trace, bottom plot) occurred earlier than it was supposed to. In other

words, it should have occurred at the same time as the simulated brightness

response (dashed trace, bottom plot). This implies that a delay time uncer-

tainty has happened during the test. The effect of the uncertainty is also clear

in the recommended peroxide dosage where a downward blip took place at the

same time of the uncertainty. This result is identical to what was observed in

the robust performance simulations.

As far as the delay time estimation is concerned, figure 5.12 demonstrates the
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results, where the delay time estimator used the pulp inflow (top plot) and the

pulp volume in the bleaching tower (middle plot) to estimate the delay time online

in real time (bottom plot).
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Figure 5.12: The estimated delay time, first test.

The reason for the delay time uncertainty is because the pulp level inside the

bleaching tower was decreasing during the test, which caused the brightness change

to happen earlier than anticipated. This, in turn, raises questions about the per-

formance of the delay time estimator for use in real time control.

The delay time estimator integrates the pulp outflow backward in time to esti-

mate the delay time of the pulp leaving the bleaching tower (see section 2.4.1). Of

course the estimated delay time in the case of decreasing pulp level in the bleaching

tower will be larger than the actual delay time. This suggests that the estimator

should integrate the pulp outflow forward in time, given the present time t is at the

inlet of the bleaching tower rather than the outlet. This can be mathematically
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expressed by:
∫ t+Td(t)

t

Qout(τ)dτ = V (t) (5.1)

Figure 5.13 demonstrates this approach, where the delay time has been re-

estimated offline by using the forward integration estimator (dashed trace, top

plot), and then used to simulate the closed loop behaviour of the bleaching process

when a step change is applied at the reference input. The new simulated brightness

response (dashed trace, bottom plot) shows an improvement in terms of less delay

time uncertainty compared to the old simulated brightness response (solid trace,

bottom plot). However, the forward delay time estimator is physically unrealizable

in real time, due to the difficulty of predicting the pulp outflow over such long

period of future time. It should be mentioned that further simulations and tests

are required to confirm the last result.
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Figure 5.13: The effect of forward delay time estimation on the brightness response, first test.
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Chapter 6

Thesis Observations
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This research has revealed a lot of impressive observations and results about the

mechanical pulp bleaching process at Irving Paper. A set of practical recommenda-

tions can be made of these observations, so that the performance of the bleaching

process at the Irving Paper mill can be improved and the process efficiency can

be raised. These observations and conclusions would also form a better framework

for research and future studies to enhence the bleaching process at Irving Paper.

6.1 Summary and conclusions

1. The mechanical pulp bleaching process at Irving Paper mill has been thor-

oughly studied, analysed, and modelled.

2. Hydrogen peroxide dosage, caustic dosage, SO2 dosage, incoming pulp bright-

ness, and pulp consistency are considered the most important factors that have

a great impact on the bleaching process.

3. Since the purpose of this research is to study the possibility of controlling

the bleaching process, most chemical dosages were assumed to be constant

during the bleaching reaction, and only the hydrogen peroxide dosage has

been focussed on, for simplicity.

4. Simulation results and identification studies have shown that the bleaching

process can be modelled a first order dynamics plus a variable delay time,

where the peroxide dosage is the input and the final pulp brightness is the

output. Pulp consistency and incoming pulp brightness can be considered as

measurable disturbances.

5. A delay time estimator which is based on the backward integration of the pulp

inflow was used in the identification studies to tackle the variable delay time

challenge. Simulations demonstrated the estimator reliability when it is used

offline for identification purposes.

6. Although the gain of the peroxide bleaching process is a nonlinear function

of the peroxide dosage, identification studies have shown that the bleaching

process at Irving Paper mill can be considered to be a linear process with a

gain of 8.2 and a time constant of 50−−60 minutes, if the hydrogen peroxide

dosage is less than 1.4%.
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7. A model predictive control (MPC) strategy was chosen to control the process,

due to its challenging characteristics when compared with processes for which

traditional control methods (e.g., the PID control method) are effective. The

bleaching process was considered to be linear when the DMC controller was

designed.

8. A state of the art of optimization algorithm i.e., an interior point method,

was incorporated in the controller for practical and industrial considerations

(i.e., constraints on process variables).

9. Simulation studies on the nominal performance of the DMC controller have

shown impressive results. However, results were acceptable in the case of

robust performance simulations only if the delay time uncertainty was less

than 8%.

10. An industrial control prototype was designed to implement the DMC con-

troller in the real bleaching process, and to study its performance in real

time.

11. Although the implementation and the testing phase had some practical prob-

lems (inaccurate brightness measurements and other problems), the test re-

sults were identical to the simulation results. This implies that the DMC

controller performance was very acceptable during the tests. The analysis

of the implementation results have shown that the delay time estimator was

unreliable for real time control purposes.

12. A new delay time estimator which is based on the integration of the long

horizon predicted pulp outflow, is proposed. Simulations have shown that

the DMC controller performance can be improved when such an estimator is

incorporated in the controller. However, the proposed estimator is physically

unrealizable without good long-term prediction of pulp outflow.

13. Identification and implementation results have shown that SO2 dosage has

a great impact on the brightness measurement and pulp pH as well. This

implies that the control of the pulp pH would improve both the efficiency of

the bleaching process and the quality of the produced paper.
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6.2 Future work

1. Since the final brightness measurement has shown a high sensitivity to the

SO2 dosage variations, a new model structure of the bleaching process that

addresses the SO2 dosage and the pulp pH, would form a better framework

for research and future studies. The new proposed model must be a 2 × 2

multivariable model, where the hydrogen peroxide and the SO2 dosages are

the inputs. The final pulp brightness and pulp pH are the outputs of the

new model. Pulp consistency and incoming pulp brightness can be considered

measurable disturbances, which can be compensated by using a combination

of feed forward control and smith predictor. Irving Paper has decided to

upgrade the TDC 3000 DCS system and to improve the pulp pH control by

installing a new pH sensor and a bigger SO2 valve. This may enhance the

future research and make it more successful. As far as the DMC controller is

concerned, the controller itself does not require a lot of modification, since the

MPC control strategy can be extended to handle multivariable cases easily.

2. The backward delay time estimator can be incorporated in the proposed mul-

tivariable DMC controller if and only if both pulp inflow and outflow are

guaranteed to vary slowly or predictably. In other words, the rate of change

of the pulp level in the bleaching tower should not be high or it should follow a

planned schedule. The performance of the DMC controller in this case would

be acceptable. However, if the rate of change of the pulp level in the bleaching

tower is fast, then a state event handler can be incorporated in the controller.

If the rate is acceptable then the handler would switch the DMC controller

on, otherwise, the process is controlled manually. A final scenario would be

to schedule the pulp outflow in the future, so that the prediction of the pulp

outflow would be practically realizable and the forward delay time estimator

can then be incorporated in the proposed controller.

3. The multivariable nature of the proposed DMC controller may place a large

burden on the optimizer incorporated in the controller, because of the bigger

size of the optimal control problem being solved in the controller. Future

research may address the use of warm starting techniques and the use of sparse
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cholesky algorithms to solve the augmented system of the linear equations.

This would significantly increase the efficiency and the speed of the optimizer.

69



Bibliography

[1] J. R. Persley and R. T. Hill, “Peroxide bleaching of (chemi)mechanical pulps”,

from Pulp bleaching principles and practice Ed. by Dence, Carlton W. and

Reeve, Douglas W., pp. 457–489. Atlanta, Ga: TAPPI Press, 1996.

[2] Z. Li and G. Court, “Private communication and meeting with Irving Paper

Ltd., St. John, N.B.” July 2000, Jan 2001, Nov 2001, April 2002.

[3] C. W. Dence and D. W. Reeve, Brightness: basic principles and measurement

from pulp bleaching principles and practice, pp. 697–716. Atlanta, Ga: TAPPI

Press, 1996.

[4] Valmet Automation Kajaani Ltd., Kajaani, Finland, Kajaani Cormec-C/M

brightness sensor operating and maintenance manual, November 1996.

[5] N. J. Sell, Process control fundamentals for the pulp and paper industry. At-

lanta, GA: TAPPI Press, 1995.

[6] T. Soderstrom and P. Stoica, System Identification. New York: Prentice Hall,

1989.

[7] S. Moldenius and B. Sjogren, “Kinetic models for hydrogen peroxide bleaching

of mechanical pulps,” Journal of wood chemistry and technology, vol. 2, no. 4,

pp. 447–471, 1982.

[8] C. Y. Wen and L. T. Fan, Models for flow systems and chemical reactors. New

York: Marcel Dekker, Inc., 1975.

[9] X. Qian and P. Tessier, “Dynamic modelling and control of a hydrogen per-

oxide bleaching process,” Pulp and Paper Canada, vol. 89, no. 9, pp. 81–85,

1997.

70



[10] L. Ljung, System Identification, Theory for the user. Upper Saddle River, NJ:

Prentice Hall, 2nd ed., 1999.

[11] T. Andersson and P. Pucar, “Estimation of residence time in continuous flow

system with dynamics,” Journal of process control, vol. 5, no. 1, pp. 9–17,

1995.

[12] Y. Ni, “Private communication and meeting with Pulp and Paper Research

Center, Fredericton, N.B.” July 2000, Nov 2001.

[13] R. Ylinen and K. Zenger, “Computer aided anaylsis and design of time varying

systems,” in Proc. of international workshop on computer aided systems the-

ory, EUROCAST (R. Pichler and R. Moreno Doas, eds.), (Kerms, Austria),

pp. 73–95, Springer Verlag, 1991.

[14] K. Zenger, “Time-variable models for mixing processes under unsteady flow

and volume,” in Proc. of 4th IFAC Sypmosium on dynamics of chemical re-

actors, distillation columns, and batch reactor (J. B. Rawlings, ed.), (Oxford,

UK), pp. 57–63, Pergamon Press, 1995.

[15] R. Ylinen and K. Zenger, “Simulation of variable delaysin material transport

models,” Mathematics and computers in simulation, vol. 37, pp. 57–72, 1994.

[16] C. R. Cutler and B. L. Ramarker, “Dynamic matrix control – a computer

control algorithm,” Proceedings of the joint automatic control conference, 1980.

[17] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized predictive control–

part 1, the basic algorithm,” Automatica, vol. 23, no. 2, pp. 137–148, 1987.

[18] M. Morari and J. H. Lee, “Model predictive control: past, present, and future,”

Computers and chemical engineering, vol. 23, no. 4–5, pp. 667–682, 1999.

[19] S. J. Qin and T. A. Badgwell, “An overview of industrial predictive control

technology,” in Proc. of the 5th international conference on chemical process

control (CPC-V) (J. C. Kantor, C. E. Garcia, and B. Carnahan, eds.), vol. 93

of AIChe Symposium series No. 316, (Tahoe City, CA), pp. 232–256, 1996.

[20] C. Camacho, Eduardo F. Bordons, Model predictive control. Berlin, New York:

Springer, 1999.

71



[21] J. E. Marshall, H. Gorecki, and A. Kroytowski, Time delay systems, stability

and performance criteria with applications, pp. 201–227. New York: Ellis

Horwood, 1992.

[22] J. E. Marshall, Control of time delay systems. London and New York: Peter

Peregrinus Ltd., 1979.

[23] M. Morari and E. Zafiriou, Robust process control. Prentice Hall, new jer-

sey ed., 1989.

[24] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear programming:

theory and algorithms. New York: Wiley, 2nd ed., 1993.

[25] D. Luenberger, Linear and nonlinear programming. Reading, Mass: Addison-

Wesley, 2nd ed., 1984.

[26] S. J. Wrght and J. Nocedal, Numerical optimization. New York: Springer,

September 1999.

[27] F. A. Potra and S. J. Wright, “Interior point methods,” Journal of Computa-

tional and Applied Mathematics, vol. 124, no. 1–2, pp. 281–302, 2000.

[28] Y. Ye, Interior point algorithms: theory and analysis. New York: Wiley, 1997.

[29] S. J. Wright, Primal dual interior point methods. Philadelphia: SIAM, 1997.

[30] S. Mehrotra, “On the implementation of primal dual interior point method,”

Siam journal on optimization, vol. 2, no. 4, pp. 575–601, 1992.

[31] S. J. Wright, “Applying new optimization algorithms to model predictive con-

tol,” in Proc. of Chemical process control-V, vol. 93 of AIChE Symposium

series no.316, pp. 147–155, CACHE Publications, 1997.

[32] C. Rao, S. J. Wright, and J. Rawlings, “Applications of interior point methods

to model predictive control,” Preprint ANL/MCS-P664-0597, Mathematics

and computer science division, Argonne National Laboratory, May 1997.

[33] A. Hansson, “A primal dual interior point method for robust optimal control of

linear discrete time systems,” IEEE transactions on automatic control, vol. 45,

no. 09, pp. 1639–1655, 2000.

72



[34] I. J. Lustig, R. E. Marsten, and D. F. Shanno, “On implementing Mehro-

tra’s predictor corrector method for linear programming,” SIAM Journal on

Optimization, vol. 2, no. 3, pp. 435–449, 1992.

[35] E. A. Yildirim and S. J. Wright, “Warm start strategies in interior point meth-

ods for linear programming,” Preprint ANL/MCS-P799-0300, Mathematics

and computer science division, Argonne national laboratory, March 2000.

73



Appendix A

Brightness Principles and
Measurement

74



A.1 Meaning and interpretation of brightness

Brightness is a precisely defined measurement of reflectance of visible blue light of

a pad of pulp sheets or an opaque stack of paper or paperboard. It indicates the

level of success in a bleaching operation. Unbleached paper or board appears brown

because blue light is absorbed by the chromophores. Bleaching chemically reduces

the concentration of light absorbing constituents, namely the chromophores, so

that paper reflects more light [3].

Light interacts with paper or pulp sheets in various ways. It may pass through,

be absorbed and converted into heat, be absorbed and released again as lower en-

ergy fluorescent light, reflect from the first surface encountered as in gloss, or diffuse

through the paper to exit eventually from one side to the other as shown in figure

A.1. Only the light that actually penetrates the sheet can experience absorption

and can influence the papers colour in general and brightness in particular.

Gloss, a mirror like first-surface reflectance, and fluorescence are two optical

interactions which complicate the measurement of brightness.

Figure A.1: Different types of light interactions with paper [3].

A.2 Brightness and chromophore concentration

The reduction in chromophore concentration is not proportional to the change

in brightness but can be calculated easily from the brightness by applying the
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Kubelka-Munk equation [3]

B

100
= 1 + (k/s) −

√

2(k/s) + (k/s)2

where B is the brightness in percent; s, the scattering coefficient, indicates the

likelihood that an optical discontinuity will cause light to change direction within

some increment of its diffusion path, and k, the absorption coefficient, is propor-

tional to the chromophore concentration. Figure A.2 illustrates the relationship

between brightness and the k/s ratio.

Figure A.2: Relationship between brightness and chromophore concentration [3].

A.3 Brightness standards

Over the years, several methods for measuring brightness have been developed and

used as standards. Standardization means that the property being measured is

defined. Brightness standards such as TAPPI and ISO were defined in terms of

wavelength distribution function, a specific type of instrument, and a calibration

routine.

Differences between TAPPI and ISO standards can be summarized as follows

[3]:

• ISO brightness is axially symmetric, but TAPPI brightness is sensitive to

both machine and cross directions.
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• ISO brightness does not consider most of the gloss; TAPPI brightness elim-

inates nearly all the gloss.

• ISO brightness is based on absolute diffuse reflectance; TAPPI brightness is

based on relative directional reflectance.

• TAPPI brightness measures the reflectance at a single illumination angle of

45◦; ISO brightness includes all but the gloss-excluded angles at an effective

illumination angle of 60◦ from the normal.

A.4 Brightness sensors

Most of present day brightness sensors implement the ISO brightness standard.

Cormec, which was introduced by Kajaani in 1978, is one of the most widely used

brightness sensors in pulp bleaching industry today [4].

Figure A.3: Cormec measurement [4].

Figure A.3 illustrates the function of the Cormec brightness sensor, where the

light being emitted from a halogen lamp is picked up by five fibre optic cables.

Four of these cables shine the light into the pulping process through a sapphire

lens which protects the cables from the process. The fifth cable which is used as a

reference cable, comes directly to the light detection unit.

The light detection unit consists of a motor-rotating disc which has four light

filters for red, green, blue, and infrared. There are two light paths that pick up the

light being reflected, refracted, absorbed, and diffused from the process. The short
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light path is one fibre optic cable mounted very close to the light-emitting cables.

The long light path consists of four fibre optic cables mounted further away from

the four light source cables (the light paths are not shown in the figure).

The light coming back from the two light paths is sent through the rotating filter

wheel to the light detection unit and is converted to an electrical signal. Based on

the electrical signal and the reference light the raw brightness is calculated. Several

raw brightness measurement can be obtained from the Cormec sensor.
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Appendix B

Test and Implementation Issues
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B.1 Test and experiment details

Process operators at Irving Paper mill usually control the mechanical pulp bleach-

ing process manually by interacting with the Honeywell TDC3000 DCS system.

The TDC3000 DCS system provides the human machine interface (HMI) facili-

ties and the basic control infrastructure, which handles and controls all primary

processes in the bleaching process (such as pulp flows and chemicals dosages). A

control technology prototype has been designed to implement the designed DMC

controller in the real peroxide bleaching process at Irving Paper mill. The tech-

nology has been implemented in the mill by integrating a PC system with the

TDC3000 DCS system, so that the control program can acquire to the bleaching

process parameters in real time. The connection between the control technology

and the DCS system has been achieved by utilizing the PI-API client-server service

provided by the DCS system.

Since the control technology was designed to test some basic objectives and

not to automatically control the bleaching process, it is only allowed to read the

bleaching process variables and to calculate the corresponding optimal hydrogen

peroxide dosage. Then the process operator can either follow the peroxide dosage

recommended by the control technology, or use his experience to manually control

the bleaching process. In other word, the developed control technology works as

an advisor to the bleaching process operators. Figure B.1 demonstrates the DMC

control technology implementation at Irving Paper mill.

The Microsoft visual C++ development environment was used to develop the

control technology. C++ libraries from National Instruments which provide mainly

the linear algebra functions and the graphic user interface ActiveX controls, were

also used. The control program simply reads all the necessary bleaching process

variables to calculate the optimal peroxide dosage at each sampling instant. Then

the different process parameters are plotted on line and stored in a file for later

processing and review.

Basically the control program was designed based on the single document in-

terface SDI application, which offers a lot of flexibility from both the user and the

designer points of view. Figure B.2 shows the control program main window and

its controls. The control program mainly consists of three parts: the application
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Figure B.1: The DMC control technology implementation at Irving Paper mill.

and its graphic user interface (GUI), the database, and the run time engine.

B.1.1 The graphic user interface (GUI) part

The basis of the control program is the single document interface SDI application.

The SDI application is based on the view/document architecture, where the doc-

ument is the abstract representation of the data being handled in the application.

The view is the visual representation of the date which allows the user to interact

with the application efficiently. Figure B.3 demonstrates the design scheme of the

control program in terms of its GUI, and the relationships between the different

constructed objects.

There are four dialog boxes in the application. The application has been de-

signed so that the view object creates two kinds of dialog boxes to enhance the

user interaction.The first three dialog boxes are modeless ones which allow the user

to work elsewhere in the application while the dialog is active. Their main func-

tion is to show the plots of the bleaching process variables online, i.e., bleaching

chemical dosages, pulp flows, and pulp brightness. The forth dialog box is a modal

one, where the user cannot work elsewhere in the same application until the dialog
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Figure B.2: The DMC control technology main window.

is closed. This dialog box allows the user to enter the parameters of the DMC

controller.

The dialog boxes can be displayed by clicking on the corresponding “ShowPlots”

button as can be seen in figure B.2, where there are three different categories of edit

controls (in the middle raw of controls in the main window) to show the numerical

values the bleaching process variables at each sampling period.

B.1.2 The database and run time engine parts

The variables of the control program have been organised in four structures, where

each of the structures is associated with one type of the process variables. The

document object contains all the structure and is responsible of handling the flow

from/to the hard-disk of the PC. Figure B.4 demonstrates the relationship between

the document object and the run time engine of the control application.

The run time engine which is considered to be the kernel of the control technol-
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ogy, is mainly responsible for generating the optimal control action (i.e., the opti-

mal peroxide dosage). The run time engine is mainly a dynamic link library (DLL)

which hides the main control and optimization algorithms used in the DMC con-

troller. The control and optimization algorithms are encapsulated in a class called

IrvMath which is inherited from the National Instruments math class CNIMath.

The functions in IrvMath class are structured in two types of access levels. The

first one is the public access type, which the application can access. The delay time

estimation and the DMC control algorithms are examples of the public access type

functions. The other type is the private access one, which only functions inside

the IrvMath class can access. The optimization algorithm and other functions for

internal use are examples of this type.

Figure B.5 shows the flow chart of the control algorithm as a programming

example. It starts by reading the necessary measurements from the bleaching

process and then compensating for the measurable disturbances such as the pulp

consistency and the incoming pulp brightness. The future error between set point

profile and the free response is estimated and, based on the optimization method

being chosen, the optimal control increments vector is estimated. Then the first

element of the control increments vector is applied to the real bleaching process

after being integrated and the states are updated. This algorithm is repeated

at each sampling instant. As far as the optimization algorithm is concerned, it

has been thoroughly discussed in chapter four in case the reader is interested in

implementing the algorithm.
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Figure B.3: The GUI design scheme of the DMC control technology.
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Figure B.4: The run time engine scheme of the DMC control technology.
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Figure B.5: The flow chart of the control algorithm in the control technology.
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